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Abstract: This study evaluated causative factors in landslide susceptibility assessments and compared
the performance of five landslide susceptibility models based on the certainty factor (CF), logistic
regression (LR), analytic hierarchy process (AHP), coupled CF–analytic hierarchy process (CF-AHP),
and CF–logistic regression (CF-LR). Kaiyang County, China, has complex geological conditions and
frequent landslide disasters. Based on field observations, nine influencing factors, namely, altitude,
slope, topographic relief, aspect, engineering geological rock group, slope structure, distance to faults,
distance to rivers, and normalized difference vegetation index, were extracted using the raster data
model. The precision of the five models was tested using the distribution of disaster points for each
grade and receiver operating characteristic curve. The results showed that the landslide frequency
ratios accounted for more than 75% within the high and very high susceptibility zones according
to the model prediction, and the AUC evaluating precision was 0.853, 0.712, 0.871, 0.873, and 0.895,
respectively. The accuracy sequencing of the five models was CF-LR > CF-AHP > LR > CF > AHP,
indicating that the CF-AHP and CF-LR models are better than the others. This study provides a
reliable method for landslide susceptibility mapping at the county-level resolution.

Keywords: landslide susceptibility; certainty factor; logistic regression; analytic hierarchy process

1. Introduction

Landslides occur when gravity and other geologic forces move surface material down-
ward along a slope; often, landslides cause loss of human life and property or environmen-
tal damage [1–4]. In China, many areas have been critically affected by landslides in recent
years. This severely hinders the sustainable development of society and the economy and
threatens the safety of people’s lives and property [5–8]. Therefore, sensitivity analysis of
regional landslides has important research value and practical significance for land-use
planning and disaster management [9,10].

Susceptibility assessment of landslides is the first step in the hazard and risk assess-
ment of landslides [11]. It includes summarizing the characteristics, distribution rules,
spatial density, and sensitivity that influences factors of regional landslides to complete a
sensitivity assessment and develop a sensitivity zoning map [12]. In the past few decades,
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many prediction models have been developed to map the sensitivity of landslides. The
main evaluation methods include the empirical model (fuzzy logic [13–15], analytic hierar-
chy process [16–21], etc.), statistical analysis model (weights of evidence [22–25], frequency
ratio [19,26–29], certainty factor (CF) [18,19,30], information value model [31,32], etc.), and
machine-learning models (artificial neural network [33–36], support vector machine [37–39],
random forest [40,41], logistic regression [29,42–44], etc.).

Each model has its own characteristics and shortcomings, making it difficult to objec-
tively and accurately evaluate landslide susceptibility [45]. The analytic hierarchy process
(AHP), CF, and logistic regression (LR) have been applied in a large number of evaluations
because of their simplicity, strong operability, and evaluation effect, but each has its own
limitations [46,47]. The CF model can solve the evaluation factors based on the impact
of different internal eigenvalues on the degree of liability sensitivity and by ignoring the
differences in the impact of various factors on liability. The AHP cannot consider each
factor’s influence on different characteristic variables [46]. The LR model cannot solve the
quantitative problem of each influence factor, especially in terms of consolidation issues
associated with multi-source data [47]. Owing to these shortcomings, regional landslides
are difficult to evaluate objectively and quantitatively. Therefore, combining the three
models can better evaluate landslide susceptibility; the weight factor of the determination
coefficient can be assigned to optimize the accuracy and reliability of the landslide suscep-
tibility assessment. To ensure the feasibility of this approach, a comparative study on the
advantages and disadvantages of AHP, CF, LR, CF-AHP, and CF-LR in the assessment of
landslide susceptibility can provide a reference basis and comparison for the assessment of
landslide susceptibility in related areas.

Landslides in China are frequent and vary in type. Southwest China, particularly
Kaiyang County, Guizhou Province, which is located in the hinterland, is prone to landslide
activity [48]. This region is characterized by mountainous terrain, a fragile geological
environment, and frequent, heavy rainfall. The slopes in this region are vulnerable to
landslides and threaten people’s lives and property, hindering the social and economic
development of Kaiyang County.

Assessing and managing areas that are vulnerable to landslides and mitigating the
risks associated with them are necessary [49]. In this study, we consider the influence
of landslides and hazard-forming factors in Kaiyang County. The analysis considers the
geological environment, the spatial distribution of landslide disasters, and other relevant
characteristics. Using GIS raster data, the CF, LR, AHP, CF–AHP, and CF–LR coupling
models were adopted to evaluate landslide susceptibility in Kaiyang County, Guizhou
Province. By comparing the different outputs of the liability evaluation methods, the results
are discussed to determine which model provides the best quantitative assessment. These
findings can provide theoretical guidance and technical reference for the assessment of
landslide susceptibility in other regions of China at the county level.

