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Abstract: The optimal reactive power dispatch (ORPD) is a complex, nonlinear, and constrained
optimization problem. This paper presents the application of a new metaheuristic optimization
technique called the slime mold algorithm (SMA) for solving the developed objective function of
ORPD combining with renewable energy sources. The presented objective function is to minimize
the total operating cost of the system through the minimization of all reactive power costs, total real
power loss, voltage deviation of load buses, the system overload and improve voltage stability. The
formulation of the ORPD problem combining with renewable energy sources with five different
objective functions is then converted to a coefficient single objective function achieving various
operating constraints. The SMA technique has been tested and proven on the IEEE 30-bus system
and IEEE-118 bus system using different scenarios. Five different scenarios, with and without
renewable energy sources, are presented on the two-test system and the simulation results of the
SMA is compared to some optimization techniques from the literature under the same test system
data, optimal control variables, and operational constraints. The superiority and effectiveness of
the SMA are proven through comparison with the other obtained results from recently published
optimization techniques.

Keywords: slim mold algorithm; reactive power dispatch; renewable energy sources; coefficient
single objective function

1. Introduction

Presently, the power system network urgently needs to operate at whole capacity
because of the imbalanced investment in power system sectors. Therefore, there is con-
sensus among power network operators to develop the existing distribution as well as
the transmission systems by installation of new lines and/or adding power grid stations
to force the system to be more reliable, efficient and smart. In addition, the alternative
solution regards employing the existing system without upgrading, by optimally setting
the control parameters of the system which turn in enhance the effectiveness of the system.
This process may be achieved during the technical study called optimal power flow (OPF)
that is used in power system networks for the minimization of mainly the operating cost
and real power transmission losses by obtaining the optimized control variables of the
system. Moreover, OPF is consists of two sub-problems, one called economic dispatch and
the other optimal reactive power dispatch (ORPD) [1,2].

Optimal reactive power dispatch performs a considerable role in the planning and
economic operations of modern power networks. During the use of real power in the
system, the reactive power should be circulated in the system [3,4]. The reactive power
has a considerable impact on transmitted real power and voltage stability within the
power system networks. Therefore, it is necessary to estimate the ORPD. Due to the
behavior of the concerned control variables related to voltage control aspects involved in
the system components (i.e., reactive compensators, tap-changing transformers, etc.), ORPD
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is considered an extremely nonlinear complex problem. The ORPD is employed to adjust
the control variables’ parameters to accomplish the considered objective function [5,6].

In the last decade, renewable energy sources (RESs) such as wind energy, microturbine
generators, solar energy, and biomass are participating in reducing system power losses as
well as improving the security and reliability of the power system [7,8]. Moreover, RESs
have a major impact on the electricity market where they are required to define the reactive
power for the system to meet the considered objective function [9].

In the literature, there are different objective functions employed in ORPD considering
equality and inequality constraints. The widely used objective functions are minimizations
of both real power losses and transmission cost, enhancement of the voltage profile, and
voltage stability maximization [10–12].

Conventional mathematical approaches, such as interior-point [13], quadratic pro-
gramming [14] and linear programming [15] are extensively applied for solving the ORPD
problem. In [16], the Lagrangian decomposition approach is presented for solving ORPD
to minimize the reactive power exchange cost between areas of multi-area power sys-
tems. These conventional methods suffer from drawbacks. They are unable to converge to
the closest optimal global solution. Furthermore, they are limited with requirements for
non-convexity, differentiability, and continuity of the considered objective function. These
classical techniques cannot provide a precise solution to the present form of the ORPD
problem. Therefore, numerous optimization techniques are used to provide an accurate
solution to the ORPD problem.

At present, metaheuristic optimization techniques overcome the previously stated
limitations. The meta-heuristics have essential effectiveness through the fast search of
huge solution spaces to avoid local solutions and find global solutions. Presently, various
metaheuristic optimization techniques are proposed to solve the ORPD problem. Moth-
flame optimization (MFO) is used in [17] to explore the optimal control variables for
obtaining the minimum total real power loss and improve the voltage profile. The authors
in [18] presented the oppositional krill herd algorithm (OKHA) for solving the ORPD
problem based on both a single and multi-objective function based on the minimization of
the real power losses and total voltage deviations. The proposed OKHA was implemented
on the two IEEE test systems incorporating a unified power flow controller. The gray wolf
optimizer (GWO) is employed also in [19] to minimize both the real power loss and total
voltage deviation. In [20], the harmony search algorithm (HSA) is introduced for solving
the ORPD problem to optimize separately the real transmission loss, voltage profile, and
voltage stability based on the optimal settings of the control variables.

On the other hand, hybrid techniques are used for solving ORPD, where different
metaheuristic optimization approaches are used together to gather the advantages of
different techniques simultaneously. Some of these hybrid techniques are hybrid particle
swarm optimization and imperial competitive algorithms (PSO-ICA) [11], hybrid chaotic
artificial bee colony differential evolution (CABC-DE) [21], Gaussian bare-bones water
cycle algorithm (NGBWCA) [22], and fuzzy adaptive heterogeneous comprehensive-based
learning PSO (FAHC-LPSO) [23]. These methods are employed to solve the ORPD problem
by minimizing real power transmission loss and load voltage deviation. While the hybrid
PSO with multiverse optimizer (PSO-MVO) [12] is used to solve the ORPD problem, the
objective function contains the fuel cost minimization, improvement of voltage profile,
enhancement of voltage stability, minimization of real power, and minimization of reactive
power loss.

Recently, the authors in [24] presented the slime mold algorithm (SMA) which depends
on the fluctuation style of real slime mold. Many features distinguish the SMA with a sole
mathematical model. This model employs adaptive weights for pretending the procedure
of generating a constructive and destructive response of the reproduction movement of the
slime mold based on a bio-oscillator. The SMA has brilliant exploration and exploitation
properties.
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This paper presents a developed objective function to minimize the total operating
cost of the system. Furthermore, the overall developed objective function is formulated
as a multi-objective function consists of minimizing the reactive power costs generated
by generators and shunt compensators, total real power loss, voltage deviation, system
overload, and voltage stability index. This multi-objective function is introduced as a coeffi-
cient single objective function (CSOF) considering both equality and inequality constraints.
The primary purpose is evaluating the optimal control variables to achieve the developed
objective of solving ORPD proposed in this work based on SMA. The performance of
the developed objective function solved by an optimization method SMA is evaluated
based on IEEE 30-bus and IEEE-118 test systems for different scenarios without and with
incorporating RESs. The obtained results are compared with other techniques that have
been recently reported in the literature to investigate its notability for solving the ORPD
based on the developed objective function.

