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Abstract: Vector borne diseases have been related to various environmental parameters and en-
vironmental changes like climate change, which impact their propagation in time and space. Re-
mote sensing data have been used widely for monitoring environmental conditions and changes.
We hypothesized that changes in various environmental parameters may be reflected in changes in
mosquito population size, thus impacting the temporal and spatial patterns of vector diseases. The
aim of this study is to analyze the effect of environmental variables on mosquito populations using
the remotely sensed Normalized Difference Vegetation Index (NDVI) and Land surface Temperature
(LST) obtained from Landsat 8, along with other factors, such as altitude and water covered ar-
eas surrounding the examined locations. Therefore, a Multilayer Perceptron (MLP) Artificial Neural
Network (ANN) model was developed and tested for its ability to predict mosquito populations. The
model was applied in NE Greece using mosquito population data from 17 locations where mosquito
traps were placed from June to October 2019. All performance metrics indicated a high predictive
ability of the model. LST was proved to be the factor with the highest relative importance in the
prediction of mosquito populations, whereas the developed model can predict mosquito populations
13 days ahead to allow a substantial window for appropriate control measures.

Keywords: mosquito populations; water areas; NDVI; LST; remote sensing

1. Introduction

Mosquito control programs have been applied widely in many countries with the aim
of reducing the incidence and prevalence of infections and diseases. Those programs focus
on the vectors to reduce their longevity, population density, human contact, and the inten-
sity of local malaria disease transmission at a community level. Changes in environmental
conditions are strongly linked to the distribution, transmission, intensity, and seasonality
of cases of mosquito vectored diseases such as malaria [1]. Land use changes, including
deforestation, agriculture, road construction, mining, and anthropogenic landscape frag-
mentation affect the features of the environment, such as water quality and vegetation
coverage, factors that can in their turn affect the existence of mosquitoes. Moreover, anthro-
pogenic landscape changes can decrease mosquito biodiversity and drive the proliferation
of vectors of diseases, such as malaria [2].

Previous works have incorporated Geographical Information systems (GIS) and satel-
lite remote sensing products to investigate environmental changes in relation to malaria
epidemiology in many areas around the world. For example, Trájer [3] developed a model
that predicts the most prominent increases in areas suitable for malaria in Greece. Parselia
et al. [4] used satellite-derived Earth observation data in the epidemiological modeling of
malaria, Dengue and West Nile Virus. Kazansky et al. [5] described use of a satellite-based
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environmental model to predict malaria risk and examine the barriers and opportunities for
implementing Malaria Early Warning systems enabled by satellite remote sensing. Dantur
et al. [6] examined how satellite NDVI and LST indices and other climatic factors impact
the abundance of mosquitoes in a former malaria-affected area in northwest Argentina.

Chuang et al. [7] demonstrate that environmental metrics derived from satellite passive
microwave radiometry are suitable for predicting mosquito population dynamics, and
that can improve the effectiveness of mosquito-borne-disease early warning systems.
Moreover, Pergantas et al. [8] mentioned that malaria constitutes an important cause of
human mortality and that even in countries like Greece where malaria had disappeared,
a resurgence after 2009 is observed. In that work, a model was developed that integrates
entomological, geographical, social and environmental evidence in order to guide mosquito
control efforts and apply this framework to data from an entomological survey done
in Central Greece. Their results indicated that malaria transmission risk in Greece is
potentially substantial and that specific districts such as seaside areas, lakesides and rice
field regions appear to represent potential malaria hotspots in central Greece.

