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Abstract: Glacier debris flow is one of the most critical categories of geological hazards in high-mountain
regions. To reduce its potential negative effects, it needs to investigate the susceptibility of glacier debris
flow. However, when evaluating the susceptibility of glacier debris flow, most research work considered
the impact of existing glacier area, while ignoring the impact of changes in glacier ablation volume.
In this paper, we considered the impact of the changes in the glacier ablation volume to investigate
the susceptibility of glacier debris flow. We proposed to evaluate the susceptibility analysis in G217
gullies with frequent glacial debris flow on the Duku highway, Xinjiang Province. Specifically, by using
the simple band ratio method with the manual correction to identify glacier outlines, we identified
the ablation zone by comparing the glacier boundary in 2000 with that in 2015. We then calculated
ablation volume by changes in glacier elevation and ablation area from 2000 to 2015. Finally, we used
the volume of glacier melting in different watersheds as the main factor to evaluate the susceptibility
based on the improved geomorphic information entropy (GIE) method. We found that, overall,
the improved GIE method with a correction coefficient based on the glacier ablation volume is better
than the previous method. Deglaciation can be adapted to analyze glacier debris flow susceptibility
based on glaciology and geomorphology. Our presented work can be applied to other similar glacial
debris flow events in high-mountain regions.

Keywords: geo-hazards prevention; glacier debris flow; susceptibility analysis; remote-sensing

1. Introduction

Debris flow is one of the extremely dangerous and threatening geo-hazards in
high-mountain regions, which induce severely destructive outcomes to human life [1–3].
Glacier debris flow is a type of debris flow characterized by suddenness and high mobility
in mountainous areas due to the loss of glaciers caused by climate change [4,5].

To minimize the loss induced by glacier debris flow, much research work has been
conducted to investigate the formation mechanism of glacial debris flow in recent years.
This work has concluded that glacial melting is one of the main reasons for the eruption
of glacial debris flow [4]. It is necessary to evaluate the dangerousness and stability
of glacial debris flow [6].

In order to investigate the typical characteristics and significant features of glaciers,
much research work based on remote sensing has been conducted. Compared with
conventional field-based survey, remote sensing-based methods have the advantage
of large-scale coverage and convenient and real-time acquisition to monitor dynamic
changes of glaciers [7]. For example, Bayr, K.J. and D.K. Hall [8] observed the glaciers
recession and the delineation of the ice in the eastern Austrian Alps by using remote
sensing data. Kulkarni, A.V. [9] used Indian remote sensing satellite data to map the glacial
area, and obtained deglaciation of an entire glacier. In addition, remote sensing images
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can be used to provide observations of debris flow gullies and watershed morphology,
which are necessary to assess the susceptibility and prediction of glacier debris flow. For
example, A. Kääb1. [10] obtained geo-hazards susceptibility analysis in high-mountain
areas through object classification and monitoring techniques based on remote sensing
data. Elkadiri R. [11] developed a geographical information system (GIS) and evaluated
the susceptibility of debris flows based on remote sensing data in the Jazan province
of Saudi Arabia.

Much research work focused on the formation conditions of the glacial debris flow
has been conducted. For example, Cheng, Z.L. [12] discovered that the loss of glacier area
due to climate change can trigger debris flow in southeastern Tibet. Deng, M.F. [13] found
that compared with rainfall-type debris flow, the occurrence of glacial debris flow is caused
by the retreat of glaciers and the melting of internal ice particles and the changes in glacier
can provide large volumes of active sediment.

Other research work focused on the susceptibility and forecasting of glacial debris
flow has also been conducted. Risk assessment of debris flows is increasingly being
considered an important method for dealing with disaster mitigation. For example,
Golovko, D. [14] applied the susceptibility and forecasting mapping of debris flows
to prevent regional debris flow. However, much research work has only considered
rainfall conditions. For example, Cannon, S.H. [15] used the duration of rainfall to predict
debris flow. Chen, N.S. [16] investigated the essential rainfall features for debris flows
in the Wenchuan earthquake area. Rickenmann, D. [17] selected starting zone, critical
rain conditions triggers, sediments source, potential event scale, and event frequency
as the main factors to evaluate the occurrence of debris flow. Allen, S.K. [18] proposed
a systematic analysis method by combining hydrological factors with topographical factors
to forecast Kedarnath disaster.

Compared with rainstorm debris flow [19,20], little research work has been focused
on glacial melting types of debris flow. Furthermore, when studying the factors that trigger
the type of glacier melting debris flow, the triggering conditions are mostly considered
as the two factors of temperature and rainfall without the factor of glaciers [21]. Little
research work has been used the existing glacier area as a factor to evaluate while not
considered the impact of the glacier changes [22]. Moraine deposits caused by glacier
melting provide abundant provenance for debris flow motion, and glacier melting water
and rainwater become the source of water for debris flow simultaneously [23].

To address the above issues, in this paper, deglaciations and icefalls were considered
to be one of the main trigger factors. We present a case study analyzing the susceptibility
by investigating the changes in glacier. Specifically, we first identified the ablation zone
by comparing glacier boundaries. Four methods were used for classification, which
include the simple band ratio method, the normalized difference snow index method
(NDSI), the supervised classification of maximum likelihood method, and the supervised
classification of neural networks. We chose the first method with the manual correction to
identify glacier outlines by comparing the four methods. We then calculated the glacier
area where it melting in the study area and computed glacier elevation changes by digital
elevation model (DEM) differencing from 2000 to 2015 to calculate glacier changes of volume.
Finally, we selected a target area for susceptibility analysis by the modified geomorphic
information entropy (GIE) method.