The contributions of this paper are:

• A developed objective function is presented to minimize the whole operational costs
of the system, where the developed objective function consists of minimizing the
reactive power costs from generators and shunt VAR compensators, entire real power
loss, voltage deviation, system overload, and voltage stability index.

• The developed multi-objective function which contains five functions is then con-
verted to a one objective function by using price and penalty coefficients.

• To prevent the current optimization algorithms’ downsides as well as monitor the
latest advancements to get a further precise approach, the application of SMA is
used to find the solution to the ORPD problem in this work. The SMA is a modern
metaheuristic technique that has not received considerable interest yet in solving the
power system optimization problems.

• Using the SMA approach to achieve the optimal solution to the ORPD where the
SMA’s efficiency is demonstrated using different scenarios.

• Solving the ORPD problem combining with the forecasted active power generation
from RESs as a dependent variable.

• Validating the proposed SMA efficiency using different scale test systems (IEEE 30-bus
bus, and IEEE 118-bus) as well as different scenarios with and without consideration
of RESs.

• Enhancing the results of the ORPD problem compared to some available metaheuristic
algorithms based on two different standard systems where the scalability of presented
SMA is assessed based on a large-scale system.

The organization of the rest of the paper can be specified as follows: Section 2 describes
the mathematical model of the developed objective function. Section 3 presents the slime
mold algorithm (SMA). Section 4 gives the analysis of obtained numerical results of selected
test systems with compared results of other techniques. Lastly, Section 5 provides the
conclusions.

2. Problem Formulation of ORPD

The ORPD problem is presented as a sub-problem of optimal flow that provides
optimal values for independent control variables through minimizing the considered
objective function with satisfying operational equality and inequality constraints. The
overall objective function proposed in the present work is minimizing the total operating
cost (the summing cost of reactive power production from the generators and shunt VAR
compensators) over a specified period with considering other objective functions. The
control variables of the ORPD problem which achieve the considered objective function are
terminal voltages of the generators, reactive power of generators, settings of the transformer
taps and reactive power of shunt VAR compensators with the specified real power of
generators. Furthermore, the dependent variables are the power at the slack bus, the line
flows, and the load voltages.
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2.1. Reactive Power Cost Formulation

Conventionally, the generators are paid for generating active power only. Otherwise,
the transmission of active power is not reliable and secure without enough reactive power.
Subsequently, generators should be paid for those supplied reactive power. According to
the reactive power cost strategy described in [25] based on modified triangle technique,
the reactive power cost of the generator can be expressed as follows:

CQG =
NG

∑
i=1

Ci(QGi) =
NG

∑
i=1

(aq + bqQGi + cqQ2
Gi) (1)

The cost coefficients of reactive power are determined based on active power cost
coefficients of a thermal generator and its power factor as follows:

aq = ai (2)

bq = bi sin(θi) (3)

cq = ci(sin θi)
2 (4)

Otherwise, it is known that the reactive power produced by shunt VAR compensators
are owned by individual investors at specific buses. However, the shunt VAR compensators
have a high installation cost. In addition, the cost of using shunt compensators are assumed
proportional to purchased reactive power. Additionally, its cost is characterized as invest-
ment cost as described in [25–27] where the installation cost of shunt VAR compensators is
expressed as a capital investment return and described as depreciation cost. Shunt VAR
compensators supply cost employed in the system is represented here as:

CQSC =
NSC

∑
j=1

Cj(QSCj) =
NSC

∑
j=1

(RjQSCj) (5)

It is worth noting that the installation cost for each VAR compensator is 11,600
(USD/MVAr) [25]. Moreover, due to the proposed model for minimizing the cost of reac-
tive power per hour, it is required to convert the investment cost of shunt compensators to
the same unit. For doing the conversion, economic lifetime (LT) of shunt compensators,
percentage interest rate (r) per year, and the average working rate (wavg) should be known.
After that, the capital recovery factor (CRF) and the investment cost of shunt compensators
in hourly expression form are calculated.

Rj =
CRF× 11, 600
8760× wavg

(6)

where

CRF =
r(1 + r)LT

(1 + r)LT − 1
(7)

Finally, the objective function contains above costs may be formulated mathematically
as follows:

CQtotal = CQG + CQSC (8)

2.2. Real Power Losses Formulation

It is known that the real power losses increase along with the increasing energy
demand. However, minimization of those losses play a major role to maintain the security
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and reliability of the system, so it was considered to be one of the most objective function
of ORPD. The real power losses of the transmission system can be described as follow [9].

PL =
nl

∑
u=1

Gu[V2
i + V2

j − 2ViVj cos(δi − δj)] (9)

The cost of real power losses is written as:

CPL = WPLPL (10)

2.3. Voltage Deviation Formulation

The voltage deviation from 1.0 per unit for load buses is written as follow [28]:

VD =
NL

∑
k=1
|Vk − 1.0| (11)

The expression of voltage deviation in the cost form is described as following :

CVD = WVDVD (12)

2.4. Voltage Stability Index Formulation

It is important for each bus to maintain acceptable bus voltage after subject to different
operating conditions such as after increasing the load or occurrence of a disturbance. The
voltage stability index L-index is used as a static approach for the analysis of voltage
stability. Some literature also includes the voltage stability index as an objective function
of the ORPD problem [29]. To achieve the voltage stability enhancement, the maximum
L-index should be minimized at each bus of the power system. However, the L-index of ith
bus can be described as follows:

Lk =

∣∣∣∣∣1− NG

∑
i=1

Fji
Vi
Vj

∣∣∣∣∣ k = 1, . . . , NL (13)

with Fji = |Fji|∠θji, Vi = |Vi|∠δi, and Vj = |Vj|∠δj

Fji = −[Yjj]
−1[Yji] (14)

Lmax = max{Lk} (15)

The reflect of the voltage stability index on the cost of reactive power can be expressed
as follows:

CL = WLLmax (16)

2.5. System Overload Formulation

The system overload index can be defined as follows :

SOL =
nl

∑
i=1

(
Sli

Smax
li

)2 (17)

The system overload index may be represented in form of the cost as follows:

COL = WOLSOL (18)
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2.6. Constraints and Limitations

The developed objective function of ORPD subject to various operational constraints
and limits of the system. These constraints are formulated as equality and inequality
constraints, respectively.