2. Materials and Methods
2.1. Study Area

Kaiyang County is located in Guizhou Province (Figure 1a), China (26◦48′ N to
27◦22′ N and 106◦45′ E to 107◦17′ E; Figure 1b) and serves as the study area for this re-
search. The region ranges in altitude from 515 to 1664 m (Figure 1c), with the highest
elevations recorded in the southwest and the lowest in the northeast. Presinian, Cambrian,
Carboniferous, Diassic, Triassic, Ordovician, Tertiary, and Quaternary strata are distributed
across the county. The Baimadong Fault is the main fault in the region and is located in cen-
tral Guizhou. The fold structure has the characteristics of a short and wide dome-shaped
anticline and a narrow and compact linear syncline. Kaiyang County has a subtropical
monsoon climate. Greater precipitation occurs in the west and south, while less precipita-
tion occurs in the north. The Wujiang, Qingshui, and Gusa rivers are the main rivers in
the study area and belong to the Yellow River network. The average annual temperature
is between 10.6 and 15.30 ◦C. July is the hottest month (average temperature = 22.3 ◦C,
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maximum temperature = 35.4 ◦C), and January is the coolest (average temperature = 2 ◦C,
minimum temperature = −10.1 ◦C) [50].
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Figure 1. Location of the study area and landslide inventory map: (a) the geographical location of
Guizhou Province in China; (b) the geographical localtion of Kaiyang County in Guizhou Province;
and (c) the distribution of landslides and elevation in Kaiyang County.

2.2. Methodology

A digital elevation model (DEM) with 30 m × 30 m resolution was used to extract
a set of topographic factors for the study area. The DEM was sourced from the Interna-
tional Scientific and Technical Data Mirror Site, Computer Network Information Center,
and Chinese Academy of Sciences (http://www.gscloud.cn, accessed on 23 July 2010).
LANDSAT-8 satellite images with a spatial resolution of 30 m × 30 m were also provided
by the same institutions. Lithology maps for the study area at a scale of 1:50,000 were
collected from the local Land and Resources Bureau.

2.3. Landslide Inventory Map

A total of 141 landslides were delineated through field investigations and landslide
mapping. The landslide classification system developed by Varnes (1984) [1] was used in this
study; 102 earth slides, 35 rock falls, and 4 debris flows were identified, accounting for 72%,
25%, and 3% of the total number of landslides in the region, respectively. Among these, earth
slides are the most serious type of landslide in Kaiyang County (Figures 1c and 2).

Landslide Conditioning Factors

The landslide susceptibility evaluation is based on the selection of evaluation fac-
tors [51,52]. The selection of factors that contribute to the development of landslides should
be performed in combination with field investigation data. Based on the detailed investi-
gation and study of typical disaster sites, this paper concludes that landslides in Kaiyang
County are mainly controlled by topography, landform, stratigraphic lithology, geological
structure, and water system dynamics. Landslides are mainly distributed alongside rivers
and in areas with dense faults. Low-altitude areas recorded a significantly higher number
of landslides than high-altitude areas, and 58% of landslides occurred in Cambrian strata.

http://www.gscloud.cn


Sustainability 2021, 13, 6441 4 of 20
Sustainability 2021, 13, 6441 4 of 21 
 

 
Figure 2. Three typical landslides that occurred in Kaiyang County of southwest China: (a) earth 
slide; (b) rock fall; (c) debris flow; and (d) local details of Figure c. 

Landslide Conditioning Factors 
The landslide susceptibility evaluation is based on the selection of evaluation factors 

[51,52]. The selection of factors that contribute to the development of landslides should be 
performed in combination with field investigation data. Based on the detailed investiga-
tion and study of typical disaster sites, this paper concludes that landslides in Kaiyang 
County are mainly controlled by topography, landform, stratigraphic lithology, geologi-
cal structure, and water system dynamics. Landslides are mainly distributed alongside 
rivers and in areas with dense faults. Low-altitude areas recorded a significantly higher 
number of landslides than high-altitude areas, and 58% of landslides occurred in Cam-
brian strata. 

To evaluate landslide susceptibility for this study, previous research conclusions on 
the influencing factors of landslides were considered, as well as the nine additional fac-
tors: altitude, slope, topographic relief, slope direction, engineering rock group, slope 
structure, fault, drainage system, and normalized difference vegetation index (NDVI) 
[53,54]. 

2.4. Correlations between Landslides and Their Conditioning Factors 
Using the GIS software, the element layers were converted into raster data. Each eval-

uation factor layer and the landslide distribution layer were superimposed for analysis. 
The distribution rules of different factors and landslides were counted, and the correlation 
analysis between landslide pregnancy factors and landslide occurrence was carried out 
for the study area. Percentage of area is the ratio of a graded area to the total area of the 
study area, and percentage of landslide number is the ratio of the number of landslides to 
the total number of landslides within a certain classification. Further, Pn refers to the land-
slide density in the grading interval, that is, the number of landslides occurring in the unit 
area of the grading interval (units: km2). 

2.4.1. Altitude 
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To evaluate landslide susceptibility for this study, previous research conclusions on
the influencing factors of landslides were considered, as well as the nine additional factors:
altitude, slope, topographic relief, slope direction, engineering rock group, slope structure,
fault, drainage system, and normalized difference vegetation index (NDVI) [53,54].