In relation to the mosquitoes, it is well known that factors such as rainfall, tempera-
ture, and humidity influence malaria transmission because they affect the development
and survival of both the mosquitoes and the parasites that they harbor [9]. Moreover,
Richardson et al. [10] underlined that natural water sources, such as ponds or water-
holding containers, are preferred as larval developmental sites and are potential mosquito
breeding areas. Although there are some attempts to apply remote sensing and machine
learning techniques to model mosquito distribution and abundance, recent works indicate
the scarcity of works related to the application of remote sensing and machine learning in
epidemiologic studies [11]. In their work, scavuzzo et al. [11] used Moderate Resolution
Imaging spectroradiometer (MODIS)-derived NDVI, LST and Normalized Difference Wa-
ter Index (NDWI) data along with TRMM precipitation to model mosquito populations
in northwest Argentina using machine learning techniques. In the present work, high
resolution remotely sensed LST and NDVI data were used to develop a predictive model
for the spatial and temporal distribution of mosquito populations. Therefore, NDVI and
LST remotely sensed data acquired from Landsat 8 at a spatial resolution of 30 m and at
16-day temporal resolution were used to develop and test an MLP ANN for the prediction
of mosquito populations. The model was trained and tested with a data set comprising
mosquito populations in the prefectures of Xanthi and Drama (NE Greece) from July to
October 2019.

2. Materials and Methods
2.1. Study Area Description

The study area is located in NE Greece and focuses on the prefectures of Xanthi and
Drama. The region has diverse topography, including coastal, mountainous and lowland
areas. The broader area is mainly occupied by agricultural fields, with main crops being
cotton, wheat, sunflower, horticulture (tomato, corn, squashes, etc.) and tobacco.

Monitoring of mosquito populations was carried out at seventeen locations in Xanthi
and Drama (Figure 1).

Different land cover types are observed within the study area. For example, the
coastal sites of Ah Giannh Beach and Porto Lagos are located within a coastal wetland sys-
tem. Erasmio, Maggana and Abdhra are locations close to the coastal zone, and they
demonstrate intense agricultural activity. Paranesti corresponds to a riparian area, whereas
Kimmeria, Mavrobatos and Evmoiro are found in semi-mountainous suburban areas. Built-
up areas are the city of Drama and the industrial area of Drama. Kokkinogeia, Kalampaki,
Agios Athanasios, Diomhdeia, Kipseli and Evripedo are typical rural settlements sur-
rounded by agricultural land. Moreover, due to their mountainous terrain, some locations
exhibited sparse patches of agriculture.
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Figure 1. Study area and monitoring locations.

According to Climate Atlas of the Hellenic National Meteorological service [12], Greece
is characterized by a diverse terrain which divides the country into different climatic zones.
Thus, the main climatic zones of the study area range from hot-summer Mediterranean
climate in the coastal zones, transforming to more temperate climate types in the north.

2.2. Description of the Dataset
2.2.1. Experimental Setting
Mosquito Sampling and Identification

Adult mosquitoes were collected from the sample stations using Centers for Disease
Control (CDC) light traps baited with CO2 [13]. Traps were placed overnight and the
next morning the samples were transported immediately to the laboratory over a bed
of dry ice. Mosquito samples were stored at −80 ◦C for preservation and prior to any
DNA extraction. samples were examined over a bed of crushed ice at all times to maintain
their condition, both during sample sorting and in making species identifications. Female
mosquitoes were identified using external morphological features with a combination of the
keys of [14,15] and the online resource MosKeyTool [16]. Representatives of the Anopheles
maculipennis group cannot be distinguished morphologically among adult females [16],
and specimens were identified with Cytochrome oxidase subunit I (COI) barcoding from
an excised leg. species nomenclature follows [17] and generic abbreviations follow [18].

