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Abstract: With the change in energy utilization, a fast and accurate evaluation method is of great
importance to promote green campus sustainability. In order to improve the feasibility and timeliness
of evaluation, an intelligent evaluation model based on dynamic Bayesian inference and adaptive
network fuzzy inference system (DBN-ANFIS) is proposed. Firstly, from the perspective of sustain-
ability and considering the changes in energy utilization, a green campus evaluation index system is
constructed from four levels: campus resource utilization, campus environment creation, campus
usage management, and campus eco-efficiency. On this basis, the parameters of the adaptive network
fuzzy inference system (ANFIS) are optimized based on dynamic Bayesian inference (DBN), so as
to apply the modified model to the green campus evaluation work of the Spark big data operation
platform. Finally, the scientificity of the model proposed in this paper is verified through example
analysis, which is conducive to the real-time and effective evaluation of green campus sustainability
and provides scientific and rational decision support to improve its management.

Keywords: green campus evaluation; sustainable development; dynamic Bayesian inference; adap-
tive network fuzzy inference system

1. Introduction

The field of sustainability research continues to expand, from the natural environment
to the economic, social, and educational fields [1]. The sustainability of campuses, as
an important part of society, is particularly important. However, most schools currently
face problems such as high resource consumption, high energy consumption levels, and
significant negative impacts on the environment [2]. In China, for example, the average
water consumption per student and the average energy consumption are much higher than
the per capita level in China, and nearly 15% of the total urban domestic water consumption
is consumed in primary and secondary schools, while the total energy consumption of
campuses accounts for about 5% of the total national building energy consumption, and the
proportion is gradually increasing [3]. The green campus, as a necessary way to solve this
problem, has become an important issue in the field of sustainable development [4]. There
are still controversies about what issues should be addressed for a campus to be considered
as a sustainable green campus, and the definition of the sustainable status of a green campus
and the evaluation criteria for campus sustainability are particularly important [5]. The
current green campus evaluation system still suffers from unclear evaluation indexes and
lack of authoritative criteria, mostly favors qualitative evaluation, and lacks quantitative
evaluation. This paper takes the green campus of primary and secondary schools as the
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research object and constructs an intelligent evaluation model with the problems they
have in sustainable development as the starting point. Thus, quantitative analysis and
evaluation are completed.

The sustainability of campus as a social subsystem and its sustainability evaluation
are crucial to advance the sustainability of the whole society [6]. For example, leadership in
energy and environmental design (LEED), developed by the United States Green Building
Council (USGBC), is an evaluation standard based on LEED for New Construction, which
adds classroom instruction, master planning, mold growth prevention, and environmental
assessment of campus sites and is developed specifically for schools [7]. The evaluation
criteria include sustainable site planning, water efficiency, natural environment and energy,
materials and resources, indoor environmental quality, design innovation and area pref-
erence, integrated design, selection, and transportation. The evaluation is based on the
premise of the whole life cycle of the building, with the goal of improving the whole process
from the overall planning and design of the building and environment, construction, and
operation management [8]. The German Good Company launched the Sustainable Path-
ways Toolkit, which provides a comprehensive evaluation of multiple dimensions such as
energy, water, resource recycling, waste, electronics, paper, landscape maintenance, human
retrofitting, environmental safety, and indoor air quality, with the disadvantage that it lacks
a scoring system, makes intercampus comparisons difficult, and the evaluation indicators
are comprehensive but cumbersome to classify [9]. The evaluation tool, the Sustainability
Evaluation Questionnaire, introduced by the University Leaders for a Sustainable Future
(ULSF), specifically covers environmental education curriculum, academic research results,
operation and management, school staff training, social services, student participation,
environmental advocacy, responsibility, and planning for sustainable development, but
the evaluation results can only reflect the relative sustainability of the school, not the real
campus level of green campus construction [10]. The Green Campus Evaluation Crite-
ria promulgated by the China Green Building Council in 2013 includes three types of
evaluation indicators: control items, general items, and excellent items, which evaluate
green campuses in seven aspects: land saving, energy, water resources, material resources,
management implementation, education, and publicity. However, there are problems such
as more indicators and difficulty in implementing the evaluation [11]. Through the above
comparison, it can be found that the current green campus evaluation methods are biased
toward qualitative evaluation and descriptive evaluation, make interschool comparisons
difficult, and are limited in applicability and coverage. Therefore, this paper intends to
draw on the existing evaluation system, construct a green campus evaluation index system
under the perspective of sustainable development, and conduct evaluation research using
quantitative methods.

In addition, in the current research work on sustainability evaluation, the evaluation
methods used are mainly hierarchical analysis [12], fuzzy comprehensive evaluation [13],
gray evaluation method [14], ideal solution method [15], etc. These methods are mostly
influenced by subjective factors and cannot fully guarantee the objectivity of the green cam-
pus sustainability assessment process and results [16]. The objective evaluation methods
also only consider the degree of variation of indicators in the overall index and the degree
of influence on other indicators and fail to assign different weights to different assessment
objects [17]. Therefore, this paper introduces the self-learning comprehensive evaluation
method, which is the application of self-learning techniques in evaluation. Its advantages
are that it does not require human intervention, can completely exclude human factors,
and has a strong learning ability to meet the self-adaptability of the evaluated object, thus
improving the relevance of the evaluation [18]. ANFIS based on DBN not only has the
adaptive and learning ability of neural networks, but also makes the nodes and weights
of neural networks have a clear physical meaning [19]. DBN bases statistical inference
on the posterior distribution, and using dynamic Bayesian inference for ANFIS can focus
on the probability distribution of the entire parameter space, adaptively adjust the size
of the regularization parameters during network training, and make the regularization
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parameters optimal [20]. It also theoretically increases the robustness and generalization
ability of ANFIS networks, making the model more accurate [21].