2.4. Correlations between Landslides and Their Conditioning Factors

Using the GIS software, the element layers were converted into raster data. Each
evaluation factor layer and the landslide distribution layer were superimposed for analysis.
The distribution rules of different factors and landslides were counted, and the correlation
analysis between landslide pregnancy factors and landslide occurrence was carried out for
the study area. Percentage of area is the ratio of a graded area to the total area of the study
area, and percentage of landslide number is the ratio of the number of landslides to the
total number of landslides within a certain classification. Further, Pn refers to the landslide
density in the grading interval, that is, the number of landslides occurring in the unit area
of the grading interval (units: km2).

2.4.1. Altitude

Kaiyang County has an elevation of 515–1664 m, with a relative elevation difference
of 1149 m. The elevation is divided into five class ranges: 515–827, 828–993, 994–1133,
1134–1287, and 1288–1664 m (Figure 3a). The statistical results of the elevation classification
and spatial distribution of landslides are shown in Figure 4a. It was observed that elevation
is mainly concentrated between 828 and 1287 m, accounting for 78.5% of the total area of
Kaiyang County; notably, 93.8% of the disaster sites developed in areas below 1287 m. The
height range of 515–827 m developed the highest density of landslides, up to 0.14 km2.

2.4.2. Slope

Slope is an important factor that affects the occurrence of landslides; it affects the
direction of water flow and soil development [55]. The Kaiyang landscape is predomi-
nated by a staggered distribution of mountain basins. The range in slopes found within
the region was divided into six classes: 0–10◦, 10–20◦,20–30◦, 30–40◦, 40–50◦, and >50◦
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(Figure 3b). The statistical results of the slope classification and spatial distribution of land-
slides are shown in Figure 4b. The slopes are mainly concentrated within 0–30◦, accounting
for 94.3% of the total area. Moreover, 49.6% of the slopes conducive to geological disasters
appeared in the range of 20–50◦, accounting for 20.8% of the total area. The 30–40◦ slopes
contained the largest density of landslides, up to 0.23 km2, indicating that this slope range
is the most prone to landslides.
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(h) distance to rivers, and (i) normalized difference vegetation index (NDVI).

2.4.3. Topographic Relief

Topographic relief can reflect the macroscopic features of the terrain within a certain
range [47]. Based on 30 m resolution DEM data, this study calculated the topographic relief
of the study area and divided it into five classes (<18, 18–32, 32–50, 50–79, and >79 m) from
Jenks natural breaks method (Figure 3c). The statistical results of the topographic relief
classification and spatial distribution of landslides are shown in Figure 4c. The topographic
relief is mainly concentrated at 0–79 m, accounting for 90.9% of the total area of Kaiyang
County. The density of topographic relief is the highest in the >79 m topographic relief
region, up to 0.25 km2, indicating that this is a highly prone area for landslides.

2.4.4. Aspect

The influence of aspect on the occurrence of landslides is mainly manifested in the
microclimate and the regular change of the hydrothermal ratio on the hillside [56]. The
aspect factor was divided into 9 classes: (−1) flat, north (0–25.5◦; 315–360◦), northeast
(22.5–59.5◦), east (59.5–135.5◦), southeast(135.5–153.5◦), south (153.5–215.5◦), southwest
(215.5–251.5◦), west (251.5–298.5◦), and northwest (298.5–341.5◦) (Figure 3d). The statistical
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results of the aspect classification and spatial distribution of landslides are shown in
Figure 4d. The results show that southeast, west, and northwest aspects are most conducive
to landslides in the study region, with the number of disaster points accounting for 48.9%
of the total area and the area accounting for 40.0% of the total area of the study area.
Among them, the aspect associated with the highest density of landslides is the west
aspect, accounting for up to 0.11 km2, indicating that this aspect is the most conducive
to landslides.

2.4.5. Engineering Geological Rock Group

The engineering geological rock group is the material basis for landslides. The rock
type and degree of hardness determine the weathering resistance of the rock mass [57].
Different lithological units were grouped into three different categories (hard rocks, soft
and hard interbedded rocks, and soft rocks) based on landslide susceptibilities (Figure 3e).
Hard rocks dominate in Kaiyang County (54.6% of the total area), while the density of soft
rocks was the highest. The number of developmental disasters accounted for 45.5% of the
total disasters, and the area accounted for 22.3% of the total area (Figure 4e).

2.4.6. Slope Structure

The slope structure plays an important role in landslide distribution [54]. The types of
slope structure were divided into four classes (i.e., transverse slope, reverse slope, oblique
slope, and dip slope) according to the relationship between rock strata inclination and the
included angle of the topographic aspect (Figure 3f). The study area was dominated by
oblique slopes, accounting for 43.8% of the total area, and 85.5% of the disaster sites were
developed in the transverse, normal, and oblique slopes. The density was the highest in
the Shunxiang slope area, accounting for 14.4% of the total area. This area is highly prone
to landslides, accounting for 9.6% of the total area (Figure 4f).

2.4.7. Distance to Faults

Faults are an important influencing factor on landslide occurrence. Under the influence
of faults, rock mass is broken, and joints and fissures develop, which have an adverse
influence on slope deformation [58]. The distance to faults in the study area was established
at a distance of 500 m (Figure 3g), and the sensitivity of each classification to landslides
was statistically analyzed. The results are presented in Figure 4g. The results show that
there are 65 landslides from 0 to 500 m on both sides of the fault, accounting for 46% of the
total, and 36 disaster points from 500 to 1000 m away from the fault, accounting for 25.5%
of the total. Generally, the landslide is negatively correlated with the distance from the
fault within 1000 m. The farther the fault from the area, the lower the landslide probability.