Our contributions in this paper can be summarized as follows:

(1) We identified the ablation zone by comparing glacier boundaries in 2000 and glacier
boundaries in 2015 in the study area near Duku highway;

(2) We calculated ablation volume by changes in glacier elevation and ablation area from
2000 to 2015;

(3) We used the volume of glacier melting in different basins for glacier debris flow
susceptibility based on the improved GIE method.

The rest of this paper is organized as follows. Section 2 will introduce the materials and
methods in detail. Section 3 will describe the results by investigating the changes in ablation
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zone based on remote-sensing images and evaluate the susceptibility analysis for the glacier
debris flow based on the modified GIE method with correction factor by glacier melting
volume. Section 4 will discuss the advantages and shortcomings of our work, and also
point out our future work. Finally, Section 5 concludes our work.

2. Materials and Methods
2.1. Materials
2.1.1. Brief Introduction to the Study Area

High-mountain regions are vulnerable to permafrost melting and glacier recession
caused by global warming [5,24]. The Tien Shan Mountains area is the main high-mountain
distribution area of glaciers in Xinjiang Province, China (Figure 1a). It is necessary to study
the susceptibility of glacial debris flow in typical areas of Tien Shan Mountains.

Duku highway is located in the middle part of the Tien Shan Mountains, which has
a north-south trend leading-from Dushanzi to Qiaoerma (Figure 1b). The Duku highway
has a special terrain with steep slopes and more than 280 km of road with altitudes above
2000 m (Figure 1c). This highway is vulnerable to natural disasters due to natural factors
such as snowfall and glaciers in Tien Shan Mountains.

Figure 1. The geographic location of the study area. (a) China map; (b) Map of specific location; (c) Map of the details.

2.1.2. Details of the Target Area

The glacial debris flow in the Tien Shan Mountains is controlled by temperature
changes in the high-mountain area. With the condition of continuous high temperature,
the infiltration of glacial meltwater with the subsequent high-intensity storm easily causes
glaciers or glacier-rainstorm mixed mudslides in the watersheds.

We calculated glacier changes in the study area, and then selected a section with
frequent debris flow from K580+000 to K680+000 in the Duku highway as a target area.
The target area is a concentrated distribution area of modern glaciers with a watershed
area of approximately 79.724 km2 (Figure 2). This area has the characteristics of the long
gullies, steep slopes, and bended routes due to melting glaciers and most of the debris
flow gullies in this area. The glacier tongue is dominated by unsteady hanging glaciers,
which readily cause ice collapse in the case of continuous high temperatures. Collapsing
ice objects are also easy to wash quickly into the gully. As a result, melting glacial water
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cuts out mud-rock flow gully bed from narrow to deep, which provides good gully bed
conditions [25]. Melting glaciers and ice collapse are some of the major factors that induce
debris flow. For example, the K636 mud-rock flow watershed has blocked the Lapat River
several times and formed a mud-rock flow barrier lake, which caused the valley where
the accumulation fan is on the upper reaches of the main river has changed from the original
canyon to the wide valley (Figure 2a). With the loose residual materials in the gullies caused
by glacier ablation, it was essential to obtain the debris flow risk assessment of this section.

Figure 2. Photographs of debris flow events in the target area. (a) Road interruption at K636;
(b) Large-scale debris flow from K635+000 to K636+700; (c) Landslide caused by debris flow at K620.
(Photographs source: http://www.xinhuanet.com/ (accessed on 12 April 2021)).

2.1.3. Remote Sensing Image Data

In our study, we used Landsat series data with a spatial resolution of 30 m for the
period from 2000 to 2020, which included thematic mapper (TM) and operational line
imager (OLI). We also used DEMs, which included SRTM DEM and TanDEM-X to observe
glacier changes.

Landsat data have been used to map glacier outlines for many years [26]. For example,
Andreassen, L.M. [27] introduced the method of extracting glacier extents through the Landsat
thematic mapper (TM) with aerial images and digital maps. Dozier, J. [28] distinguished
snow from other surface cover and cloud layer by the Landsat TM. Frey, H. [29] used data
involving the enhanced thematic mapper plus (ETM+) images from 2000 to 2002, coherence
images from ALOS PALSAR image pairs, the SRTM DEM and the ASTER global DEM
(GDEM) for glacier mapping.

Cloud and snow coverage are the main reasons for the suitability of remote sensing
data for glacier observation and change monitoring analysis. We selected data with minimal
shadow-cover, low-coverage of snow and clouds in this research. The details of the remote
sensing data are listed in Table 1.

Table 1. Details of the remote sensing data used in the study (Landsat data source:
http://earthexplorer.usgs.gov/ (accessed on 23 June 2020)).

Sensor Type Acquisition
Date

Images
Resolution (m) Snow-Covered Applicability

Landsat TM
08/07/2000 30 Seasonal snow

Glacier
boundaries/Glacier

surface elevation
04/13/2013 Glacier boundaries

Landsat OLI
06/13/2015 30 Snow free

Glacier
boundaries/Glacier

surface elevation
05/09/2020 Glacier boundaries

http://www.xinhuanet.com/
http://earthexplorer.usgs.gov/
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Much research work has been conducted to investigate the change in glacier elevation
and the loss of glaciers based on the DEM data. For example, Gardelle, J. [30] measured glacier
elevation and calculated the changes in volume from DEM differencing. In this study, DEM
was used for dividing the sub-basin by extracting the topographical parameters and computing
the change in glacier elevation. The details of the DEM data are listed in Table 2.