Based on the above, this paper attempts to construct a complete scientific evaluation
index system from the perspective of sustainable development and adopts the ANFIS
improved by DBN to evaluate the green campus. The remaining parts of the article are
arranged as follows: Section 2 designs the green campus evaluation index system from the
perspective of sustainable development, which contains four dimensions: campus resource
utilization, campus environment creation, campus usage management, and campus eco-
efficiency. Section 3 develops an intelligent evaluation method based on ANFIS, and
the parameters of the ANFIS model are optimized based on DBN, so as to establish an
intelligent evaluation model based on DBN-ANFIS and apply it to the evaluation of
green campus with the Spark big data running platform. Section 4 selects the calculation
examples to verify the accuracy and validity of the proposed model. Section 5 summarizes
the research results of the paper.

2. Evaluation Index System Construction

The green campus evaluation index system from the perspective of sustainable de-
velopment is based on the existing green campus evaluation index system and establishes
a relatively perfect evaluation mechanism for the subsequent sustainable development
of green campuses from different starting points. The green campus evaluation index
system in this paper is based on the theory of sustainable development, combined with
the contents of other relevant advanced evaluation systems [22–24], and at the same time,
the problems in the current situation of sustainable development of green campus are
considered, and the four criteria level evaluation indexes about green campus evaluation
from the perspective of sustainable development are summarized and organized. The
current paper will introduce the evaluation indexes of each tier in a more detailed way.

2.1. Campus Resource Utilization Indicators

The campus resource utilization index, as a guideline layer, is subdivided into three
components: natural resource utilization, energy utilization, and material utilization, and
the subdivided indexes are shown in Figure 1. The natural resource utilization is divided
into land resource utilization and water resource utilization; energy utilization is divided
into building energy saving, equipment energy saving, and renewable energy utilization;
material utilization is divided into decoration material utilization and campus activity
material use.

In the process of campus design, the utilization of land resources, including above-
and belowground parts, is determined according to relevant policies and laws. The basic
economic indicators of the project site have been determined, mainly reflected in the size
of above- and belowground floor area, overall volume ratio, number of parking spaces,
building density, green space ratio, etc. The use of water resources accounts for a large
part of the later operation in the construction process of the campus project. In the design
evaluation, it is more about planning the scope and source of water use, water pipelines and
water equipment, etc. In the campus operation, the benefit of water resources is the saving
and reasonable redevelopment of water resources after the completion of the construction,
which involves the evaluation of the effect of water equipment, the reasonable use of
nonmunicipal water, mainly the long-term use of water-saving appliances, the renewal of
irrigation of campus greenery, the use of rainwater, etc.
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Figure 1. Campus resource utilization indicators.

Energy utilization is a field involved in all phases of campus projects in planning,
design, construction, and operation, and it has an important impact on the sustainable
development of green campuses. In the planning and design stage, according to the relevant
requirements and regulations of different regions, different degrees of energy-saving design
are required; for example, some regions require the comprehensive energy-saving index
of public buildings to reach 65%, and the design of renewable energy sources such as
solar energy and air energy as well as water-saving equipment and energy-saving lamps
and lanterns in the same regions are also reflected in the green building design scheme.
The three indexes of building energy saving, equipment energy saving and renewable
energy use are all dynamically reflected in the green campus operation. The material
utilization is mainly targeted at the comprehensive evaluation of the safety, durability, and
environmental protection of the decoration materials and campus activity materials used
in the sustainable development of the campus.

2.2. Campus Environment Creation Indicators

The campus environment creation index, as a guideline layer, is refined into two
pieces of content: indoor environmental quality and outdoor environmental quality, and
the refined index is shown in Figure 2. The indoor environment quality is divided into
indoor light environment quality, indoor thermal comfort, and indoor air quality; the
outdoor environment quality is divided into outdoor sound environment quality, green
environment quality, and cleaning quality.
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Figure 2. Campus environment creation indicators.

The campus environment is a dialogue between the building and the environment
and creating a beautiful campus environment is one of the foundations for the sustainable
development of green campuses. The quality of the indoor environment refers to the
evaluation mainly for the teaching place and the campus office interior. Indoor light-
environment-related content such as visual field visibility, glare control, natural lighting,
and other related influencing factors have targeted scoring items and requirements. The
main organ by which human beings obtain information is the eyes, and the efficiency of
visual information transmission will be restricted by the light environment, so the quality of
the indoor light environment is one of the most important influencing factors in the process
of teaching activities. The indoor thermal comfort index is proposed as a comprehensive
evaluation for the warmth and comfort of campus users. The indoor air quality index is a
comprehensive evaluation for the organization of indoor natural ventilation airflow, indoor
ventilation efficiency, air pollutants in the main functional rooms, etc. It is a dynamic
impact index in the process of sustainable development of a green campus and is closely
related to campus users. The outdoor sound environment is more important than the
outdoor wind environment and outdoor thermal environment in the campus operation
stage, so it is separately evaluated as one of the subindicators. Campus green environment
quality is a comprehensive evaluation index of campus greenery maintenance, public green
space maintenance, and greenery plant configuration. Campus greening can provide a
good environment for campus users to study, live, and work. At the same time, cultivating
rich plant configurations can also enrich students’ scientific knowledge and improve their
ability to understand nature.