2.4.8. Distance to Rivers

Proximity to rivers can also control the distribution of landslides. Rivers have an
erosion effect on the bank slope, which can change the internal stress state of the slope
body and increase the possibility of bank slope instability and slippage [59]. For the rivers
in the study area, buffer zones were established at intervals of 200 m (Figure 3h), and the
sensitivity of the buffer zones to landslides was analyzed. The results are presented in
Figure 4h. As shown in the figure, in the region within 800 m of the water system, the
disaster points accounted for 71.4%, which is the area prone to landslides, accounting for
41.6% of the total area. Within the range of more than 600 m, the density showed a trend of
gradual decrease with the increase in distance, indicating that the influence of the water
system on landslides decreases with an increase in distance within this range.

2.4.9. Normalized Difference Vegetation Index (NDVI)

The NDVI is often used to reflect human engineering activities [60]. As an index
representing vegetation characteristics, vegetation coverage can represent external factors
that contribute to landslides. The NDVI is divided into five class ranges: −0.098–0.070,
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0.070–0.137, 0.138–0.181, 0.182–0.221, 0.222–0.274, and 0.275–0.514 (Figure 3i). Overall,
vegetation coverage was relatively high in Kaiyang County. The NDVI is mainly con-
centrated in the range of 0.070–0.274, accounting for 93.7% of the total area; 62.8% of the
disaster sites are developed in the range of NDVI= −0.098–0.181. This indicates that this
area is conducive to the occurrence of landslides, accounting for 48.1% of the total area.
In particular, the density of landslides is the highest in the range of 0.070–0.138, up to
0.11 km2, which is the area most prone to landslides (Figure 4i).

2.5. Correlations Analysis of Landslide Conditioning Factors

In the evaluation of landslide susceptibility, each conditioning factor is not inde-
pendent but has a correlation with each other. If it is not dealt with, the weight of each
conditioning factor may overlap with each other, leading to errors in the evaluation results.
Therefore, this study used the variance inflation factor (VIF) and tolerance (TOL) to check
for multicollinearity of the conditioning factors and used the Pearson correlation coefficient
(PCC) to analyze the correlation between two conditioning factors. The VIF refers to the
ratio of the variance between explanatory variables in the case of multicollinearity and
variance in the case of no multicollinearity, so it can reflect the increased degree of variance
caused by multicollinearity. Its formula is [61]

VIF =
1

1− R2
i

, (1)

where R2
i represents the coefficient of determination between the ith factor Xi and other

factors. The tolerance and variance inflation factor are reciprocal of each other. A VIF > 5
or a TOL < 0.2 indicates a potential multicollinearity problem in the dataset [61].

Suppose the sample dataset (Xi, Yj) = (x1, y1), (x2, y2), . . . ,(xn, yn). Then, the calcula-
tion formula of the correlation coefficient among evaluation factors is [62,63]

PCC =
∑n

i=1(xi − x)∑n
j=1
(
yj − y

)√
∑n

i=1(xi − x)2 ∑n
j=1(yi − y)2

, (2)

where xi and yi are the variable values of Xi and Yj, respectively, and x and y are
the mean values of Xi and Yj, respectively. The greater the absolute value of the PCC,
the stronger the correlation of factors. A Pearson’s correlation coefficient >0.7 indicates
high collinearity [64].

The multicollinearity among the remaining 9 landslide conditioning factors was
identified using TOL, VIF (Table 1), and Pearson’s correlation coefficient (Table 2). The
results show that the highest VIF value is 3.943 for topographic relief, which is less than the
critical value of 5. The highest correlation value (−0.267) appeared between slope structure
and topographic relief, which is also less than the critical value of 0.7, indicating no
multicollinearity. Therefore, all remaining 9 factors were included in the present analysis.

Table 1. Multicollinearity analysis for landslide conditioning factors.

Conditioning Factors TOL VIF

NDVI 0.936 1.068
Topographic relief 0.254 3.943
Distance to faults 0.966 1.035
Distance to rivers 0.790 1.265

Altitude 0.761 1.313
Slope 0.267 3.740

Aspect 0.955 1.048
Slope structure 0.966 1.035

Engineering geological rock group 0.899 1.112
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Table 2. Correlation coefficients among the landslide conditioning factors.