2.6.1. Equality Constraints

The equality constraints represent the power balance equations for both real and
reactive power, the Power balance equations can be formulated as follows [30]:

PGi − PDi −Vi

NL

∑
j=1

Vj(Gij cos θij + Bij sin θij) = 0 (19)

QGi −QDi −Vi

NL

∑
j=1

Vj(Gij sin θij − Bij cos θij) = 0 (20)

2.6.2. Inequality Constraints

The inequality constraints are represented by two types of constraints, mainly called
state variables and control variables. The state variables include the voltages of load
buses, the real power generation of the slack bus, and line flow limits. On the other hand,
the control variables consist of the reactive power generated by PV buses, generator bus
voltages, the reactive power generation of shunt VAR compensator, and the transformers’
tap settings.

Generator Constraints

Pmin
Gsl ≤ PGsl ≤ Pmax

Gsl (21)

Vmin
Gi ≤ VGi ≤ Vmax

Gi i = 1, . . . , NG (22)

Qmin
Gi ≤ QGi ≤ Qmax

Gi i = 1, . . . , NG (23)

Constraints of Load Buses Voltages and Line Flow

Vmin
Li ≤ VLi ≤ Vmax

Li i = 1, . . . , NL (24)

Sli ≤ Smax
li i = 1, . . . , nl (25)

Shunt VAR Compensator Constraints

Qmin
SCi ≤ QSCi ≤ Qmax

SCi i = 1, . . . , NSC (26)

Transformer Constraints

Tmin
i ≤ Ti ≤ Tmax

i i = 1, . . . , NTr (27)

2.7. Optimization Problem

The above five mentioned objective functions can be integrated along with some
coefficients, then converted into a CSOF to minimize the total cost of the system and
expressed as follows:

Ctotal = CQtotal + CPL + CVD + CL + COL (28)
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The inequality constraints can be handled by converting it to an unconstrained one,
then encompassing them into the objective function in terms of quadratic penalty terms.
The new extended optimization problem to be minimized becomes:

OF = Ctotal + λv

NPQ

∑
i=1

(VLi −V lim
Li )2

+ λp(PG1 − Plim
G1 )

2 + λs

N

∑
i=1

(Sli − Slim
li )2 (29)

These limit values can be described as follows:

Ulim =

{
Umax U > Umax

Umin U < Umin (30)

where Ulim represents V lim
L , Plim

G1 or Sli.

3. Slime Mold Algorithm

The slim mold algorithm (SMA) employed in this work is proposed in [24]. The SMA
is mainly mimicking both performance and structural variations of slime mold Physarum
polycephalum in searching foods deprived of modeling its whole life cycle. Simultaneously,
the usage of weights in the algorithm is to mimic the constructive and harmful response
created by SM during searching foods, consequently making three separate morphotypes,
is a different concept used in [24].

There are various characteristics that make employing SMA is preferable in compari-
son with other algorithms. The first one is using the adaptive weight in the SMA which
allows SMA to sustain a specific disruption level as ensuring rapid convergence. This helps
the algorithm to prevent local trapping through rapid convergence. Additionally, SMA has
high exploration and exploitation balance due to developing every position of slim mold
in a certain manner using vibration parameter. Moreover, the algorithm has an ability to
use historic data to reach the correct decision due to its excellent use of each fitness values.
Moreover, the three different position renewing techniques confirm the superior flexibility
of the algorithm in solving different optimization problems.

The mathematical model of the SMA can be described as follows [24].

3.1. Approach Food

The approaching behavior of slime mold can be mathematically modeled as follows
to mimic the contraction mode:

Xt+1 =

{
Xb(t) + vb · (W · XA(t)− XB(t)) r < p

vc · Xt r ≥ p
(31)

The formula of p is described as follows:

p = tanh|E(i)− BF| (32)

The vb can be written as:
vb = [−o, o] (33)

o = arctanh
(
−
(

t
maxt

)
+ 1.0

)
(34)

The expression of W can be described using the following equation:

W(Smell In(i)) =
{

1 + r log((OF − E(i))/(bF − wF) + 1.0) condition
1− r log((OF − E(i))/(bF − wF) + 1.0) others

(35)
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Smell In = sort(E) (36)

3.2. Wrap Food

The position updating of slime mold is mathematically modeled as follows:

X∗ =


rand(MAX−MIN) + MIN rand < z
Xb(t) + vb(WXA(t)− XB(t)) r < p

vcX(t) r ≥ p
(37)

3.3. Oscillation

The parameter vb fluctuates arbitrarily in the range [−a, a] and steadily to reach zero
as the iterations increase, and vc fluctuates in the range [1,0] and head for zero eventually.

Algorithm 1 illustrates Pseudo-code of SMA [24]. More details about the SMA can be
found in [24].

Algorithm 1 The pseudo-code of the slim mold algorithm (SMA) [24].
Initialization the parameters, population size, maximum iterations (max_it)

Initialization of slime mould’s positions Xi(i = 1, 2, . . . , n);

While (t ≤ max_it)

Compute the fitness of all slime mould.

Update bestFitness, Xb

Compute the W by Equation (35);

For each search section

Update p, vb, vc;

Update positions by Equation (37);

End For

t = t + 1;

End While

Return bestFitness, Xb;

The main steps of the SMA for solving the ORPD problem can be summarized
as follows:

• Step 1: Read the input data involving the power system structure, lines data, trans-
formers data, shunt VAR compensators data, loads data, and generation unit’s data;
specify the active power outputs of generators (except slack generator). Use the
per-unit system.

• Step 2: Initialize the parameters of SMA, the population size, maximum iterations.
Then initialize the slime mold’s positions.

• Step 3: The initial positions of each slim mold are arbitrarily chosen among lower and
upper limits of the control variables.

• Step 4: Run the power flow program for each slim mold from the current population
and determine the corresponding values of the objective function (fitness values).

• Step 5: Sort the population then obtain the best and worst fitness values in the
current population.

• Step 6: Calculate W (the weight of slime mold) using Equation (35)
• Step 7: Update the parameters p, pv and vc then update the slim mold positions using

Equation (37)
• Step 8: Run the power flow program for each slim mold from the new population and

determine the corresponding values of the objective function.
• Step 9: Update the best slim mold with the best objective function.
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• Step 10: Repeat steps 5–9 until the stop criterion (maximum number of iterations)
is reached.

• Step 11: Print best solution found in the last iteration; Stop.