Table 2. Details of the DEM data used in the study (SRTM and TanDEM-X were used for glacier
surface elevation, and ASTER was used as background.

Data Type Images Resolution (m) Acquisition Type Time Period

SRTM 90 Radar interferometry February, 2000

ASTER 30 Optical
photogrammetry 2000–present

TanDEM-X 12 Radar interferometry 2010–present

2.2. Methods
2.2.1. Overview

In this paper, the processing procedure for susceptibility assessment of glacier debris
flow consisted of three main steps: (1) The first step is to identify the glacier ablation zone,
where glaciers were present in 2000, but disappeared in 2015. We extract the ablation zone
by comparing the glacier boundaries between 2000 and 2015; (2) The second step is to
calculate the changes in glacier charateristics, which included their areas and elevations.
We then calculated the volume of the abaltion zone by multiplying the area and elevation
changes from DEM differencing using an integral method; (3) The third step is to convert
the volume of glacier melting into a correction factor to be applied to the debris flow
susceptibility analysis. These above steps are the basis of the susceptibility analysis of debris
flows. The entire workflow of the susceptibility analysis is illustrated in Figure 3.

Calculate Area-Elevation Integral 

Remote Sensing 

Images

Calculate

 Elevation Changes

Determinate 

Ablation Area
 Divide Sub-watersheds

Extract Ablation Volume in 

Different Watersheds

Extract Watershed Area 

Evaluate the Susceptibility Analysis of  Glacier 

Debris Flow

Identify 

Glacier Boundaries

Calculate Ablation Volume

Identify 

Ablation Zone

DEMs

Figure 3. Workflow of the glacial debris flow susceptibility analysis by investigating the changes
in glaciers.
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2.2.2. Step 1: Identification of Ablation Zone

Due to the gradual warming of the global climate, the area and volume of glaciers
have decreased considerably, and even disappeared. Glacial melting is the main method
of glacial material depletion. The methods of glacier melting include ice surface melting, ice
melting, and sub-ice melting, and ice surface melting is the main method. In this paper, we
focused on the impact of glacier changes in the ablation zone on the occurrence of glacial
debris flow.

(1) Pre-processing of the Remote Sensing Images

Due to the interference of solar radiation, clouds, topography, etc., it is necessary
to preprocess remote sensing images to avoid the loss in the process. These steps
of remote sensing image preprocessing included radiometric calibration, atmospheric
correction, geometric correction, and image sharpening of Gram-Schmidt (GS) pan
sharpening. These steps can reduce the impact, like noise and improve the quality
of images before the classification operation.

(2) Main Processing: Identification of Glaciers Boundaries

Satellite data have been commonly used for glacier outline identification. For example,
by stereoscopic interpretation with aerial photo and Landsat TM data, Aniya, M. [31]
identified glacier boundaries and glacier watersheds. Gjermundsen, E.F. [32] calculated
the changes of glacier area and extracted the 2002 glacier boundaries in the central
Southern Alps, New Zealand. Accurate glacier boundaries are quite important to
the study of glacier changes. When glacier extents are regarded as a primary factor
for change analysis, it is essential to know how accurate they are. Therefore, it is
necessary to obtain with the manual correction of the original outlines
(e.g., for debris cover, shadow) [32]. Creating an automated glacier-mapping method
that is compared with digital boundaries can be calculated for selected glaciers in the
study area. The identification of glacier boundaries based on satellite data was
inspired by related work.
Among the methods for glacier classification, the common method is the simple band ratio
method, which has a fast speed, high precision, and great robustness. A number of studies
on glaciers are based on this method. For example, Andreassen, L.M. [28] obtained glacier
mapping by threshold ratio images (TM3/TM5). Le Bris, R. [33] used this method based
on an application of a threshold (TM3/TM5) to automatically map accurate glacier outlines
through the manual correction of misclassified lakes in the study area.
This method calculates the reflectance ratio between two bands. The basic principle is
to use different reflectivities for different wavebands to distinguish glaciers from other
ground objects. The accuracy of this method depends on the selection of thresholds. There
are other commonly-used methods, such as NDSI, the maximum likelihood method,
and the neural network method. NDSI is computed as (Green-SWIR)/(Green+SWIR)
for extracting glacier extents. The maximum likelihood method and the neural network
method generally belong to the algorithms of supervised classification, which classify new
sample pixels by establishing a typical training sample [34].
As illustrated in Figure 4, it shows different glacier boundaries based on the four methods.
The classification results of these methods are as follows. Due to the NDSI method has
low recognition of moraine-covered glaciers [35,36], it is easy to identify bare land
as glaciers, and the results of glacier classification are fragmented. The maximum
likelihood method misclassifies rivers as glaciers [37]. In addition, it is easy to misclassify
snow and bare land as glaciers, causing the salt-and-pepper phenomenon. The maximum
likelihood method is easy to misclassify snow as glaciers, and the classification results
are also fragmented. The neural network method is more accurate than the maximum
likelihood, while the training time of this method for samples is relatively long, and
in this case, the snow, bare land, and glaciers cannot be well-identified. Although
the band ratio method creates some cavities inside the glacier with a too small threshold,
it can be solved by adjusting multiple times on the selection of thresholds according to
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the actual situation. Among the four methods, the simple band ratio method is the most
suitable in this study. The results based on Red/SWIR for classification are better than
those based on NIR/SWIR after testing.

Figure 4. The comparison of four me thods for glacier outlines identification. (a–c): Details of the
glacier outlines in different regions.