Mosquito DNA Barcoding

Where appropriate, DNA barcoding was done using standard COI PCR and sanger se-
quencing. Mosquitoes were homogenized and total DNA was extracted as described
previously [19]. Universal primers COI_F (5′ GGATTTGGAAATTGATTAGTTCCTT 3′)
and COI_R (5′ AAAAATTTTAATTCCAGTTGGAACAGC 3′) were used to amplify a
600 bp PCR product. The PCR reaction mixture contained 0.25x GC buffer, 1.5 mM MgCl2,
1 mM dNTPs mix, 0.2 µM of each primer and 1.5 U KAPA Taq DNA polymerase (Kapa
Biosystems). The thermal profile of the PCR included 40 cycles of denaturation at 95 ◦C
for 30 s, annealing at 50 ◦C for 45 s and elongation at 65 ◦C for 1 min, and a final elonga-
tion step at 65 ◦C for 7 min. PCR products were purified using the NucleoSpin Gel and PCR
Clean-up purification kit (Macherey-Nagel). sanger sequencing was performed on the PCR
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product and analyzed using the Barcode of Life Data system V4 platform [20], by our group
in NCBI GenBank Database (https://www.ncbi.nlm.nih.gov/nucleotide/) with accession
numbers: MT993476, MT993477, MT993478, MW008765, MT993491, MT993482, MT993495,
MT993497, MT993484, MT993490, MT993496, MW008764, MT993487, MT993488, MT993498,
MT993480, MT993486, MT993483, MT993492, MT993493, MT993494, MT993481, MT993489,
MT993485, MT993479, MT993499 (accessed on 28 May 2021)

2.2.2. Remotely Sensed Data and Environmental Datasets

NDVI is an indicator of the photosynthetic activity of plants. NDVI is used as a
proxy for suitable conditions of mosquito development because it refers to spatial and
temporal dynamics of different vegetation types that occur naturally around the areas
where immature stages are found [1].

Moreover, LST is an important climate variable for many environmental studies
because it is related to the surface energy balance and integrated thermal state of the
atmosphere. It is widely used in a variety of scientific studies, such as in the estimation of
evapotranspiration and soil moisture, the assessment of the impact of climate change, the
hydrological conditions and cycle, among many other applications [21].

According to [22], mosquitoes can develop in freshwater, polluted water, household
waste, etc. In that work it was shown that rainwater is the most preferred medium for
mosquitoes where their eggs hatched in an average time of 6 days. The second most
preferable place for egg-laying is regional water bodies (preferred over domestic waste
water), with an average hatching rate of 9 days, whereas in household waste-water, the
eggs hatch in an average of 14 days. Moreover, in water contaminated with oil, the eggs
hatch in 10–13 days. Additionally, according to [23] the mean larval development time
varies among several species of mosquitoes. For example, the larval developmental time
for An. coluzzii is 11.1 ± 0.02 days, and for An. gambiae it is 10.6 ± 0.02 days. According
to the Department of Epidemiological surveillance and Intervention, Center for Disease
Control and Prevention of Greece (KEELPNO) [24], the life cycle of a larva varies from 7 to
14 days in the water until it becomes a mosquito. Therefore, in our work we evaluated the
time series of NDVI and LST in various lags between 9–14 days to find the time lags with
the highest correlation to observed mosquito data.

To develop a model that can predict the effects of remotely sensed environmental vari-
ables on the abundance of mosquitoes, NDVI and LST indices where obtained from satellite
collections for period of 29 June 2019 to 29 september 2019. Unlike previous works, such
as [1,25,26], that mainly use moderate resolution satellite products (e.g., MODIS products),
we used high resolution remotely sensed LST and NDVI from Landsat 8 OLI collection.
This product has a spatial resolution of 30 m, and is available every 16 days.

To obtain daily values of LST and NDVI two approaches were adopted. It was
assumed that NDVI does not change dramatically during the gaps between observational
periods (e.g., 16 days) because vegetation grows gradually. Within the study period
(June–October), NDVI was produced with a linear interpolation between observational
dates, and therefore NDVI values were retrieved specifically for those dates when mosquito
samples were taken and counted. Concerning Landsat 8 LST, no ready-to-use product exists;
therefore, it was computed using the methodology described in [27,28]. Due to the fact
that the Landsat 8 acquisitions were not available for the desirable days, MODIS daytime
LST (MOD11A1v006 product) at 1 km spatial resolution was used to obtain information
on the temporal trend of LST between the Landsat 8 acquisition dates (Figure 2). Then,
the computed trends from the MODIS LST time series were transferred into the Landsat 8
derived LST. In that way, the daily temporal resolution of MODIS LST was incorporated
within the Landsat 8 derived LST, while the spatial resolution of 30 m of the Landsat 8 LST
was preserved.

https://www.ncbi.nlm.nih.gov/nucleotide/
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The altitude of each location is another environmental factor that was used in this study.
The altitude of each trap-location was measured by using a TOPCON double frequency
GPS. The maximum altitude is 153 m and the minimum is 2 m.