In addition, Figure 1 indicates the flowchart of SMA applied to obtain the optimal
solution of the ORPD problem.

Read power system data

Evaluation process: obtain from load flow 

the power loss, L-index, voltage deviation 

and system overload, then find the fitness 

value of each slim mould

Sort the population then find the best and 

worst fitness in the current population

Map control variables from initial slim 

moulds into load flow data

Set the parameters of SMA

Calculate W using eq (35)

it < it_max

Print the best objective function and 

optimal control variables

Randamly initialize the slim mould 

position

Yes

No

Start

Update p, pv and vc then update the 

slim mould positions using eq. (37)

Run load flow then evaluate the objective 

function for each slim mould in the 

updated population

Update the best slim mould with 

best objective function

Map control variables from updated 

slim moulds into load flow data

Figure 1. Flowchart of the SMA applied to solve the ORPD problem.
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4. Simulation Results and Discussions

The SMA’s strength based on the developed objective function is illustrated based on
two different IEEE systems. They are a 30-bus system and a 118-bus system. The proposed
SMA technique along with the other compared algorithms has been run on an I7-8700 CPU,
2.8 GHz, 16 GB RAM PC and using MATLAB 2016a.

4.1. IEEE 30-Bus Test System

The IEEE 30-bus test system consists of six generators units located at buses 1, 2, 5, 8,
11, and 13, forty-one transmission lines, four regulating tap-changing transformers with
off-nominal tap ratio at lines 4-12, 6-9, 6-10 and 28-27, and nine shunt VAR capacitors at the
buses 10, 12, 15, 17, 20, 21, 23, 24, and 29. Furthermore, 24 load buses with 2.834 p.u. and
1.262 p.u. for both demand real and reactive power, respectively. The system data of the
generator cost coefficients, the buses, lines, and the limits of the control and state variables
are described in [31,32]. The boundary of voltage magnitude is considered between 0.95
and 1.1 p.u. for all generator buses. These limits are sited between 0.95 and 1.05 p.u. for all
other buses. The output of nine shunt VAR capacitors varies between 0 and 0.05 p.u. and
the transformer tap settings are settled to change within the range 0.9 and 1.1 p.u.

There are three cases in this system. In first case, there are 19 control variables consid-
ered for the ORPD problem: six voltage magnitudes of the generator, four transformer tap
settings, and nine shunt VAR compensator reactive power injections. In the second and
third cases, there are 25 control variables considered for the ORPD problem: six generator
reactive power outputs, six voltage magnitudes of the generator, four transformer tap
settings, and nine shunt VAR compensator reactive power injections.

The system is modified by incorporating RESs. The location of this RESs is selected
according to minimizing both real power system loss and the cost of generating active and
reactive power as introduced in [33]; however, the bus 30 was selected for adding RESs
with a value of 20 MW.

4.1.1. First Case: Minimization of Real Power Loss for Base Case without (RESs)

The SMA technique is implemented on the IEEE 30-bus test system in order to mini-
mize only the real power loss as a single objective function with the penalty terms corre-
sponding to the constraints of the system. In this case, the considered control variables
are six voltage of generators, four tap settings of transformer and nine shunt VAR reactive
power compensators, which results in 19 control variables of the ORPD problem.

To display the superiority of the proposed SMA technique over other recent pub-
lished techniques in solving the optimization problem of ORPD for minimizing real
power loss, the optimal results are compared with the results of quasi-oppositional dif-
ferential evolution (QODE) that presented in [34], PSO with an aging leader and chal-
lengers (ALC-PSO) [35], gravitational search algorithm (GSA) [36], opposition-based GSA
(OGSA) [36], PSO-GSA [5], chaotic KHA (CKHA) [37], sine-cosine algorithm (SCA) [3],
modified JAYA algorithm (MJAYA) [9], salp swarm algorithm (SSA) [38] and chaotic bat
algorithm (CBA) [39].

The values of real power loss for all compared techniques are given in Table 1. The real
power loss corresponding to SMA is highly reduced by (22.26%) compared to the base case.
However, the percentage reduction in power loss compared to base case is 17.31% by SCA,
20.58% by MJAYA 20.72% by SSA and 12.26% by CBA. It is seen that the reduction of power
loss using SMA has a higher percentage reduction in comparison with the other techniques
with minimum computational time . Furthermore, Table 2 shows the results of optimal
control variables for SMA compared with recent optimization techniques where the results
offer that SMA gives better results than the SCA, MJAYA, SSA and CBA. According to
convergence characteristics of compared optimization methods, as shown in Figure 2, the
SMA has a smooth convergence curve without oscillations to the optimal value compared
to other techniques.
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Moreover, to enhance the efficiency of the SMA compared to recent optimization
approaches. The statistical calculation is introduced in Table 3. The best results after
20 separate runs of SMA are compared with SCA, MJAYA, CBA, and SSA methods, where
the minimum, maximum, average, and standard deviation (SD) values of all approaches
are illustrated in the table. The results indicate that the new SMA has both better optimal
solutions and minimum SD over other approaches.

Table 1. Comparison of the objective function for first case.

Method Power Loss (MW)

SCA 4.8139
MJAYA 4.6234

CBA 5.1081
SSA 4.559

CKHA [37] 5.1163
PSOGSA [40] 4.5309

QODE [34] 5.2953
ALC-PSO [35] 5.1861

OGSA [35] 5.1676
SMA 4.5181

Table 2. OPRD results of the IEEE 30-Bus test System using SMA and other algorithms for first case.