Conditioning Factors NDVI Topographic
Relief

Distance to
Faults Altitude Slope Aspect Distance to

Rivers
Slope

Structure
Engineering Geological

Rock Group

NDVI 1.000 −0.044 0.097 0.021 −0.027 −0.196 −0.094 −0.002 −0.114

Topographic relief 1.000 0.063 −0.218 0.204 −0.093 −0.062 −0.267 0.079

Distance to faults 1.000 −0.022 0.105 −0.082 −0.078 0.026 −0.029

Altitude 1.000 −0.112 −0.116 0.203 0.125 −0.128

Slope 1.000 −0.066 −0.065 −0.215 0.142

Aspect 1.000 −0.046 0.034 −0.001

Distance to rivers 1.000 −0.017 0.114

Slope structure 1.000 −0.097

Engineering
geological rock group 1.000

2.6. Susceptibility Mapping Models
2.6.1. Certainty Factor (CF) Model

The CF model was first proposed by Shortliffe and Buchanan in 1975 [65] and im-
proved by Heckerman (1986) [66]. The CF is a probability function used to analyze the
sensitivity of various factors affecting the occurrence of events. CF is widely used in
landslide susceptibility assessments. The basic assumption is that the susceptibility of
a landslide can be determined based on the statistical relationship between previous
landslides and datasets determined as environmental factors [29,67,68]. The equation is
expressed as follows:

CF =


PPa−PPs

PPa(1−PPs)
, PPa ≥ PPs

PPa−PPs
PPs(1−PPa)

, PPa < PPs
, (3)

where PPa is the conditional probability of events occurring in class a; that is, the ratio of
the number of disaster points to the area in the unit of class a. Further, PPs is the prior
probability of an event occurring; that is, the ratio of the number of potential landslide
points to the area in the study area.

The CF values ranged from −1 to 1. Positive numbers show an increase in certainty,
while negative numbers correspond to a decrease in certainty. Numbers close to zero imply
that the prior probability is similar to the conditional probability and do not provide any
indication of certainty.

The weighted sum is carried out to obtain the landslide susceptibility index of each
unit, which can be calculated by

Ij = ∑n
i CFi(i = 1, 2, . . . , n), (4)

where Ij is the susceptibility index of the jth evaluation unit and CFi is the CF value of each
grade of the ith impact factor.

2.6.2. Analytic Hierarchy Process (AHP)

The AHP is a multi-index analysis and evaluation method with high precision and
ease of use [69,70]. The principle is as follows: first, the evaluation factors are selected,
a hierarchical structure model is established, and the relative importance of the selected
evaluation factors is scored by experts. Then, the 1–9 scale method (Table 3) given by Saaty
is used for scoring to construct a pair judgment matrix and test the consistency [19,71]. The
consistency test index is expressed as follows:

CI =
λmax − n

n− 1
n > 1, (5)

CR =
CI
RI

, (6)
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where CI is the causative index, RI-Mean is the random consistency index of the same
order, and CR-random is the consistency ratio.

Table 3. Judgment matrix scale and its meaning [69].

Scale Values Meaning

1 Indicates that two factors are of equal importance compared to each other
3 The former is slightly more important than the latter
5 Indicates that the former is significantly more important than the latter
7 The former is more important than the latter
9 The former is more important than the latter

2, 4, 6, 8 Represents the median value of the above adjacent judgments
The bottom Contrary to the above effects

The judgment criterion for this study was <0.1, indicating that the test passed and
the judgment matrix constructed was reasonable. The weight of each factor was calcu-
lated using the judgment matrix. The different grading state values for each factor were
normalized. Finally, the susceptibility index was calculated using Equation (7) [72].

Si = ∑ WiLi, (7)

where Si is the AHP susceptibility index, Wi is the different grading weights of the evaluation
factors, and Li is the normalized standard value of different grades of evaluation factors.

2.6.3. Logistic Regression (LR) Model

The LR model is a regression analysis model of binomial categorical variables. It
describes the relationship between binary dependent variables and a series of independent
variables [73–76]. When conducting susceptibility assessment, P is the probability of
landslide occurrence, and Q = (1− P) is the probability of non-occurrence of a landslide.
If the logarithm of P/Q is ln(P/Q), then the probability of landslide occurrence is regarded
as the dependent variable, and the influencing factor set [x1, x2, . . . , xn] is considered an
independent variable. The regression Equation (8) is established as follows [77]:

ln
(

P
1− P

)
= α + β1x1 + β2x2 + · · ·+ βnxn, (8)

where α is the regression constant, βi (i = 1, 2, . . . , n) is the regression coefficient, and xi
(i = 1, 2, . . . , n) is the index value of the impact factor. Based on this, the LR Equation (9)
can be obtained: {

P = exp(z)
1+exp(z)

z = α + β1x1 + β2x2 + . . . + βnxn
. (9)

2.6.4. CF-AHP Integrated Model

As the deterministic coefficient model fails to consider the difference in the impact of
each evaluation factor on landslide susceptibility, Fan (2017) [46] proposed a new method
combining the CF and the AHP. In this method, first the CF method is used to calculate
the relative weight of each evaluation factor index grading, namely, the CF value. Then,
the hierarchy division of each evaluation index is carried out by combining the AHP to
allocate weight scientifically and verify the reliability of weight allocation. Finally, the
weight value is introduced to carry out the weighted sum of all the CF values of the impact
factors, and the geological hazard susceptibility index (Ij) of each unit is calculated using
the formula [46]:

Ij = ∑n
i ωiCFi(i = 1, 2, . . . , n), (10)
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where Ij is the susceptibility index of the jth evaluation unit and ωi is the weight of the ith
evaluation factor. CFi is the CF value of each grade of the ith impact factor.