(3) Post-processing of the Glaciers Boundaries

In the results of automatic classification of glaciers based on remote sensing images,
there are usually many small patches or holes. Thus, we need to manually correct
interpretation of glacier outlines after the classification operation is implemented.
These patches can easily be selected and deleted in the layer by manual editing to
improve the accuracy of the glacier outlines. Furthermore, the automatic classification
method of glaciers can lead to the misclassification of glaciers (e.g., snow cover, rivers,
and clouds). The proper correction of glacier boundaries can use high-resolution
images, such as Google Earth images, Landsat series data by overlay of three individual
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bands, and even DEM data. These high-resolution data can obtain a classification
result of the snow and cloud conditions, even shaded areas. After manual correction,
we compared the glacier boundary in 2000 with the glacier boundary in 2015, and
extracted the ablation region where the glacier existed in 2000 but disappeared
completely in 2015. The ablation zone is illustrated in Figure 5.

Figure 5. Ablation Zone from 2000 to 2015.

2.2.3. Step 2: Calculation of the Changes in Glacier Ablation Zone

Temperature and rainfall are the two main control factors for development of glaciers,
Temperature determines the ablation area, and rainfall determines the accumulation area [38].
We analyzed the average temperature and precipitation data in the Tien Shan Mountains area
for the past 40 years. Although this area receives a great amount of precipitation, glaciers are
more sensitive to temperature [39]. Falatkova, K. [40] predicted that the area of glaciers will
decrease significantly by 2050 based on climate model scenarios. The replenishment of solid
precipitation to the glacier cannot offset the material loss caused by glacier melting. The
glacier recession will be accompanied by increases in glacier run-off and the formation of new
lakes. As a result, most of the glaciers in the area are shrinking and melting is accelerated.
In this step, we calculated the changes in glacial ablation zone through the three aspects
of area, elevation, and volume.

(1) Determination of Ablation Area

Glaciers are sensitive to climate change, even that of very slight temperature changes.
With a background of a globally warming climate, any excess energy can melt glaciers,
leading to glacier shrinkage. Glacial flow transports material from the accumulation
area to the ablation area, where it melts [31]. Rainfall and glacier melt are the main
reasons for increasing surface run-off in response to climate change. In this study, we
focus on ablation area, where all glaciers are transformed into water to trigger glacial
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debris flow. Based on the identified ablation zone boundary range, we determined
the area of the glacier ablation.

(2) Calculation of Elevation Changes from DEM Differencing

Measured elevation changes have been used to investigate volume and mass changes
in glacier for many studies. Accurate DEM differencing is key to calculate glacier
elevation changes. Therefore, it is necessary to process the registration of the DEMs
before calculating the glacier elevation changes. Due to the long wavelength of the
C-band, there is an obvious penetration effect on the glacier, and the penetration
depth is between 0∼10 m, especially in the glacier accumulation area [41]. Therefore,
we preprocessed the SRTM DEM before DEM registration, as a result, the C-band
SRTM DEM data corrected by the X-band SRTM DEM can represent the glacier
surface height [30,42]. In this paper, the DEMs must be projected to the same map
system, such as the universal transverse Mercator (UTM) system. In addition, because
of the different spatial resolutions, one of the DEMs needs to be resampled to ensure
the accuracy of the results. The abnormal values of surface elevation changes are
altered through the Kriging interpolation algorithm. The elevation value we used
now was proposed by McVicar, T.R. [43]. The method of processing the changes
in elevation was taken from previous research work. The most frequently used DEM
co-registration method, which is simple, analytic and robust was proposed by Nuth,
C. and A. Kaab [44], and is based on the elevation derivative of slope and aspect and
elevation difference residuals to correct the registration errors (Equation (1)).

dh
tan(α)

= a · cos(b − Ψ) + c (1)

where dh is the elevation difference between the different DEMs, α and Ψ are the terrain
slope and aspect in the region, a is the magnitude elevation difference bias, b is
the direction of the shift vector, c is the mean bias between the DEMs divided
by the mean slope tangent of the terrain.
Slope and aspect can be calculated by employing GIS. Previous research work has shown
that the offset obtained by this method may not be the most suitable offset, and this process
needs to be iterated to reach the optimal solution. In this paper, we iterate this process
until the solution is solved. The process is terminated when the standard deviation is
less than 2% to obtain the best registration result. The bias between DEMs is effectively
eliminated through the use of fitting and solving to obtain the correction parameter pair
after the DEM is registered. The result of DEM co-registration is illustrated in Figure 6. The
glacier elevation changes were calculated based on the mean elevation difference between
the DEM of two acquisition periods (2000–2015).

(3) Calculation of Ablation Volume

Compared with the area of glaciers, we are more concerned about the changes
in glacier volume. The volume of the ablation area is calculated by multiplying the area
and elevation changes using an integral method. The combination of temporally
consistent ablation area and elevation measurements is the crucial advantage of our
method, which improves volume estimate accuracy. We improved the two-dimensional
changes in the glacier to the three-dimensional changes in our study to obtain the
susceptibility analysis of glacier debris flow based on glacier ablation.
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Figure 6. Elevation differences estimated between SRTM (2000) and TanDEM-X (2015) before (a) and
after (b) co-registration. Histograms of the elevation differences before (c) and after(d) co-registration.