Campus cleaning is a daily part of campus operation. The cleaning of campus build-
ings, the cleaning of campus roads and squares, and the collection and disposal of daily
garbage are all important influencing factors for the creation of the entire campus environ-
ment and the sustainable development of a green campus and therefore serve as one of the
subindicators for the creation of the campus environment.

2.3. Campus Usage Management Indicators

As a guideline layer, the campus usage management indexes are divided into three
parts: educational facilities usage management, building infrastructure usage management,
and campus property and personnel management, as shown in Figure 3. The educational
facilities usage management is divided into the use of teaching facilities and intelligent
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systems. The use management of building infrastructure is divided into the use of infras-
tructure in the main functional areas of the campus; the use of infrastructure in the other
functional areas of the campus; and the use of safety, traffic, and fire safety facilities. The
management of campus property and personnel is divided into the qualification of fire
management and the management system of the school.

Figure 3. Campus usage management indicators.

The main functional area of campus daily operation is the teaching area, and the use
of teaching facilities is the core of the use management of education-type facilities. In
the campus design specifications, different functional classrooms have different teaching
facilities requirements. In addition to basic teaching facilities such as blackboard lecterns,
broadcasting speakers, and lockers, general classrooms are currently required to have
multimedia projection equipment, display gardens, and other facilities. Other classrooms
such as science experiments, art, music, dance, and other classrooms have different teach-
ing facilities requirements according to the function. Configuration content, audition
equipment dark line arrangement, the complete function of the facilities, frequency of
use, etc. are the influencing factors of the use of teaching facilities indicators. The use
evaluation index of teaching facilities is a comprehensive evaluation of the basic equipment
and facilities of the main teaching rooms. The intelligent system utilization index is based
on the background of the current mobile Internet environment and the current information
environment of primary and secondary schools. At present, the Internet has been closely
integrated with the whole society, and the application of the Internet on the campus has
become more and more extensive. The use of smartphones and smartwatches by primary
and secondary school students has become the norm, and the trend of using intelligent
system devices such as open monitoring of primary and secondary school classrooms,
Internet distance learning, and body sensing monitoring of primary and secondary school
students combined with 5G Internet of Things is gradually emerging. Therefore, the use
of the intelligent system as one of the operation evaluation indexes is a way to comply
with the current development of the times and an area that is not perfect in the evaluation
system of green building and green campus sustainability.
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The establishment of campus property and personnel management indicators is based
on the sustainable operation of green buildings and green campuses, and the evaluation is
made for the management mode of campus operation, which does not involve the merits
of educational outcomes for primary and secondary school students on campus. The deter-
mination of school management qualification indicators comes from the provisions in the
relevant evaluation standards, and school management is required to obtain certification of
relevant management systems and qualifications. The indicators of the school management
system and management qualification complement each other and are a comprehensive
evaluation of influencing factors such as sustainable operation management system of
green campus, training of relevant personnel in campus operation, and coordination and
management of various departments in campus operation.

2.4. Campus Eco-Efficiency Indicators

The campus eco-benefit index, as a guideline layer, is subdivided into two components:
economic and cultural benefits and social participation benefits, and the subdivided indexes
are shown in Figure 4. The economic and cultural benefits are divided into incremental
income of green campus operation and campus image and regional cultural benefits; social
participation benefits are divided into sustainable promotion of green campus and campus
renewal and social participation.

Figure 4. Campus eco-efficiency indicators.

Campus eco-efficiency indicators are evaluated in terms of both economic and cultural
and social benefits. In the evaluation of green building design, economic benefits mainly
refer to the balance between the construction cost of green building measures and the
benefits recovered later. The design and construction of green buildings have matured
in the understanding of incremental costs, but the operational incremental costs are still
vague. The incremental benefits of green campus operation are not only reflected in the
economic benefits, but also have the content of cultural benefits. As a special large public
building, the school’s image and regional mark is a signifier of different cities and regions.
Taking the economic and cultural benefit index as one of the target layers can make the
sustainable operation of a green campus more detailed.

Social participation benefit indicators mainly refer to the public benefits of participa-
tion in the whole life cycle of the green campus. Based on the original evaluation system,
the educational promotion category is reorganized and incorporated into the campus
operation evaluation system as a sustainable promotion subindex of the green campus.
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Meanwhile, the indicators of campus renewal and social participation are added. During
the whole life cycle of a green campus, campus renovation and expansion and renewal are
inevitable, and the needs of society keep changing. As a dynamic process, the sustainable
operation of a green campus can be revised and tested through this index, and public
participation can be increased to encourage the public to participate in the sustainable
operation of the green campus.

3. Green Campus Assessment Model Based on DBN-ANFIS
3.1. Dynamic Bayesian Model

Dynamic Bayesian models are probability-based, combining the original static Bayesian
structure with temporal information while forming a new stochastic model with the ability
to handle time-series data, based on Bayes’ theorem and Bayes’ formula, which reacts to
the influence of temporal factors on the probability of events [25].

The dynamic Bayesian model is an extension of the static Bayesian model in time, as
shown in Figures 5–7. Due to the addition of the time factor, the dynamic Bayesian model
has temporal characteristics in addition to the basic properties of the Bayesian model, which
makes the problem have a backward and forward continuity in the reasoning process,
and this reasoning method is then more consistent with the development of objective
things [26].

Figure 5. The Bayesian structure.

Figure 6. The dynamic Bayesian structure.
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Figure 7. The extended dynamic Bayesian structure.