2.6.5. CF-LR Integrated Model

To consider the weight of each category of indicators and the weight of indicators at
the same time, Cao (2020) [47] coupled the CF with LR and proposed the CF-LR integrated
model. First, the CF value of each grade of evaluation factors calculated by the CF model
was used as the index value of the LR analysis. Binomial LR analysis was performed to
obtain the regression coefficient of each impact factor. On this basis, a LR equation was
established to evaluate the landslide susceptibility [47].

3. Results and Discussion
3.1. Certainty Factor (CF) Model

The element layers were converted into raster data using GIS software, and the size
of each layer cell was set to 30 m × 30 m. The layer of each evaluation factor (Figure 3)
and the distribution layer of the landslides were superimposed for analysis, and a total of
2,217,519 independent attribute units were obtained.

The area of each classification and the number of landslides contained in each clas-
sification were counted, and the CF value of each classification was calculated using the
CF model (Table 4). On this basis, the weighted sum is performed to obtain the geological
disaster susceptibility index of each unit, Ij.

Table 4. Evaluation factors of the classification and CF value of each grade.

Factors Classes Number of Landslide Category Area/km2 CF

Altitude (m)

515–827 29 199.08 0.542624
828–993 59 501.26 0.415432

994–1133 32 606.43 0.28567
1134–1287 16 467.35 0.54544
1288–1664 9 230.20 0.47827

Slope (◦)

0–10 17 740.02 0.6985
10–20 56 841.17 0.08543
20–30 46 308.01 0.555807
30–40 21 87.56 0.75283
40–50 5 22.83 0.721837
>50 0 4.74 −1

Topographic relief (m)

<18 10 740.84 0.82454
18–32 42 701.80 0.18375
32–50 52 380.38 0.507525
50–79 37 147.57 0.766945
>79 4 33.73 0.420283

Aspect (◦)

Flat 0 17.17 −1
North 14 245.07 0.22311

Northeast 17 244.03 0.03983
East 17 275.35 0.15622

Southeast 21 280.92 0.034762
South 14 217.62 0.11835

Southwest 12 203.60 0.1969
West 27 235.79 0.396943

Northwest 23 284.75 0.112494

Engineering geological
rock group

Hard rocks 51 1101.56 0.3775
Soft and hard interbedded rocks 28 454.47 0.15811

Soft rocks 66 448.28 0.548293
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Table 4. Cont.

Factors Classes Number of Landslide Category Area/km2 CF

Slope structure

Transverse slope 34 413.55
193.2337

0.129424
0.360400631

The reverse slope 21 193.23 0.360401
Oblique slope 49 878.25 0.242301

Dip slope 41 519.28 0.090269

Distance to faults (m)

500 66 638.59 0.323431
1000 41 447.41 0.22698
1500 20 300.03 0.08417
2000 3 194.69 0.79932

>2000 15 423.60 0.52926

Distance to rivers(m)

200 31 257.65 0.429814
400 27 207.82 0.477728
600 29 193.11 0.558687
800 17 176.40 0.268756

1000 11 159.91 0.05277
>1000 30 1009.43 0.60723

NDVI

0.098–0.070 6 58.32 0.319929
0.070–0.137 33 301.28 0.365997
0.138–0.181 52 605.14 0.170441
0.182–0.221 36 606.19 0.19041
0.222–0.274 16 365.38 0.41277
0.275–0.514 2 67.98 0.61136

3.2. AHP

We built a judgment matrix (Table 4). After calculation, CI = 0.144 and CR = 0.0986 < 0.1,
indicating that the construction of the judgment matrix is reasonable. The judgment matrix
maximum characteristic root was determined to be Max = 10.152. Finally, the weights of
each factor were determined (Table 5).

Table 5. Evaluation factor paired comparison matrix and weight.

Factor Altitude Slope Aspect Topographic
Relief

Engineering
Geological

Rock Group

Slope
Structure

Distance
to Faults

Distance
to Rivers NDVI Wi

Altitude 1 1/3 2 1/3 1/3 1/3 1/2 1/3 2 0.0533

Slope 3 1 3 2 1/3 1/2 1/2 2 3 0.1191

Aspect 1/2 1/3 1 1/3 1/4 1/3 1/2 1/3 2 0.045

Topographic relief 3 1/2 3 1 1/3 1/2 1/2 2 2 0.0996

Engineering geological
rock group 3 3 4 3 1 1/3 1/3 1/3 5 0.148

Slope structure 3 2 3 2 3 1 1/2 2 3 0.1785

Distance to faults 2 2 2 2 3 2 1 2 3 0.1961

Distance to rivers 3 1/2 3 1/2 3 1/2 1/2 1 2 0.1216

NDVI 1/2 1/3 1/2 1/2 1/5 1/3 1/3 1/2 1 0.0387

3.3. LR Model

A total of 260 independent units (130 landslide-present pixels and 130 randomly
selected landslide-absent pixels.) were randomly selected as statistical samples for suscep-
tibility assessment. Among them, 1 indicates occurrence, and 0 indicates non-occurrence.
The grading index values of nine impact factors were considered independent variables,
and whether landslides occurred was regarded as the dependent variable. Binary LR
analysis was conducted on the samples, and the regression results are shown in Table 6.
The results of the LR analysis show that the significance of all nine impact factors was <0.05,
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indicating that the nine factors were effective. The regression coefficients of the nine factors
were substituted into the model to obtain the LR formula for susceptibility evaluation:

P = exp(z)
1+exp(z)

z = 0.081 + 0.311x1 + 0.445x2 + 0.302x3

−0.026x4 + 0.468x5 + 0.289x6 + 0.384x7

+0.378x8 − 0.281x9

, (11)

where P is the probability of landslide and x1−9 respectively represent the index values
of each grade of nine impact factors, including altitude, slope, topographic relief, aspect,
engineering geological rock group, slope structure, fault, river, and NDVI.