Base Case SMA SCA MJAYA SSA CBA

VG1 (p.u.) 1.0500 1.1000 1.1000 1.1000 1.1000 1.0451
VG2 (p.u.) 1.0400 1.0950 1.0907 1.0919 1.0937 1.0376
VG5 (p.u.) 1.0100 1.0749 1.0879 1.0670 1.0745 1.0138
VG8 (p.u.) 1.0100 1.0763 1.0742 1.0698 1.0760 1.0158
VG11 (p.u.) 1.0500 1.0974 1.1000 1.0953 1.1000 1.0764
VG13 (p.u.) 1.0500 1.1000 1.1000 1.0684 1.0980 1.0374
T11(6-9) (p.u.) 1.0780 0.9909 1.1000 0.9838 1.0234 0.9927
T12(6-10) (p.u.) 1.0690 0.9827 1.0588 1.0350 0.9064 0.9754
T15(4-12) (p.u.) 1.0320 1.0128 0.9000 1.0029 0.9779 0.9825
T36(28-27) (p.u.) 1.0680 0.9801 1.1000 1.0009 0.9725 0.9625
QC10 (MVAR) 0.0000 0.5143 0.0000 4.9111 0.3382 4.9074
QC12 (MVAR) 0.0000 1.4536 0.3220 5.0000 4.3628 3.0239
QC15 (MVAR) 0.0000 0.6122 4.5128 5.0000 4.9891 3.3911
QC17 (MVAR) 0.0000 4.9797 0.0000 5.0000 4.4849 4.8860
QC20 (MVAR) 0.0000 3.4884 3.0436 4.3801 4.4474 4.2147
QC21 (MVAR) 0.0000 4.9841 1.8970 5.0000 5.0000 4.6343
QC23 (MVAR) 0.0000 4.9386 0.5739 4.0931 3.3318 4.6343
QC24 (MVAR) 0.0000 5.0000 4.1247 5.0000 4.9772 3.1860
QC29 (MVAR) 0.0000 2.3724 3.5914 4.7324 2.4617 2.1936
Real Power loss (MW) 5.8223 4.5181 4.8139 4.6235 4.6156 5.1081
Voltage deviation (p.u.) 1.1497 1.0659 1.0868 1.4218 1.9009 0.5129
Time (s) — 59.0576 61.9849 64.3459 75.6574 80.1854

4.1.2. Second Case: ORPD for IEEE 30-Bus System without (RESs)

The SMA technique is applied in this case without RESs to solve the ORPD problem
considering the developed objective function act as CSOF for minimizing the total operating
cost of system that consists of minimizing the cost of reactive power produced from
generators and shunt VAR compensators, real power losses, voltage deviation, voltage
stability index and system overload.
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Figure 2. Convergence characteristic of all methods for first case.

The simulation results of SMA are compared with the SCA, MJAYA, CBA and SSA
techniques. The results are illustrated in Table 4. The results established that SMA outper-
forms other techniques. The SMA’s optimal value (527.5314 USD/h) is less than all tested
techniques with no disruption of all constraints. Comparison of total system cost obtained
from all compared techniques with SMA show increasing the system cost of 7.5077% by
SCA, 11.0849% by MJAYA 13.2985% by SSA and 16.0396% by CBA. Voltage profiles of the
SMA and other methods for all buses are presented in Figure 3. The figure shows that all
magnitudes of the voltages are within the specified limits. However, the voltage profile in
the case of using SMA has the better profile for the most buses of the system compared to
other techniques.

Based on the convergence curves of all approaches, which shown in Figure 4, the
SMA offers a soft convergence curve to the optimal value of the objective function with
no fluctuations. Moreover, the comparison of minimum, maximum, average, and SD of
the obtained results using SMA, SCA, MJAYA, CBA, and SSA over 20 runs are offered in
Table 5. From this table, it is seen that SMA offers the best values for minimum, average
and SD values in comparison to SCA, MJAYA, SSA and CBA.

Table 3. Comparison of the objective function of ORPD problem in first case.

Method Maximum Minimum Average SD

SMA 4.7814 4.5181 4.6300 0.0979
SCA 5.2896 4.8139 5.0258 0.1709

MJAYA 4.9991 4.6234 4.8183 0.1410
CBA 5.6234 5.1081 5.3972 0.1622
SSA 4.9519 4.5590 4.7697 0.1227
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Table 4. OPRD results of IEEE 30-bus test system using SMA and other approaches for second case.

Base Case SMA SCA MJAYA SSA CBA

QG1 (MVAR) −6.5435 27.0093 37.8328 25.0843 37.3283 42.1513
QG2 (MVAR) 15.6446 15.1664 32.3414 18.2873 13.8286 17.8375
QG5 (MVAR) 16.4069 8.6420 14.4327 11.3116 4.2513 11.8956
QG8 (MVAR) 13.5379 37.7084 13.5473 35.7144 45.8187 31.6733
QG11 (MVAR) 38.0025 14.2392 22.7156 11.0683 18.4888 16.5056
QG13 (MVAR) 39.5454 −17.1087 −18.7560 −16.4986 −19.8846 −17.2009
VG1 (p.u.) 1.0500 1.1000 1.0741 1.0538 1.0931 1.0410
VG2 (p.u.) 1.0400 1.0807 1.0524 1.0351 1.0699 1.0341
VG5 (p.u.) 1.0100 1.0404 1.0075 0.9953 1.0239 1.0026
VG8 (p.u.) 1.0100 1.0515 0.9953 1.0044 1.0411 1.0101
VG11 (p.u.) 1.0500 1.0613 1.0280 1.0304 1.0355 1.0397
VG13 (p.u.) 1.0500 0.9891 0.9595 0.9909 0.9803 0.9924
T11(6-9) (p.u.) 1.0780 0.9936 1.0764 1.0097 1.0932 1.0028
T12(6-10) (p.u.) 1.0690 1.0919 0.9251 0.9655 0.9118 0.9471
T15(4-12) (p.u.) 1.0320 0.9771 0.9543 0.9238 0.9555 0.9500
T36(28-27) (p.u.) 1.0680 1.0113 0.9071 0.9780 0.9679 0.9853
QC10 (MVAR) 0.0000 1.6608 3.9773 3.4391 0.7418 3.3003
QC12 (MVAR) 0.0000 4.7920 1.3894 0.0000 2.9311 2.9901
QC15 (MVAR) 0.0000 3.3921 1.5336 3.5544 2.2564 3.7044
QC17 (MVAR) 0.0000 5.0000 0.4726 5.0000 4.4348 3.7888
QC20 (MVAR) 0.0000 0.5249 4.2022 4.6573 0.6997 3.4575
QC21 (MVAR) 0.0000 4.9981 3.1834 5.0000 4.1474 3.9793
QC23 (MVAR) 0.0000 1.2935 4.4755 2.6146 0.7772 3.7729
QC24 (MVAR) 0.0000 4.9970 0.7068 5.0000 4.9811 3.0317
QC29 (MVAR) 0.0000 2.4218 1.9940 4.2960 0.2406 4.3759
Reactive power cost – 220.0514 220.1361 251.0970 292.5980 248.8023of generators (USD/h)
Cost of shunt VAR – 5.5543 4.1896 6.4102 4.0511 6.1886compensators (USD/h)
Real Power loss (MW) 5.8223 5.1128 5.4978 5.4742 5.4277 5.3364
Voltage deviation (p.u.) 1.1497 0.3013 0.3628 0.3526 0.3081 0.3466
L-index 0.3322 0.1008 0.1956 0.1409 0.1541 0.1006
System overload index 5.6951 4.2779 5.0722 4.3122 4.5417 4.5213
Total Objective function (USD/h) – 527.5314 567.1370 586.0082 597.6855 612.1455
Time (s) – 80.2390 86.9936 93.9515 89.6451 95.1444

Table 5. Comparison of the objective function of ORPD problem in second case.