Set X = {X1, X2, · · · , Xn} to be the set of attributes that change with time, Xi(t) to
denote the value of the ith attribute at moment t, and X(t) = {Xi(t), i = 1, 2, · · · , n}. In
order to be able to represent the trajectory of change in the Bayesian structure as the event
changes, a probability distribution over the random variable X[0] ∪ X[1] ∪ · · · is required,
and the entire trajectory of change satisfies the Markov chain model.

P(X[t + 1]|X[0], · · · , X[t] ) = P(X[t + 1]|X[t] ) (1)

That is, the state of the events at moment t + 1 depends only on the state at moment
t. The topology of the model, the causal relationships between variables, and the set
of variables must be the same in each time period to build a dynamic Bayesian model.
Two important parts need to be defined first, namely the prior structure and the transfer
structure.

(1) The prior structure B0 represents the distribution structure of the initial state X[0].
(2) The transfer structure B→ denotes the probability P(X[t + 1]|X(t) ) of transfer at all

times.

A dynamic Bayesian structure is defined by an infinite topology of (B0, B→) con-
forming variables X[0], · · · , X[t] at infinite time. In fact, dynamic Bayesian networks can
be obtained by reasoning over finite time intervals 0, · · · , T. At time T = 0, the parents
Xi[0] of the event attributes are those nodes B0 formulated in the prior structure; at time
T = t + 1, the parents of the event attributes Xi[t + 1] are the nodes at time T = t and
T = t + 1, thus allowing the conditional distribution of these variables to be obtained
using a similar approach. Then, given the dynamic Bayesian model, the joint probability
distribution over the variables X[0], · · · , X[t] is as follows:

P(X[0], · · · , X[t]) = P(X[0])
t−1

∏
t=0

P(X[t + 1]|X(t) ) (2)

where P(X[t + 1]|X[t] ) can be obtained computationally from the transfer structure. The
dynamic Bayesian network responds to the change of dependence between variables over
time through the topology, which can not only probabilistically model the dependence
between different characteristics of variables, but also better represent the relationship
between the characteristics of variables in time as well. In addition, arbitrarily adding or
deleting the network topology does not affect the correlation between variables, and the
network structure has strong robustness and flexibility. The dynamic Bayesian structure
uses the collected temporal information to update the topology, prior distribution, and
conditional probabilities. The inference process of this structure has successive continuity,
and the increase in temporality is more consistent with the objective world law, which
effectively reduces the uncertainty in the fusion of different levels of information.
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3.2. Adaptive Network-Based Fuzzy Inference System

ANFIS is a system that combines fuzzy inference and neural networks, which are
able to build fuzzy inference systems by adaptive modeling based on a large amount
of sample data [27]. ANFIS first assumes a parametric fuzzy structure and then uses
the data to train the fuzzy inference system (FIS), which in turn corrects the affiliation
function according to some selected error criterion. The ANFIS model is able to improve the
traditional subjective design of the graph of the affiliation function to minimize the error by
automatically adjusting the parameters of the graph of the affiliation function based on the
established fuzzy rules through the system’s own training and learning process to adapt it
to the combination of input and output relations of the model. The typical structure of the
model is shown in Figure 8.

Figure 8. The basic structure for ANFIS.

X1 and X2 are the inputs to the system and y is the output of the inference system;
both are available data pairs. Each node in the same layer of the network has a similar
function, and the output of the ith node in the first layer is denoted by O1,i, and so on.

3.3. DBN-ANFIS

Dynamic Bayesian inference uses experience and knowledge as a priori information
to make inferences in time series by combining current sample information, continuously
refining previous experience and knowledge, and correcting the previous distribution
results. Thus, the continuous correction makes it more and more accurate for parameter
estimation. The basic formula of dynamic Bayesian inference can be expressed as follows:

P(θ(t + 1)|X(t) ) =
P(X(t)/θ(t + 1))P(θ(t + 1))∫

θt

P(X(t)|θ(t) )P(θ(t))dθ
(3)

where P(θ(t + 1)|X(t) ) can be interpreted as the corrected probability value at t + 1 time,
P(θ(t)) as the cognitive probability value at t time, and P(θ(t + 1)|X(t) ) as the result of
the adjustment of P(θ(t)).

In general, a typical feedforward neural network error performance function is the
mean square error function, and here the error function is assumed to be ED.

ED =
1
N

N

∑
i=1

(ei)
2 (4)

where N is the total number of samples; ei is the error.
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In order to correct the error performance function, an additional term is added, which
includes the network power, the mean squared difference of the threshold. That is:

F = βED + αEw (5)

where α and β are the regularization parameters; Ew = 1
N

N
∑

i=1
(wi), wi are the network

weights.
The posterior distribution of α(t + 1) and β(t + 1) according to the dynamic Bayes

theorem is shown as follows:

P(α(t + 1), β(t + 1)|D(t), M(t) ) =
P(D(t)|α(t + 1), β(t + 1), M(t) )P(α(t + 1), β(t + 1)|M(t) )

P(D(t)|M(t) )
(6)

Since it is not related to the normalization factor in Equation (6), P(α(t + 1), β(t + 1)|M(t) )
is often called the significance of α(t+ 1) and β(t). Therefore, if the posterior distribution of α(t+
1) and β(t + 1) is maximized, the likelihood function P(D(t)|α(t + 1), β(t + 1), M(t + 1) )
needs to be maximized.