2.2.4. Step 3: Susceptibility Analysis of Glacier Debris Flow

Glacial debris flow is a serious issue in high-mountain areas that need to be prevented and
mitigated by susceptibility assessments. Glacial geomorphology can be used for completing
susceptibility assessments of glacier debris flows. For example, Huggel, C. [45] assessed
the susceptibility of glacial disaster, such as ice avalanches and glacial debris flows based
on glaciological, geomorphological, and hydraulic principles. Zaginaev, V. [46] found that
glacier lake outburst floods and glacial debris flows in northern Tien Shan area are negatively
correlated with the rates of glacier area and shrinkage ratios of moraine-glacier. These studies
showed that the susceptibility methods based on glaciology and geomorphology can improve
the assessment accuracy of glacier disasters. Our method of evaluating susceptibility was
inspired by the related work.

(1) The Divisions of Sub-watersheds in the Target Area

We divided sub-watersheds in the target area considering hydrological statistics
and an analysis module based on ASTER data. The main process is swale filling,
traffic analysis, confluence accumulation statistics, water flow length calculation, river
network extraction, etc. The result of watershed division is illustrated in Figure 7.
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Figure 7. The divisions of sub-watersheds in the target area.

(2) Brief Descriptions of the Geomorphic Information Entropy Method

Geomorphic condition is one of the three conditions necessary for the formation of debris
flows, it is the background condition and potential energy condition of debris flows.
The geomorphic information entropy method (GIE) of erosion watershed systems was
proposed by Ai and Yue (1988) [47]. The GIE method depends on the area–elevation curve
(Strahler) and combined the information entropy theory (Equation (2)). This theory has
been validated to the evaluate of debris flows developed from traditional geomorphology.
Some research work have been evaluated the susceptibility of debris flow based on the
watershed erosion degree. For example, Wang, J. [47] used the geomorphic information
method to evaluate the susceptibility in the strong earthquake area, Wenchuan. Li, Y.C. [48]
used this method to obtain the susceptibility of each sub-basin in debris flow gullies.
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H = S − lnS − 1 =
∫ 1

0
f (x)dx − 1 − ln[

∫ 1

0
f (x)dx] (2)

where H is the GIE value, S is the area–elevation integral value, and f (x) is the fitting function.
Due to glacier-covered and rich sediments, glacial geomorphology has particularities.

From the view of thermodynamics, glaciers are the process of increasing entropy under
high temperature conditions. Furthermore, glaciers increase the instability of the entire
basin and the probability of glacial debris flows. From the perspective of geomorphological
development, when glacier coverage is below a certain value in glacier-covered areas,
the risk of glacial debris flow is positively associated with glacier coverage. However,
beyond this value, the large area of glaciers has a protective effect on the evolution
of watershed geomorphology, but most glacier-covered areas have low glacier coverage.
Based on related research work, glacier coverage is 3.4% in the Tien Shan area in total.
Therefore, the risk of glacial debris flow is positively associated with glacier coverage
in the study area. According to this theory, a modified method was proposed by a glacier
correction factor based on the existing glacier area (Equations (3) and (4)).

G = i − 1 (3)

Hg = H · G (4)

where i is the ratio of glacier area to basin area, G is the non-glacial coverage rate within
the watershed.

On this basis, we turn the glacier area into the volume of melting glacier to improve
the accuracy of debris flow susceptibility. We divided the glacier volume level into 11 levels,
which correspond to the correction factor by volumetric range. The values of the correction
coefficients are as follows, 0.45, 0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95. By calculating
the value of GIE according to the improved correction coefficient, we evaluated the degree
of development and risk of glacial debris flow.

Previous criteria were proposed by Ai and Yue in 1988 [47], which divided the
development of different basins into three stages. In this paper, we appropriately adjusted
our criteria for division. We divided the basin into five different stages: H > 0.11,
the development of debris flow is in infancy stage with strong erosion, the slope is steep
with mainly convex slopes, glacier coverage is extremely high, the susceptibility of debris
flow is very high; 0.11< H 6 0.20, the development of debris flow is in mature but bias
infancy stage, erosion begins to weaken, the slope begins to transform into concave, glacier
coverage is high, the susceptibility is high; 0.20 < H 6 0.30, the development of debris flow
is in mature stage, erosion is obviously weak, the slope shape is further transformed into
concave, the glacier coverage is moderate, the susceptibility of debris flow is moderate;
0.30 < H 6 0.40, the development of debris flow is in mature but bias old stage, erosion
weakens clearly, the landform surfaces is gently undulating, the glacier coverage is low,
the susceptibility of debris flow is low; H > 0.40, the development of debris flow is very
old stage, most of the terrain glacier coverage is very low, the susceptibility is very low.

The GIE value under the glacier landform is obtained by calculating the correction
factor. This GIE method can be used to divide the development stage and obtain the risk
assessment of glacial debris flow based on the above-mentioned criteria.

3. Results
3.1. The Observation of Glacier Ablation and Recession

We observed the glacier ablation zone in the study area and calculated glacier changes
in different regions during the observation period from 2000 to 2015. Due to the severely
fragmented glacier distribution near the Duku highway, glacier change measurements have
been aggregated over regional subdivisions to show the scale of ablation more intuitively.

From the results, mostly negative mean elevation changes (<−0.8 m) are recorded in the
study area with a small part of region having positive values at lower glacier elevations
(Figure 8a). In many regions, most glacier elevation changes are negative throughout all
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altitudes, indicating that the glacier is thinning and downwasting, as small and fragmented
glaciers are completely melting. In addition, the accumulation area is much smaller than
the ablation area. Only a small portion of the glacier elevation changes in the accumulation
area formed by the transportation of glacial meltwater are positive (>0.4 m).