Method Maximum Minimum Average SD

SMA 529.5092 527.5314 528.8728 0.4621
MJAYA 569.8306 567.1370 567.9265 1.4110

SCA 589.3406 586.0082 587.1010 1.1079
SSA 599.8354 597.6855 598.6409 0.8683
CBA 614.7140 612.1455 613.7493 0.8256
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Figure 3. Voltage magnitude of compared approaches in the second case.
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Figure 4. Convergence characteristic of all methods for second case.

4.1.3. Third Case: ORPD for IEEE 30-Bus System with RESs

In this case, the SMA is used for solving the ORPD problem incorporating RESs
based on developed objective function to minimize the system cost. The optimal results
are obtained and compared with SCA, MJAYA, CBA, and SSA. The obtained results of
the control variables for all techniques are given in Table 6. The results show that SMA
is further efficient than the tested approaches in obtaining the optimal solution of the
ORPD problem including RESs. The minimum objective function using SMA has value of
(453.8077 USD/h) that is better than all other techniques without violating the constraints.

From Table 6 it is seen that the total system operating cost of the compared techniques
with SMA offer increasing the system cost of 2.9636% by SCA, 9.1654% by MJAYA, 9.9873%
by SSA, and 16.1063% by CBA. Additionally, the entire SMA’s objective function is reduced
from 527.5314 USD/h (second case) to 453.8077 USD/h in this case which shows the
improvement of minimizing the developed objective function by 13.97% after incorporating
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the RESs. The RESs are connected to the system as a negative load; however the whole
demand loads are decreased, which results in decreasing the developed objective function.

One can notice from Figure 5 the voltages’ magnitude of all buses fall within their limit
and the improvement of the voltage profiles are proven based on the developed objective
function. Additionally, Figure 6 clarifies the convergence characteristics of all techniques,
showing that the SMA still has fast and smooth convergence characteristics compared
with other methods. Finally, the statistical results are given in Table 7. As seen from this
table, the SMA outperforms compared with other techniques, the SMA provides the lowest
values of minimum, avearge and, SD values in comparison SCA, MJAYA, SSA, and CBA.

Table 6. OPRD solutions of the IEEE 30-bus system using SMA and other algorithms for third case.

Base Case SMA SCA MJAYA SSA CBA

QG1 (MVAR) −6.5435 28.0509 28.2069 38.3354 37.6676 36.6650
QG2 (MVAR) 15.6446 16.8559 14.8075 10.6113 11.4282 11.5558
QG5 (MVAR) 16.4069 8.5213 8.0040 6.0654 4.6512 4.2198
QG8 (MVAR) 13.5379 37.2549 37.4778 41.6625 42.8978 42.5130
QG11 (MVAR) 38.0025 13.7881 12.4508 18.7964 16.9096 19.5375
QG13 (MVAR) 39.5454 −16.7981 −17.5558 −19.4119 −19.7736 −19.6198
VG1 (p.u.) 1.0500 1.0613 1.0996 1.0781 1.0855 1.0420
VG2 (p.u.) 1.0400 1.0434 1.0821 1.0561 1.0642 1.0201
VG5 (p.u.) 1.0100 1.0020 1.0424 1.0123 1.0204 0.9740
VG8 (p.u.) 1.0100 1.0156 1.0560 1.0290 1.0398 0.9956
VG11 (p.u.) 1.0500 1.0348 1.0298 1.0363 1.0375 1.0481
VG13 (p.u.) 1.0500 0.9908 0.9889 0.9695 0.9981 0.9800
T11(6-9) (p.u.) 1.0780 1.0352 1.0800 1.0701 1.0809 0.9985
T12(6-10) (p.u.) 1.0690 0.9159 0.9532 0.9000 0.9100 0.9454
T15(4-12) (p.u.) 1.0320 0.9340 0.9678 0.9584 0.9252 0.9058
T36(28-27) (p.u.) 1.0680 0.9922 1.0343 0.9961 1.0247 0.9675
QC10 (MVAR) 0.0000 1.6427 3.6694 0.0000 0.1242 2.1232
QC12 (MVAR) 0.0000 3.7694 2.4032 2.0113 2.6700 1.4961
QC15 (MVAR) 0.0000 1.6574 1.9694 1.4160 0.9073 2.0668
QC17 (MVAR) 0.0000 4.9995 4.9278 4.9441 4.9287 2.2025
QC20 (MVAR) 0.0000 1.9464 1.4500 0.0000 0.9067 0.5705
QC21 (MVAR) 0.0000 5.0000 5.0000 5.0000 4.5504 1.9537
QC23 (MVAR) 0.0000 0.7697 1.6645 1.6937 2.0589 3.7496
QC24 (MVAR) 0.0000 4.9850 5.0000 5.0000 4.7998 4.9414
QC29 (MVAR) 0.0000 1.4941 1.1385 0.0413 1.2406 2.4665
Reactive power cost – 225.1854 226.2213 275.8469 275.4956 278.2561of generators (USD/h)
Cost of shunt VAR – 5.0165 5.2095 3.8403 4.2376 4.1199compensators (USD/h) –
Real power loss (MW) 5.8223 4.2590 4.3724 4.3583 4.3054 4.5750
Voltage deviation (p.u.) 1.1497 0.2142 0.4052 0.3334 0.3328 0.4536
L-index 0.3322 0.1129 0.1225 0.1566 0.1395 0.1593
System overload index 5.6951 4.0782 4.1936 4.2310 4.2634 4.3852
Total objective function (USD/h) – 453.8077 467.2571 495.4014 499.1311 526.8994
Time (s) – 81.2051 86.9936 93.9515 89.6451 95.1444

4.2. IEEE 118-Bus Test System

The IEEE 118-bus test system is employed as a large power system for evaluating
the effectiveness of the SMA technique. This test system includes 186 transmission lines,
54 generators units where bus 69 is considered to be the slack bus, 14 shunt VAR compen-
sators and 9 tap-changing transformers with off-nominal tap ratio [9,40–42]. Furthermore,
64 load buses with 42.42 p.u. and 14.38 p.u. for both demand real and reactive power,
respectively. The initial real power loss is 1.3286 p.u. The buses, transmission lines, and
cost coefficients data of the IEEE 118-bus test system are described in [41,42].
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Figure 5. Voltage magnitude of compared approaches in third case.
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Figure 6. Convergence characteristic of all methods for third case.