The dynamic Bayesian approach focuses on the probability distribution of the weights
(thresholds) over the entire weight space. If the network structure (mainly the number of
neurons in the hidden layer) is denoted by M, the posterior distribution of the weights
is P(w(t + 1)|D(t), α(t), β(t), M(t) ), according to Bayes’ theorem, if the prior distribution
P(w(t)|α(t), M(t) ) of the weights w (thresholds) is known in the absence of sample data
when the network structure has been determined and the sample data set D is available.

P(w(t + 1)|D(t), α(t), β(t), M(t) ) =
P(D(t)|w(t), β(t), M(t) )P(w(t)|α(t), M(t) )

P(D(t)|α(t), β(t), M(t) )
(7)

The prior distribution of network weights P(w(t)|α(t), M(t) ) obeys the Gaussian
distribution:

P(w(t)|α(t), M(t) ) =
1

Zw(α(t))
exp(−α(t)Ew) (8)

where Zw(α(t)) = ( 2π
α(t) )

π
2 .

The likelihood function can be written as follows:

P(D(t)|w(t), β(t), M(t) ) =
1

ZD(β(t))
exp(−β(t)ED) (9)

ZD(β(t)) =
∫ +∞

−∞
exp(−β(t)ED)dD =

(
2π

β(t)

) N
2

(10)

Then, the posterior distribution of weights P(w(t + 1)|D(t), α(t), β(t), M(t) ) can be
obtained as follows:

P(w(t + 1)|D(t), α(t), β(t), M(t) ) =
1

ZF(α(t), β(t))
exp[−F(w(t))] (11)

ZF(α(t), β(t)) =
∫ +∞

−∞
exp(−β(t)ED − α(t)Ew)dw (12)

Still using Bayesian inference to optimize the hyperparameters α(t + 1) at t + 1 time
and β(t + 1), the posterior distribution needs to be found as follows:

P(α(t + 1), β(t + 1)|D(t), M(t) ) =
P(D(t)|α(t + 1), β(t + 1), M(t + 1) )P(α(t + 1), β(t + 1)|M(t) )

P(D(t)|M(t) )
(13)

Since the normalization factor P(D(t)|M(t) ) is independent of the hyperparameters
α(t + 1) and β(t + 1), the problem of finding the maximum posterior distribution is trans-



Sustainability 2021, 13, 7653 12 of 21

formed into finding the maximum likelihood function P(D(t)|α(t + 1), β(t + 1), M(t + 1) )
and thus yields:

P(D(t)|α(t), β(t), M(t) ) =
P(D(t)|w(t), β(t), M(t) )P(w(t)|α(t), M(t) )

P(w(t)|D(t), α(t), β(t), M(t))
(14)

Bringing Equations (9), (10), and (12) into Equation (14), the following equation can be
obtained:

P(D(t)|α(t), β(t), M(t) ) =
ZF(α(t), β(t))

Zw(α(t))ZD(β(t))
(15)

Assume that the weight of F(w) when taking the minimum value is wMP and subject
F(w) to a Taylor expansion near wMP.

ZF(α(t), β(t)) ≈ (2π)
m
2 (det((∇2F(wMP))

−1
)

1
2 × exp(−F(wMP)) (16)

Bringing Equation (16) to Equation (15) and using the maximum likelihood principle,
the optimal hyperparameters of the group α(t + 1) and β(t + 1) are obtained as:

α(t + 1) =
γ

2Ew(wMP(t))
(17)

β(t + 1) =
n− γ

2ED(wMP(t))
(18)

where γ = m− 2α(t + 1)tr(∇2F(wMP(t)))
−1 is the number of effective parameters; m is

the total number of network parameters, in general; and the range of γ is [0, m].
The schematic diagram for dynamic Bayesian ANFIS is shown in Figure 9.

Figure 9. The schematic diagram for dynamic Bayesian ANFIS.

3.4. The Process of Green Campus Evaluation Model Based on DBN-ANFIS under Spark Big
Data Platform

In general, the green campus construction and operation status covariates from the
perspective of sustainable development change over time, and the index data have dynamic
changes. If the covariates with large data volume are directly input into the DBN-ANFIS
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model, it will cause problems such as slow operation efficiency of the assessment model
and inaccurate status assessment. Therefore, for the assessment work of green campus with
large data volume, the DBN-ANFIS model constructed in this paper is placed on Spark big
data platform to run [28], in order to improve the processing efficiency and model accuracy
of the data. The computational flow of the DBN-ANFIS green campus assessment model
based on the Spark big data platform is shown in Figure 10. According to Figure 10, the
general steps of the green campus assessment model using DBN-ANFIS are illustrated as
follows:

Figure 10. The process of green campus evaluation based on DBN-ANFIS.

Step 1: Parameter initialization operation. Given N sets of sample inputs{
X j

1, X j
2, · · · , X j

n

}
, j = 1, · · · , t, where n is the number of evaluation indicators, the

corresponding output for each set of samples is
{

Y j
1, Y j

2, Y j
3

}
, where Y j

1 indicates the

evaluation value of green campus, Y j
2 is the evaluation grade and Y j

2 ∈ {1, 2, 3, 4, 5} =

{HG, SG, MG, NG, LG}, and Y j
3 is the color marker and Y j

3 ∈ {1, 2, 3, 4, 5} = {g, r, p, b, o}.
Initialize the hyperparameters α = 0, β = 1; initialize the network weights according to the
prior distribution; choose Gaussian function as the affiliation function, and set the training
number as NMAX .