From the results, we observed the region that has the largest melting area and
the melting volume in the study area. It was showed that the largest ablation area
is approximately 15.6 km2 and the largest ablation volume is approximately 21.2 km3

(Figure 8b,c). The possible reason is that the glaciers shrank drastically during the research
period and there were many small ice bucket glaciers located in valleys and hanging
glaciers on steep mountain slopes in this largest ablation area, especially hanging glaciers
with short ice tongues and thin thicknesses from a few meters to tens of meters, which are
vulnerable to regional climate change. With increasing ice temperature, the number of ice
fissures increases, glacier fragmentation increases, and the melting surface increases.

We have obtained relevant records on the glacier changes according to related books
and references [49–52]. For example, Schiefer, E. [49] quantified the changes in glacier
volume in British Columbia, Canada for the period 1985-1999 and investigated regional
glacier thinning rates. Tak, S. [50] estimated the surface mass loss in Parvati glacier
using 19 years of satellite images. Romshoo, S.A. [52] observed glacier recession in the
Kashmir Himalaya in India from 1980 to 2018 and the observed glacier loss is higher
(0.77 ± 0.31 km2 a−1) compared with the other Himalayan regions. According to related
references, the results of glacial changes, which include glacier melting area, elevation
change, and volume variation are all within a realistic and reasonable range. Related
research can validate the rationality and accuracy of our investigation results.

In regions with larger area and volume of glacier melting, it is necessary to obtain
the risk assessment of debris flow caused by a large amount of glacier melt water will flow
into the river course to cause changes in surface run-off or form dammed lakes, especially
with conditions of torrential rains and steep terrain. The observation of glacier changes
in the entire study area was promoted to obtain the distribution of glaciers and glacier
ablation in the target basins, which conduced to analysis the type determination and
mechanism analysis of glacial debris flow, and facilitates the improvement of the accuracy
of debris flow susceptibility analysis.

3.2. The Influence on the Glacier Shrinkage and Downwasting

The altitude of the glacier has a substantial influence on the retreat and melting of the
glacier. The high temperature at low altitude caused glacier to recede rapidly [53,54]. Through
glacier classification based on the main altitude of the glaciers, we observed the altitudinal
impact on glacier ablation. The result is illustrated in Figure 9. It was observed that
the main area of glacial melting was found at altitudes varying between 3600∼4600 m
during the study period. The highest ablation area of approximately 14.80 km2 and greatest
volume of approximately 21.80 km3 were witnessed in the glaciers situated between 4000
and 4200 m altitude, whereas the lowest ablation area of approximately 0.03 km2 and lowest
volume of approximately 0.04 km3 were observed in the glaciers situated above 4800 m
altitude. The reason for the location of highest ablation region may be that more glaciers melt
because there are many small glaciers, such as hanging glaciers, in this altitude range. When
located above a certain altitude, glaciers rarely melt due to low temperature and precipitation
inputs. In general, the altitudinal influences on the changes in volume and area are basically
the same in high-altitude areas where glaciers melt. When the average altitude of the glacier
distribution area is higher than 4800 m, the susceptibility of debris flow can be analyzed
temporarily without considering the influence of glacier melting.
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Figure 8. The changes in glacier ablation zone in the study area, 2000-2015. ((a) The elevation values
are presented according to the color, from blue to red; (b) The area values are presented according to
the size of the circle, units with glacier area < 0.05 km2 are not displayed; (c) The volume values are
presented according to the height of column, units with glacier volume < 0.1 km3 are not displayed).
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Figure 9. The influence of different altitudinal distribution on glacier ablation from 2000 to 2015
in the study area.

This aspect also has an important influence on glacier ablation. Glacial ablation is
more heavily focused on southern aspects caused by the high intensity and long duration
of solar radiation [55]. However, it was observed that north-oriented glaciers melted more
than the south-oriented glaciers from 2000 to 2015 (Figure 10). The result is illustrated
in Table 3, and the reason for the analysis of this result may be the fragmented glaciers
distributed in the north-facing direction.

Table 3. Glacier ablation in different aspects in the study area.

Aspect Range (◦) Glacier Ablation Area
(km2)

Glacier Ablation Volume
(km3)

N 0∼22.5 (337.5∼360) 13.7 10.0
NE 22.5∼112.5 7.20 8.9
E 67.5∼112.5 3.0 3.8

SE 112.5∼157.5 3.2 4.0
S 157.5∼202.5 2.9 4.4

SW 202.5∼247.5 3.8 5.6
W 247.5∼292.5 5.8 9.4

NW 292.5∼337.5 10.2 15.7

According to the glacier changes in various slope directions in the study area from
2000 to 2015, glacier ablation regions were mainly distributed on the north slope, west
slope, northeast slope, and northwest slope. The glacier melting areas to the north and
northwest melted highly, the west and northeast slopes were in the middle, and the glaciers
on the south, southwest, east and southeast slopes melted less.
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Figure 10. The influence of aspect on glacier ablation from 2000 to 2015 in the study area.

3.3. Susceptibility Analysis of Glacier Debris Flow

Based on the calculated changes in ablation area and elevation, it is easy to extract
the ablation volume in different watersheds, as illustrated in Table 4. Through our standard
of dividing the ablation volume level, it is converted into the corresponding correction coefficient.