Table 6. Results of logistic regression analysis.

Return to the Item B SE Wals df Sig

Altitude 0.311 0.156 3.984 1 0.046
Slope 0.445 0.325 1.879 1 0.017

Topographic relief 0.302 0.304 6.940 1 0.008
Aspect 0.026 0.070 0.141 1 0.040

Engineering geological rock group 0.468 0.185 6.429 1 0.011
Slope structure 0.289 0.156 3.425 1 0.026

Distance to faults 0.384 0.119 10.442 1 0.001
Distance to rivers 0.378 0.093 16.434 1 0.000

NDVI 0.281 0.154 3.326 1 0.038
constant 0.081 1.229 0.004 1 0.948

Note: B represents the regression coefficient of each factor in the model, Se is the standard
deviation, Wals is the chi-square, df is the degree of freedom, and Sig represents significance.

3.4. CF-AHP Integrated Model

AHP was used to calculate the importance of the selected index factors, and the
CF method was used to calculate the CF values of different factors. Based on this, the
CF weighted sum of the index factors was used to obtain the calculation formula of the
sensitivity index of the evaluated region.

Ij = 0.0533× CF1 + 0.1191× CF2 + 0.0996× CF3 + 0.045× CF4 + 0.148× CF5 + 0.1785× CF6
+0.1961× CF7 + 0.1216× CF8 + 0.0387× CF9

(12)

3.5. CF-LR Integrated Model

Based on the CF model, CF values of each grade of the nine impact factors were
considered independent variables, and whether landslides occurred was regarded as the
dependent variable. Binary LR analysis was conducted (Table 7) to obtain the LR formula:

P = exp(z)
1+exp(z)

z = 0.169 + 0.795x1 + 0.610x2 + 0.693x3

+0.207x4 + 1.727x5 + 0.753x6 + 1.584x7

+1.784x8 + 1.336x9

(13)

where P is the probability of landslide and x(1–9) represents the CF values of each grade of
the aforementioned nine impact factors.
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Table 7. Results of logistic regression analysis (based on the CF value).

Return to the Item B SE Wals df Sig

Altitude 0.795 0.417 3.639 1 0.036
Slope 0.610 0.497 1.507 1 0.020

Topographic relief 0.693 0.424 2.675 1 0.012
Aspect 0.207 0.803 0.067 1 0.049

Engineering geological rock group 1.727 0.466 13.727 1 0.000
Slope structure 0.753 0.803 0.878 1 0.034

Distance to faults 1.584 0.497 10.140 1 0.001
Distance to rivers 1.784 0.361 24.468 1 0.000

NDVI 1.336 0.609 4.808 1 0.028
constant 0.169 0.176 0.924 1 0.336

Note: B represents the regression coefficient of each factor in the model, Se is the standard
deviation, Wals is the chi-square, df is the degree of freedom, and Sig represents significance.

3.6. Landslide Susceptibility Mapping

The grid calculator tool of GIS software was used to calculate the susceptibility index of
each unit superposition. Using the Jenks natural breaks method, the susceptibility of Kaiyang
County was divided into four classes: very low, low, moderate, and high (Figures 5 and 6).
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The resultant landslide susceptibility maps (Figure 5) suggest that the areas of high sus-
ceptibility to landslides are mainly distributed alongside rivers, in areas such as Huali Town
and Jinzhong Town that were densely populated, as well as in areas with fault-concentrated
belts. Areas of extremely low susceptibility to landslides are mainly distributed in Long-
gang Town in the south, and Nanmudu Town in the north, where the terrain is relatively
flat and the geological conditions are not conducive for landslides. Figure 5 shows that the
area ratios of each classification of the CF and LR model are similar. In the CF-LR model,
the area of high susceptibility was 20.68%, which was higher than the 16.60% in the CF
model or the 16.94% in the LR model. The area of the very low susceptibility area was
42.68%, which was higher than that of the CF model (24.23%) or the LR model (27.27%). In
the CF-AHP model, the area of high susceptibility was 19.72%, which was higher than that
of the CF model (16.60%) or the LR model (118.95%). The area ratio of the extremely low
susceptibility area was 18.51%, which was higher than that of the CF model (24.23%) and
similar to that of the AHP model (18.51%).