Step 2: The tth (initial value of t is taken as 0) sample is input to the ANFIS model layer
by layer, the network is trained to minimize the total error F(w) = βED + αEw, and the
number of valid parameters is calculated. The hyperparameters at the t time are obtained
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with Equations (7) and (8), and the network weights are updated according to the current
hyperparameters.

Step 3: The (t + 1)th sample input is fed into ANFIS layer by layer. At this moment,
it should be noted that the output of each layer neuron is not only related to the input
at the current moment, but also closely related to the output of the previous neuron of
the tth sample, namely Op,q(t + 1)→ Op−1,1:u(t) , where p is the number of layers, q is the
number of neurons in the qth layer, and u is the number of neurons in the (q − 1)th layer.
The probability P(Op,q(t + 1)

∣∣Op−1,1:u(t) ) of each neuron in each layer with the neuron
associated with the previous layer is calculated according to DBN, and the output of the
current neuron is calculated utilizing the internal activation function with the updated
weights. The hyperparameter sum is obtained and the network weights are updated.

Step 4: Determine whether the termination condition is reached. If the condition is
not reached, input the next set of samples to continue training the network in a loop. If the
termination condition is reached, the loop is jumped out and the optimal hyperparameters
are obtained.

Step 5: Bring the test data into the trained network model and obtain the corresponding
output. The evaluation level is determined according to the green campus evaluation value,
and the corresponding improvement plan is formulated and adopted.

4. Simulation Analysis

In this study, 1000 schools were selected for the validation and analysis of the DBN-
ANFIS model. Data from 850 of these schools were randomly selected as training samples,
and data from the remaining 150 schools were used as test samples. Based on the construc-
tion of the green campus sustainability evaluation index system, each index was further
analyzed and the scores corresponding to each grade of the evaluation index are shown in
Table 1. Through research and data collection in the field, the relevant data of the sample
schools were collected and organized, while 15 experts were invited to score the indicators
according to Table 1, and then these scores were summarized and averaged to obtain the
data of each indicator.

Table 1. The evaluation grade of each index.

Index Index
Number

Evaluation Grade

HG SG MG NG LG

Land resource utilization x1 (90, 100] (80, 90] (60, 80] (50, 60] [0, 50]
Water resource utilization x2 (90, 100] (80, 90] (60, 80] (50, 60] [0, 50]

Building energy saving x3 (90, 100] (80, 90] (60, 80] (50, 60] [0, 50]
Equipment energy saving x4 (90, 100] (80, 90] (60, 80] (50, 60] [0, 50]

Renewable energy utilization x5 (90, 100] (80, 90] (60, 80] (50, 60] [0, 50]
Decoration material utilization x6 (90, 100] (80, 90] (60, 80] (50, 60] [0, 50]
Campus activity material use x7 (90, 100] (80, 90] (60, 80] (50, 60] [0, 50]

Indoor light environment quality x8 (90, 100] (80, 90] (60, 80] (50, 60] [0, 50]
Indoor thermal comfort x9 (90, 100] (80, 90] (60, 80] (50, 60] [0, 50]

Indoor air quality x10 (90, 100] (80, 90] (60, 80] (50, 60] [0, 50]
Outdoor sound environment quality x11 (90, 100] (80, 90] (60, 80] (50, 60] [0, 50]
Campus green environment quality x12 (90, 100] (80, 90] (60, 80] (50, 60] [0, 50]

Campus cleaning quality x13 (90, 100] (80, 90] (60, 80] (50, 60] [0, 50]
The use of teaching facilities x14 (90, 100] (80, 90] (60, 80] (50, 60] [0, 50]

The use of intelligent systems x15 (90, 100] (80, 90] (60, 80] (50, 60] [0, 50]
The use of infrastructure in the main functional

areas of the campus x16 (90, 100] (80, 90] (60, 80] (50, 60] [0, 50]

The use of infrastructure in the other functional
areas of the campus x17 (90, 100] (80, 90] (60, 80] (50, 60] [0, 50]

The use of safety, traffic, and fire safety facilities x18 (90, 100] (80, 90] (60, 80] (50, 60] [0, 50]
The qualification of fire management x19 (90, 100] (80, 90] (60, 80] (50, 60] [0, 50]

The management system of the school x20 (90, 100] (80, 90] (60, 80] (50, 60] [0, 50]
Incremental income of green campus operation x21 (90, 100] (80, 90] (60, 80] (50, 60] [0, 50]
Campus image and regional cultural benefits x22 (90, 100] (80, 90] (60, 80] (50, 60] [0, 50]

Sustainable promotion of green campus x23 (90, 100] (80, 90] (60, 80] (50, 60] [0, 50]
Campus renewal and social participation x24 (90, 100] (80, 90] (60, 80] (50, 60] [0, 50]
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The original data were normalized and inputted into the DBN-ANFIS system with
the following normalization formula:

Xn =

∣∣∣X− Xmax+Xmin
2

∣∣∣
Xmax−Xmin

2

(19)

where Xn is the normalized data, X is the original data, Xmax is the maximum value of the
sample data, and Xmin is the minimum value of the sample data. The partially normalized
data are shown in Table 2.

Table 2. Partial standardized data for green campus assessment.

Index
Number S1 S2 S3 . . . S500 S501 S503 . . . S998 S999 S1000

x1 0.8636 0.5455 0.5000

. . .

0.6364 0.7273 0.3636

. . .