Table 7. Comparison of the objective function of ORPD problem in third case.

Method Maximum Minimum Average SD

SMA 456.6274 453.8077 456.0750 0.6998
SCA 469.8147 466.6069 467.7170 1.1854

MJAYA 498.3406 495.4014 496.8934 1.0715
SSA 502.6855 499.1311 500.6563 1.0483
CBA 529.6108 526.8994 527.9883 0.9618

Moreover, the IEEE 118-bus test system contains 131 control variables: 54 reactive
power generator, 54 bus generator voltages, 14 shunt VAR reactive power compensators,
and 9 transformer tap settings. The limits of the voltage for all buses are within 0.94 and
1.06 p.u. The settings of the transformer tap are between the interval of 0.90 and 1.10 p.u.
The shunt VAR available reactive powers within the interval 0–0.3 p.u. The standard test
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system is changed with incorporating RESs as found in [43]. RESs’ different technologies
are located at buses 12, 31, 54, 76 and 116 with values of 0.182, 1.56, 2.64, 0.77 and 2.86 p.u.,
respectively.

4.2.1. Fourth Case: ORPD for IEEE 118-Bus System without RESs

For evaluating the scalability of the SMA and demonstrate its ability for dealing with
the large-scale systems, the IEEE 118-bus system without considering the RESs is employed
in this case.

The optimal results of the developed objective function are obtained by SMA compared
with other algorithms, and are tabulated in Table 8.The control variables using SMA only
are given in Figure 7 without violation the constraints.

Table 8. Objective function solutions of the IEEE 118-bus system for fourth case (without RESs).

SMA SCA MJAYA SSA CBA

Reactive power cost of generators (USD/h) 21,871.91 23,793.23 24,720.88 22,371.51 27,183.79
Cost of shunt VAR compensators (USD/h) 36.25 37.15 37.17 39.12 38.55
Real power loss (MW) 120.65 124.51 125.96 126.15 124.23
Voltage deviation (p.u.) 0.72 0.79 2.03 1.31 0.77
L-index 1.06 1.07 2.03 1.85 0.77
System overload index 1.60 1.60 1.64 1.69 1.66
Total Objective function (USD/h) 61,678.98 62,330.16 62,503.73 63,454.71 64,108.04
Time (s) 354.82 357.87 361.17 374.25 387.87

According to the tabulated results, it can be noted that the SMA outperforms other
methods as SMA gives a total system cost value 61,678.98 USD/h.

It is seen from Table 8, the total system cost of the compared techniques with SMA
shows increasing the system cost of 1.0557% by SCA, 1.3371% by MJAYA, 2.8789% by SSA,
and 43.9382% by CBA. Moreover, it is seen that SMA can minimize the total real power
loss by 9.18% compared to the initial case, which is better value than the real power loss
achieved by the other techniques.

The magnitudes of voltages for all system’s buses based on SMA are inside borders,
as shown in Figure 8. The comparative convergence curves of the considered objective
function over 20 iterations for SMA and other compared techniques are shown in Figure 9.
It confirms that the SMA yields better convergence than other algorithms.

4.2.2. Fifth Case: ORPD for IEEE 118-Bus System with RESs

The IEEE 118-bus system with RESs is considered in this case. The obtained results of
the objective function by SMA and other techniques for this case are shown in Table 9. As
seen from this table, the total operating cost of the compared techniques with SMA displays
increasing the system cost of 0.6797% by SCA, 1.5098% by MJAYA, 2.1082% by SSA, and
2.6319% by CBA. These results indicate that the SMA gives a better optimal solution than
other approaches in solving ORPD by considering RESs. Additionally, the obtained results
of the control variables by SMA are given in Figure 10 without violating the considered
constraints. It concluded that the total objective function is reduced by inserting RESs
by 16.7498% compared with fourth case (base case without RESs). Furthermore, the real
power loss with considering RESs is reduced by 14.6334% in comparison with fourth
case. Moreover, the voltages of whole system buses of SMA are fall inside the borders
as indicated in Figure 11. Once more, Figure 12 clear that the SMA has fast and smooth
convergence behavior over other techniques.
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Table 9. Objective function solutions of IEEE 118-bus system for fifth case (considering RESs).

SMA SCA MJAYA SSA CBA

Reactive power cost of generators (USD/h) 22,841.47 25,137.62 23,259.27 27,424.33 27,212.32
Cost of shunt VAR compensators (USD/h) 45.13 46.03 45.28 51.88 47.54
Real power loss (MW) 105.17 108.86 107.23 106.89 109.42
Voltage deviation (p.u.) 0.65 0.62 0.89 0.76 0.80
L-index 0.86 0.91 1.40 0.61 1.80
System overload index 1.59 1.61 1.62 1.59 1.78
Total objective function (USD/h) 52,830.01 53,189.12 53,627.65 53,943.78 54,220.47
Time (s) 345.60 352.19 372.19 381.77 403.91
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Figure 7. OPRD results of the IEEE 118-bus system using SMA for fourth case.
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Figure 10. OPRD results of IEEE 118-bus test system using SMA for fifth case.

4.3. Discussion

The obtained results from SMA are compared with other metaheuristic algorithms for
five cases with and without RESs using two different test systems. These comparisons are
indicated in Tables 1–9 and Figures 2–12.

The first case is conducted to investigate the effectiveness of the SMA over other
published algorithms in minimizing the real power loss only without RESs. Some of these
algorithms are built by us while the remaining algorithms are built by other researchers.
The second and third cases are conducted to investigate the superiority of the SMA over
other recently published methods based on the developed objective function using the
IEEE 30-bus without and with RESs, respectively. The fourth and fifth cases are conducted
to investigate the superiority of the SMA over other algorithms based on the developed
objective function using the IEEE 118-bus without and with RESs, respectively.
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Figure 11. Voltage profile of the SMA for fifth case.
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Figure 12. Convergence characteristic of all methods for fifth case.