3.7. Validation of the Susceptibility Models
3.7.1. Distribution of Landslides

The accuracy of the evaluation results can be tested by counting the percentage of the
number of landslides in each susceptibility classification in the total number of landslides.
The statistical results (Figure 7) show that 89.11% and 86.90% of landslides in the CF-AHP
and CF-LR models fall in the medium to high-susceptibility areas, respectively; these values
are higher than those recorded by the CF-AHP (82.89%), LR (80.65%), and AHP (76.19%)
models, respectively. The results show that the evaluation results using the CF-AHP and
CF-LR models are more reasonable than the CF, AHP, and LR models.
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3.7.2. Receiver Operating Characteristic Curves

The receiver operating characteristic curve (ROC) is a common method for accuracy
verification of landslide susceptibility evaluation, and it is widely used in the accuracy
verification of landslide susceptibility evaluation. To show the evaluation effect more
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clearly, the area under the receiver operating curve (AUC) is typically used as an objective
and quantitative evaluation index to measure the accuracy of the model’s prediction [32].
The AUC value ranges between 0 and 1; the closer it is to 1, the higher is the prediction
accuracy. The ROC test results for the five models in this study are shown in Figure 8. The
test results show that the AUC values of the CF, AHP, LR, CF-AHP, and CF-LR models were
0.853, 0.712, 0.871, 0.873, and 0.895, respectively. With the exception of the AHP model, the
AUC value of the other models is greater than 0.75, indicating that these models accurately
evaluate the landslide susceptibility. The accuracy of the five models ranged from the
highest to the lowest as follows: CF-LR, CF-AHP, LR, CF, and AHP. The success rates of
the CF-AHP and CF-LR models were higher than those of the models using CF-AHP, AHP,
and LR, respectively.
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3.8. Uncertainty Analysis

As for landslides, there are some uncertainties in landslide susceptibility evaluation
because of the complexity of the forming mechanism, the uncertainty of obtaining relevant
data such as landslide cataloging, and the difference of prediction principles of different
analysis models. For the AHP method, the rating system is mainly based on expert opinions,
which is a subjective method and may have great defects. When making grading decisions
on slopes, experienced experts generally assign a relatively high vulnerability index to a
high slope and a relatively low vulnerability index to a low slope. In fact, the Pn values of
landslide points in the six classes are 0.0229 (0–10◦) and 0.0665 (10–20◦), 0.1493 (20–30◦),
0.2398 (30–40◦), 0.2189 (40–50◦), and 0 (>50◦), respectively. The number of landslides in
>50◦ region is not higher than those in 30–40◦ and 40–50◦ regions. Therefore, it is difficult
to estimate the actual weight of factors when only starting from professional knowledge
and general experience, and one cannot comprehensively analyze the actual situation. For
the CF and LR models, the accuracy is mainly affected by the unbalanced sample sets.
Landslide and non-landslide points are strongly unbalanced data sets. When using the
sampling method to select non-landslide points, it is difficult to directly determine the
specific location of non-landslide areas; therefore, there are differences in the selection
methods of non-landslide points. In this study, through random sampling in the whole
area, it is difficult to obtain good non-landslide points, which affects the accuracy of the
model to some extent. These problems need to be solved in future research.
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4. Conclusions

Although past studies have individually applied the AHP, CF, LR, CF-AHP, and
CF-LR methods to examine landslide distribution and susceptibility characteristics, these
methods have not previously been compared for accuracy. This study applied all five of
these modeling approaches to the same area (Kaiyang County, China) to map landslide
susceptibility and then compared the results obtained from the analyses. Five models
were used to produce landslide maps, and the suitability of each model was evaluated
using the area under the curve method and by comparing the maps with known landslide
locations. The accuracies of the landslide maps produced by the CF, AHP, LR, CF-AHP, and
CF-LR methods were 0.853, 0.712, 0.871, 0.873, and 0.895, respectively. The success rates of
the CF-AHP and CF-LR models were higher than those of the CF, AHP, and LR models.
By combining CF with the LR method, or CF with the AHP method, the shortcomings
of the CF model were resolved, and the quadratic LR calculation of the landslide index
factor was realized. The ROC precisions of the CF-AHP and CF-LR models were 0.838
and 0.836, respectively. Compared with the single AHP and CF models, the accuracy
of landslide susceptibility assessment can be improved by approximately 8%, indicating
that the CF-AHP and CF-LR models have a higher success rate than the single AHP and
CF models in the assessment of landslide hazard susceptibility; these findings provide a
reliable way to improve the assessment process of landslide hazard susceptibility in the
Kaiyang region and elsewhere.

The comparison results of the present study indicate that except for the AHP model,
the AUC value of all the other models was greater than 0.75, and the frequency ratio of
extremely vulnerable areas and highly vulnerable areas accounted for more than 80% of
the total frequency ratio. This indicates that the landslide susceptibility of Kaiyang County
could be accurately evaluated using these methods.

By comparing and analyzing the value of CF and regression coefficient B of each
characteristic value of the nine factors, it can be observed that the three influencing factors,
namely formation lithology, distance from fault, and distance from the water system,
contribute significantly to landslide susceptibility. In particular, landslides are more likely
to occur within 1000 m of a fault, 800 m of a water system, and in lithologies of soft
rock formation.

Landslide susceptibility maps provide decision support to planners and engineers
who must choose suitable locations to implement development action plans. The landslide
susceptibility maps produced in this study can aid planners and engineers in future
development and land-use planning for Kaiyang County.
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