0.7727 0.3182 0.4545
x2 0.8182 0.8182 1.0000 0.2727 0.3182 0.6364 0.2273 1.0000 0.1364
x3 0.9565 0.3043 0.9130 0.5217 1.0000 1.0000 1.0000 0.5652 0.7391
x4 0.2917 0.6667 0.1250 0.2083 0.7500 0.3333 1.0000 1.0000 0.1250
x5 0.3659 0.1220 0.1707 0.5122 0.6585 0.8537 0.6585 0.5610 0.0732
x6 0.9600 0.6000 0.2000 0.5600 0.5600 1.0000 0.0400 0.2000 0.7600
x7 0.3478 1.0000 0.1739 1.0000 0.2609 0.5217 0.8696 1.0000 0.7391
x8 1.0000 0.3750 0.0833 0.0833 0.5833 1.0000 0.7500 0.5417 1.0000
x9 0.4400 1.0000 0.6000

. . .

0.8400 0.2800 0.2000

. . .

0.0800 0.0800 0.0800
x10 0.5385 0.8462 0.2821 1.0000 0.4872 0.1282 0.6410 0.5897 1.0000
x11 0.2500 0.5833 1.0000 1.0000 0.8333 0.7917 0.6250 0.9167 0.5833
x12 0.6923 0.5385 0.9487 0.4872 0.4359 0.6923 0.6410 0.2308 1.0000
x13 0.4419 0.8605 0.0698 1.0000 0.5814 0.4419 0.7209 0.2558 0.0233
x14 0.3000 0.4000 1.0000 0.5000 0.2000 0.3000 0.2500 1.0000 0.3000
x15 0.5909 0.7727 0.0909 0.7727 0.7273 0.4091 0.5455 1.0000 0.8182
x16 0.0000 1.0000 0.8800 0.6400 0.9600 1.0000 0.7600 0.6400 0.9600
x17 0.9149 1.0000 0.0213

. . .

0.5319 0.6596 0.4894

. . .

0.4894 0.9149 0.3617
x18 0.2727 0.9091 0.1818 0.3182 0.0455 1.0000 0.6364 0.4091 0.2273
x19 0.6000 0.9000 0.0500 0.8000 0.1500 1.0000 0.3000 1.0000 0.6000
x20 0.1250 0.1667 0.1667 0.7083 1.0000 0.2917 0.5000 0.7917 0.2917
x21 0.1837 0.0204 0.1429 0.9592 0.4286 0.2653 1.0000 0.2653 0.8776
x22 1.0000 1.0000 0.8298 0.7021 0.5319 0.6170 0.2766 0.9149 1.0000
x23 0.8222 0.0222 1.0000 0.6000 0.2889 1.0000 0.0222 0.1556 0.9556
x24 0.3750 0.5833 0.9583 0.2917 0.1667 0.3750 0.5417 0.1667 0.6667

According to the normalized data, the range values of both input X and output Y were
set to [0,1]. Under the premise of satisfying certain accuracy, only two fuzzy values are
taken for each input variable, the fuzzy affiliation function was set as Gaussian function,
and the set rule was 256. The error accuracy was set to φ = 0.0001, the maximum training
number was 1000, and the initialization hyperparameters were α = 0 and β = 1.

Table 3 displays the partial calculation results of the proposed model in this paper.
Owing to the limited space, Table 3 only displays the computational results of partial test
samples, and all the computational results of the test samples can be found in Section 5. It
can be seen that the recognition rate of the DBN-ANFIS model for green campus evaluation
level and color logo is 97.33%, and there are only four samples with wrong recognition,
including one HG sample, two SG samples, and one MG sample. This indicates that the
performance of the model proposed in this paper is satisfactory.
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Table 3. Partial test results of the proposed model.

Sample Actual Value
The Proposed Model

Test Value Evaluation Grade Color

1 68.58 68.70 MG
2 76.25 74.18 MG
3 97.73 99.93 HG
4 64.52 64.26 MG
5 85.85 84.39 SG
6 50.70 51.85 NG
7 87.27 87.80 SG
8 58.23 59.68 NG
9 68.02 67.32 MG

10 82.15 84.45 SG
Recognition rate 97.33%

Error rate 2.67%

5. Discussion

To verify the effectiveness and feasibility of the DBN-ANFIS model, it is compared
with the common ANFIS model and the backpropagation neural network (BPNN) model.
BPNN model is the classical artificial neural network model, so BPNN is chosen as the
comparison model in this paper. The iterative effect of different intelligent models is shown
in Figure 11. Figure 12 shows the comparison of the test results of different models with
the actual values. Figure 13 shows the relative error plot of each intelligent model. The
specific test results are given in Table 4. Due to the restricted space, Table 4 only shows the
calculation results of partial test samples, and all the calculation results of the test samples
can be observed in Figure 12.

Figure 11. The convergence curve for each model.
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Figure 12. The comparison between actual values and testing values of each model.

Figure 13. The comparison chart of relative errors of each model.
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Table 4. Test results of the three models.