After calculating each elevation class area of each sub-basin by reclassifying the DEM
files of the sub-watershed at 100 m intervals, we needed to process the data in Excel. We
then fit the data by using a cubic polynomial and obtained the Strahler area-elevation
curve and fitting function. Finally, the results of the Strahler area-elevation integral value
and geomorphic information entropy are obtained through this process. We directly
quoted the results of related studies. The range of the GIE values is from 0.09 to 0.37.
The susceptibility level of each watershed based on the glacier coverage is illustrated
in Table 5. The range of the modified GIE values is from 0.0896 to 0.333. By multiplying
by the correction factor based on glacier ablation volume, the susceptibility level of each
watershed by our division criteria is illustrated in Table 6. The range of the modified GIE
values is from 0.0855 to 0.296.
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Table 4. Statistics of basins in G217 gullies (2000–2015).

Basin
Number

Maximum
Elevation

Difference (m)

Basin Area
(km2)

Glacier Area
(km2)

Glacier
Coverage

Rate

Glacier
Ablation

Area (km2)

Mean
Elevation
Variation

(m)

Glacier
Ablation
Volume
(km3)

K631 2350 5.03 0.26 0.05 0.25 −1.82 0.46
K632 2224 3.16 0.09 0.02 0.01 −2.46 0.03
K636 2255 3.68 0.13 0.04 0.24 −3.95 0.99
K637 2205 4.82 0.06 0.01 0.59 −2.72 1.62

K638+780 1817 2.22 0.24 0.1 0.18 −2.27 0.39
K640+120 2190 13.29 0.39 0.03 0.70 −0.93 0.61
K642+840 1813 12.454 1.3 0.1 0.69 −1.60 1.10
K643+930 1624 12.21 2.47 0.2 0.42 −1.75 0.71

K634 2042 6.29 0 0 0.069 −3.05 0.22
K634+300 1491 1.93 0 0 0.16 −3.80 0.62
K641+980 1473 1.59 0.007 0.004 0.03 −3.28 0.09
K643+270 1961 4.72 0.14 0.03 0.15 −2.02 0.29
K644+800 1874 8.33 0.99 0.12 0.28 −1.14 0.30

Table 5. Susceptibility assessment results of debris flow in G217 gullies based on glacier coverage
(The degrees of susceptibility are in 4 levels: very high (VH), high (H), moderate (M), low (L)).

Basin
Number H Glacier

Coverage Rate Hg Development Assessment

K631 0.19 0.05 0.1805 Mature but
bias infancy H

K632 0.21 0.02 0.2058 Mature M

K636 0.16 0.04 0.1536 Mature but
bias infancy H

K637 0.24 0.01 0.2376 Mature M

K638+780 0.21 0.1 0.189 Mature but
bias infancy H

K640+120 0.21 0.03 0.2037 Mature M

K642+840 0.37 0.1 0.333 Mature but
bias old stage L

K643+930 0.37 0.2 0.296 Mature M
K634 0.21 0 0.21 Mature M

K634+300 0.19 0 0.19 Mature but
bias infancy H

K641+980 0.09 0.004 0.0896 Infancy VH

K643+270 0.19 0.03 0.1843 Mature but
bias infancy H

K644+800 0.20 0.12 0.176 Mature but
bias infancy H

Based on the GIE method with the consideration of glacier coverage, the susceptibility
classification result is illustrated in Figure 11a. The results showed that in the 13 watersheds,
1 sub-watershed exhibited infancy development and very high susceptibility; 5 sub-watersheds
exhibited mature development but biased infancy development and high susceptibility;
6 sub-watersheds exhibited mature development and moderate susceptibility and
1 sub-watershed exhibited low susceptibility.

Based on the GIE method with the consideration of the glacier ablation volume, the
susceptibility classification result is illustrated in Figure 11b. Specifically, in the 13 watersheds,
3 sub-watershed exhibited infancy development and very high susceptibility; 8 sub-watersheds
exhibited mature development but biased infancy development and high susceptibility; and
2 sub-watersheds exhibited mature development and moderate susceptibility. The watershed
area of very high susceptibility covers approximately 10.09 km2, which accounts for 12.65%
of the total basin area. The watershed area of high susceptibility covers approximately 44.97 km2,
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which accounts for 56.4% of the total basin area. The watershed area of moderate susceptibility
covers approximately 24.66 km2, which accounts for 30.9% of the total basin area.

Table 6. Susceptibility assessment results of debris flow in G217 gullies based on glacier ablation
volume (The degrees of susceptibility are in 3 levels: very high (VH), high (H), moderate (M)).

Basin Number H Correction Factor Hg Development Assessment

K631 0.19 0.85 0.1615 Mature but
bias infancy H

K632 0.21 0.95 0.1995 Mature but
bias infancy H

K636 0.16 0.65 0.104 Infancy VH
K637 0.24 0.45 0.108 Infancy VH

K638+780 0.21 0.85 0.1785 Mature but
bias infancy H

K640+120 0.21 0.75 0.1575 Mature but
bias infancy H

K642+840 0.37 0.6 0.222 Mature M
K643+930 0.37 0.8 0.296 Mature M

K634 0.21 0.9 0.189 Mature but
bias infancy H

K634+300 0.19 0.75 0.1425 Mature but
bias infancy H

K641+980 0.09 0.95 0.0855 Infancy VH

K643+270 0.19 0.9 0.171 Mature but
bias infancy H

K644+800 0.20 0.9 0.18 Mature but
bias infancy H

Comparative results of the two susceptibility maps show that several sub-watersheds
move from moderate susceptibility to very high susceptibility. As illustrated in Figure 12
(e.g., K636 gully), the reason for the change of the susceptibility may be that the more
glacier terminus is distributed in the K636 gully. When Moraine deposits, caused by glacier
melting, provide abundant provenance for debris flow motion, and glacier melting water
and rainwater become the source of water for debris flow simultaneously. The former
susceptibility analysis only considers geomorphic features such as transport distance and
elevation while not consider the impact of the glacier changes. After considering the factor
of glacier melting, the susceptibility level of its sub-watersheds increased.
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Figure 11. Susceptibility mapping of glacial debris flow in G217 gullies based on two different
methods. (a) GIE method; (b) an improved GIE method with correction factor.
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Figure 12. Section map of K636 gully.