The results prove that the SMA can obtain better results in comparison with other
methods for all cases. Figure 13 shows the objective function improvements of the SMA
over other methods for all cases. It is well known that by expanding the dimensions of
the test systems, the complexity of the ORPD problem increases due to its non-smooth
and non-convex objective function. Consequently, the objective function of all algorithms
increased with expanding the dimension of the system as shown in the above results.
Moreover, the results show that the SMA obtains a better overall performance compared to
other algorithms however the scale of the test system which demonstrates the capability of
applying the SMA to solve the real applications of the ORPD problem.
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Figure 13. The objective function improvements of SMA over other methods for all cases.

The above results indicate that the SMA beats other published algorithms for all cases
with or without RESs which demonstrates the capability of the SMA to obtain a better
solution for different systems involving the large-scale test systems.

Figures 2, 4, 6, 9 and 12 illustrate the convergence characteristics of the objective
function of the SMA and other algorithms of all cases. These results confirm that the
objective function of the SMA converges smoothly to the optimal solution without any
unexpected fluctuations in all cases. This indicates the convergence dependability of
the SMA.

To fair comparison between different algorithms regarding the computational time, a
similar computer configuration should be used. Therefore, Figure 14 illustrates the compar-
ison between the SMA, SCA, MJAYA, SSA, and CBA algorithms for all cases. This figure
indicates that the SMA has reasonable computational time (a few minutes for large-scale
systems). Additionally, it has computational a little lower than other algorithms. This
makes it feasible to use the SMA to obtain the optimal solution to the real-life ORPD prob-
lem.
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Figure 14. The computational time of all methods for all cases.

In this work, 20 separate runs are performed to judge the robustness of the SMA.
The results are shown in Tables 3, 5 and 7. These results illustrate that the average and
maximum values of the objective function achieved by the SMA are very close to their
minimum values which prove the ability of the SMA to obtain either the optimum solution
or very nearer to it in each run.
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5. Conclusions

The application of SMA is successfully introduced to solve the OPRD problem in this
work. A developed objective function to minimize the total operating cost of the system is
presented as a multi-objective function then converted to CSOF using a price and penalty
factors. This CSOF consists of minimization the reactive power cost generated from both
generating units and shunt VAR compensators, total active power loss, voltage deviation,
system overload, and voltage stability index. The advantage and superiority of the SMA
have been confirmed using two standard test systems (IEEE 30 and 118 bus test system)
based on different scenarios with and without inserting RESs. The results indicate that the
SMA can obtain better results in comparison with other methods for all cases. It reduces
the total objective function over other methods significantly. Additionally, the results
confirm that the objective function of the SMA converges smoothly to the optimal solution
without any fluctuation in all cases which proves that the SMA has reliable convergence
characteristics. In addition, the ability of the SMA to obtain either the optimum solution
or very nearer to it in each run in reasonable computational time is proven. Moreover,
the scalability of the SMA is verified using a large-scale test system (IEEE 118-test system)
which displays the ability of the SMA for solving real-life power system applications. In
future work, the SMA could be used to solve the other complex problems in various fields
such as optimal sizing and allocation of distributed generation, optimal modeling and
planning of hybrid RES systems and estimation of the parameters of photovoltaic models,
fuel cells, and many of electric machines and motors.
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Nomenclature

CQG total reactive power cost of thermal generator
aq, bq, cq cost coefficients of the reactive power
QGi reactive power of generator i
NG total number of generators
ai, bi, ci active power cost coefficients of generator i in (USD/h), (USD/MWh), and (USD MW2h)
CQSC cost of reactive power generated from shunt VAR compensators
Cj(QSCj) reactive power cost at bus location j
QSCj the amount of reactive power purchased at bus jth bus
NSC number of shunt VAR compensators
Rj reactive cost in (USD/MVARh)
LT, r lifetime (selected 20 years) and interest rate (selected as 5%), respectively
wavg average working rate (selected as 2/3)
C(Qtotal) total cost of reactive power from both the generators and compensators
PL total real power losses
Gu conductance of uth branch
nl number of transmission lines
Vi, Vj magnitudes of voltage
VD voltage deviation
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Vk magnitude of voltage at load bus k in per unit
δi,δj phase angles of terminal buses of branch u
CPL the cost expression of the real power losses in the transmission system
WPL the weighting factor of power loss in (USD/MW)
VD the voltage deviation
NL number of load buses
CVD the reflection of the voltage deviation on cost
WVD the weighting factor of the voltage deviation
Lk the voltage stability index (L-index)
Yjj, Yji sub-matrices of the bus admittance matrix of the system
Lmax global index for describing the voltage stability of system
CL the cost of voltage stability index
WL the weighting factor of the voltage stability index
Sli, Smax

li the apparent power and maximum apparent power of ith line, respectively
COL the cost of system overload index
WOL the weighting factor of system overload index
PGi the thermal generator real power of ith generator bus
PDi, QDi demanded real and reactive power of ith bus, respectively
Gij, Bij line conductance and transfer susceptance between bus i and j, respectively
θij voltage angle difference between bus i and bus j
NL total number of buses
Pmin

Gsl , Pmax
Gsl minimum and maximum real power of slack bus

Vmin
Gi , Vmax

Gi minimum and maximum voltage of generator i
Qmin

Gi , Qmin
Gi minimum and maximum reactive power of generator i

Vmin
Li , Vmax

Li minimum and maximum voltage magnitude of ith bus
Qmin

SCi , Qmax
SCi minimum and maximum shunt VAR reactive power injection of ith

shunt VAR compensator
Tmin

i , Tmax
i minimum and maximum tap setting of the transformer i

NTr number of tap-changing transformers
OF the total objective function of optimized problem
λv, λp, λs penalty factors of the load bus voltage magnitudes (VL), real power of the slack

bus (PG1) and apparent power of the line (Sli), respectively
V lim

L , Plim
G1 , Slim

li limit values of the variables VL, PG1 and Sli, respectively
vb in the range of [−o, o]
vc reduces linearly from 1 to 0
z in the range of [0, 0.1]
t, maxt the present iteration and maximum number of iterations, respectively
Xb the individual location with the maximum odor concentration currently observed
X the location of slime mold
XA, XB the two individuals arbitrarily selected from the swarm
W the weight of slime mold
E(i) the fitness of X (i ∈ 1, 2, . . . , n)
BF the best fitness obtained in all iterations
condition indicates that E(i) ranks the first half of the population
r random value in [0,1]
OF optimal fitness found in the current iterative process
wF the worst fitness value found in the current iterative process
Smell In the order of fitness values sorted
MIN, MAX minimum and maximum values of the search range
rand, r random values in [0, 1]
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