Sample Actual
Value

DBN-ANFIS ANFIS BPNN
Test

Value
Evaluation

Grade Color Test
Value

Evaluation
Grade Color Test

Value
Evaluation

Grade Color

1 68.58 68.70 MG 64.97 MG 67.19 MG
2 76.25 74.18 MG 77.65 MG 82.62 SG
3 97.73 99.93 HG 94.35 HG 91.58 HG
4 64.52 64.26 MG 61.33 MG 62.64 MG
5 85.85 84.39 SG 80.73 SG 91.59 HG
6 50.70 51.85 NG 48.27 LG 49.12 LG
7 87.27 87.80 SG 85.00 SG 80.02 SG
8 58.23 59.68 NG 60.88 MG 57.65 NG
9 68.02 67.32 MG 65.58 MG 66.79 MG

10 82.15 84.45 SG 77.09 MG 74.84 MG
MAPE 2.66% 4.39% 4.67%
MSE 0.16 0.72 0.76

Recognition
rate 97.33% 91.33% 90.67%

Error rate 2.67% 8.67% 9.33%

As can be seen in Figure 11, the convergence times of DBN-ANFIS model, ANFIS
model, and BPNN model are 229, 375, and 392, respectively, and the achieved model
accuracy is 0.0769, 0.1059, and 0.1372, respectively. The convergence times and model
accuracy of the DBN-ANFIS model are better than those of the ANFIS and BPNN models,
indicating that the convergence speed and global search ability of DBN-ANFIS are better
than those of the other two models. The improvement of DBN helps to improve the global
fitting ability of the ANFIS model, which enables the algorithm to converge quickly and
achieve the expected accuracy during sample training, thus enhancing the robustness of
the ANFIS model.

From Figure 12, it can be seen that the gap between the DBN-ANFIS model and the
actual values is much smaller than that for the ANFIS model and the BPNN model, and the
degree of correlation between the test value curve and the actual value curve is higher; the
accuracy for green campus assessment is higher and closer to the reality. The gap between
the actual values and the test values of the ANFIS model is slightly smaller than that of the
BPNN model, indicating that the ANFIS model is slightly more accurate than the BPNN
model. The accuracy of the ANFIS model in green campus assessment is slightly higher
than that of the BPNN model. The relative error results shown in Figure 13 also verify the
above conclusion. As shown in Figure 13, the red relative error curve of the DBN-ANFIS
model is closer to the horizontal axis, and the relative error fluctuation is the smallest,
indicating that its overall error is smaller than the other two models. The purple relative
error curve of the ANFIS model is generally slightly lower than that of the BPNN model,
and the overall fluctuation of the curve is smaller than that of the BPNN, indicating that the
prediction accuracy of the ANFIS model is slightly higher than that of the BPNN model,
but the difference is not significant.

As shown in Table 4, the mean absolute percentage error (MAPE) of the DBN-ANFIS
model is 2.66%, which is smaller than the 4.39% and 4.67% of the ANFIS and BPNN models.
In addition, the mean square error (MSE) of DBN-ANFIS model is 0.16, which is also
smaller than that of ANFIS model (0.72) and BPNN model (0.76). The smaller MSE value
indicates that the DBN-ANFIS model has higher accuracy and stability in predicting the
output values Y1. In addition, the recognition rate of DBN-ANFIS model for green campus
evaluation level and color mark was 97.33%, and the number of misidentified samples was
4, including 1 HG sample, 2 SG samples, and 1 MG sample. The recognition rate of ANFIS
model was 91.33%, and the number of misidentified samples was 13, including 2 HG
samples, 3 SG samples, 3 MG samples, 3 NG samples, and 2 LG samples. The recognition
rate of the BPNN model was 90.67%, and the number of incorrectly identified samples
was 14, including 2 HG samples, 2 SG samples, 2 MG samples, 4 NG samples, and 3 LG
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samples. The above data show that the DBN-ANFIS model has higher recognition accuracy
than ANFIS and BPNN models for evaluation levels and color marks, especially for NG
and LG levels.

In summary, this paper optimizes the ANFIS model parameters based on DBN to
reduce the evaluation error. The experimental study verifies the validity and stability of
the developed model. Meanwhile, the intelligent evaluation method has advantages in
reducing workload, improving efficiency, and fast computation. In future research work,
choosing more intelligent models to evaluate green campuses and applying the intelligent
models constructed in this paper to the evaluation of other objects are important research
directions for us. Furthermore, the campus life cycle assessment should be considered in
the next step of the study.

6. Conclusions

This paper designs a green campus evaluation index system from the perspective
of sustainable development and proposes an evaluation model based on DBN-ANFIS.
First, the green campus evaluation index system is constructed from four dimensions of
campus resource utilization, campus environment creation, campus usage management,
and campus ecological benefits based on the perspective of sustainable development, and
the core requirements and necessary guarantees for the sustainable development of a green
campus are found. Then, this paper optimizes the parameters of the ANFIS model using
DBN to establish an intelligent evaluation model based on DBN-ANFIS, and it is applied
to the green campus evaluation work with the Spark big data operation platform to obtain
quantitative evaluation results quickly and accurately from the perspective of modern
intelligent evaluation methods. The scientificity and accuracy of the evaluation model
proposed in this paper are verified through the analysis of arithmetic cases, which shows
that the model proposed in this paper can not only reduce the subjectivity in the evaluation
process, but also facilitate a more objective and comprehensive evaluation of the target.
At the same time, it can achieve a fast and accurate evaluation. The DBN-ANFIS model
has the smallest MAPE and MSE, which indicates that the intelligent evaluation model
constructed in this paper has the strongest fitting and learning ability. The improvement
of DBN helps to improve the global fitting ability of the ANFIS model, which enables the
algorithm to converge quickly and reach the expected accuracy during sample training,
thus improving the performance of the ANFIS model.
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Abbreviations

ANFIS Adaptive network fuzzy inference system
BPNN Backpropagation neural network
DBN Dynamic Bayesian inference
FIS Fuzzy inference system
LEED Leadership in energy and environmental design
MAPE Mean absolute percentage error
MSE Mean square error
USGBC United States Green Building Council
USGBC United States Green Building Council
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