Based on the field survey, combined with related work and statistics from highway
maintenance departments, we collected the data from a total of 15 glacial debris flow
disaster events in G217 gullies in the basin from 2001 to 2019, of which 2 were large-scale
debris flows, 4 were medium-scale debris flows, and 9 were small-scale debris flows.
It shows that debris flows events frequently occur in the region, which could damage
major projects, traffic corridors, and urban construction. The statistics on the occurrence
of glacial debris flows events based on the maximum scale in the region since 2001 are listed
in Table 7. The distribution of glacial debris flow events in the G217 gullies is illustrated
in Figure 13. The susceptibility analysis we proposed by investigating the changes in glacier
ablation based on remote sensing data can improve the accuracy that risk assessment of the
K636 and K637 watersheds deemed to be at risk. According to the actual number and
scale of debris flows from some historical information (Figure 13), it can be judged that
the susceptibility of the improved GIE method is more accurate.

Table 7. Distributions of glacier debris flows in G217 gullies (For the occurrence of debris flows
in different years, statistics are based on the maximum scale).

Number Distribution Type Scale Assessment

N1 K631 Valley pattern Large H
N2 K632 Valley pattern Small H
N3 K634 Valley pattern Medium H
N4 K634+300 Valley pattern Small H
N5 K636 Valley pattern Large VH
N6 K637 Valley pattern Medium VH
N7 K638+780 Valley pattern Small H
N8 K640+120 Valley pattern Medium H
N9 K641+980 Valley pattern Small VH

N10 K642+840 Valley pattern Small M
N11 K643+270 Valley pattern Small H
N12 K643+930 Valley pattern Small M
N13 K644+800 Valley pattern Small H



Sustainability 2021, 13, 7196 20 of 23

4
3

°5
2
'N

4
3
°4

8
'N

4
3
°4

4
'N

84°22'E 84°26'E 84°32'E

0 2.5 5 Kilometers

Large-scale Debris Flow Event

Medium-scale Debris Flow Event

Small-scale Debris Flow Event

84°24'E 84°28'E

4
3

°5
0

'N
4

3
°4

6
'N

Debris Flow Disaster Zone

VH

VH

Debris Flow Disaster Zone

Figure 13. Distribution of glacial debris flow events in the G217 gullies, near Duku highway.

4. Discussion

In this paper, we used the improved GIE method to evaluate the susceptibility
of glacier debris flows in high-mountain areas, which makes our susceptibility assessment
more accurate and realistic. There are two specific contributions in our work. First, we
used remote sensing data for glacier observation and change monitoring analysis. Remote
sensing data with large scale coverage and real-time acquisition is more convenient and
reliable in glacier mapping. Second, we used a correction coefficient based on glacier
ablation volume to evaluate susceptibility with our modified division criteria. The results
presented in this paper are more accurate than traditional GIE method.

However, there are several shortcomings in this paper. First, the major important
factor in the susceptibility analysis and prediction of glacier debris flows is precipitation,
such as average daily precipitation. We focused on changes in glaciers without considering
precipitation. In this study, the volume of glacier melting over a period of time is selected
instead of precipitation for the susceptibility of glacial debris flows. Second, the glaciers
exhibit dynamic changes, i.e., melting while accumulating. The volume lost through glacier
ablation does not completely turn into water, and may lead to the creation of new glaciers
in the accumulation area, but for the prediction of geological disasters, we simulated
the worst case in which all the melting of the glacier becomes the amount of water that
triggers the occurrence of mudslides in the rainy season. Our presented work in this paper
can be applied to glacier disasters in high-altitude areas.
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In the future, we will consider some field campaigns in order to validate the data
obtained. Our future work will focus on field survey records to improve the accuracy
of our outcomes. The specific work is to design investigation and verification routes
based on the topographical conditions, image interpretation, etc., we will discuss how to
apply glacier changes as an indicator to other methods of debris flow susceptibility, such
as machine learning methods. The changes in glaciers in high-mountain regions cause
many geo-hazards. For example, floods are caused by the massive melting of glaciers and
snow. Meltwater with a lot of sediment can block ditches and bridges, even silt roads.
The weathered gravel begins to slide down along with the melting of the glacier covering
its surface to trigger landslide activities. Therefore, our work will focus on how to use
glaciology and geomorphology systematically to obtain more accurate prediction results
of glacial disasters.

5. Conclusions

In this paper, by investigating the changes in glacier ablation and distribution based
on remote sensing applications, we proposed analyzing the susceptibility for glacial debris
flow in high-altitude regions. We presented a case study evaluating the susceptibility of G217
gullies in Tien Shan Mountains area. Through the comparison result of mapping susceptibility
classification of the G217 gullies, the investigation results indicate that the improved GIE method
with correction coefficient based on the glacier ablation volume is indeed better than the previous
method, and combining glacier distribution and changes to the prediction of debris flow can
improve the accuracy. In the future, we will develop machine learning method for analyzing
debris flow susceptibility based on glacier changes, and explore a new prediction method
of geo-hazards based on glaciology and geomorphology, especially that of glacier dynamics.
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