The influence of the amount of area covered by water surrounding each sample was
incorporated in the study area by computing the water covered area around mosquito
monitoring points. specific districts such as the seaside, lake sides and regions with rice
fields represent potential hotspots for mosquito vectors of diseases, such as malaria, in
central Greece, making an index of water area a significant metric for this study. The aim
is to find the total area of water around each location of interest. Here, we computed the
area of water within each 5 km × 5 km window surrounding the sampling locations. The
Morawitz et al. in [29] supported that NDVI values <0 represent surfaces that contain no
chlorophyll, and Jeevalakshmi et al. [30] showed that the NDVI value ranging from−0.0175
to−0.328 represent water bodies, the areas with water in this study were distinguished from
the land area using NDVI values ≤ 0. The study area is mainly covered by cultivated land,
there is no snow during summertime, and therefore, using this specific NDVI threshold
to distinguish water covered areas is a reasonable approach. However, if a longer time
period is to be used for model development, the dynamic character of water-covered
areas should be considered, and water areas should be introduced in the model as a
time series. Additionally, in snow-covered or areas with significant portions of barren or
bare soils, screening water areas using a simple NDVI threshold may introduce a source of
uncertainty. In such cases, it is recommended to apply mapping techniques to screen water
areas, like those described in [31,32]. After a water mask layer was prepared, the water
area surrounding the monitoring point was computed.

Finally, as mosquito populations are known to change over time, the Julian Date
was also used as a predictive parameter in our model. summary statistics of the data set
can be found Table 1. The whole data set is provided in the Supplementary Materials S1
accompanying the present work.

2.3. Model Development

Artificial neural networks (ANNs) models belong to the broader category of machine
learning models. They try to mimic how neurons transmit signals within the human brain,
aiming to enable computers to learn to perform certain tasks by analyzing training data sets.
ANNs are also referred to as deep learning models, a term which is used to describe it as
an approach to artificial intelligence. ANNs have been widely used in speech and image
recognition [33,34] but also in various environmental and health studies [11,35–39].

In our work, we developed, trained and applied a Multi-Layer Perceptron (MLP)
ANN to forecast mosquito populations. The data set used comprised the 17 test sites in NE
Greece (Figure 1) described in Section 2.2. A usual problem encountered in modeling and
prediction studies is the case of grouped data. In the present work there are 17 different
groups of mosquito populations corresponding to specific sites. Analysis of such data sets
often requires the examination of the correlation within each distinct group.
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Table 1. Summary statistics of the mosquito data set and the environmental variables examined.

Location Total Mosquito Number Mean LST Mean NDVI Altitude (m) Water Area km2

Kalampaki 148 302.2 0.68 65 6.02

Evripedo 216 305.0 0.45 133 7.01

Kokkinogeia 47 304.0 0.57 101 3.02

Town of Drama 19 304.7 0.62 92 1.99

Paranesti 14 306.3 0.75 118 1.70

Mavrobatos 15 308.9 0.30 79 1.85

Industrial area of Drama 39 308.8 0.53 153 2.50

Evmoiro 62 308.2 0.31 95 4.03

Kipseli 199 309.8 0.26 62 6.89

Erasmio 271 309.7 0.27 8 7.32

Maggana 1268 312.2 0.31 7 9.88

Abdhra 947 311.9 0.21 42 9.02

Ah Giannh Beach 1523 309.6 0.56 4 10.01

Porto Lagos 1967 310.5 0.23 2 11.56

Diomhdeia 145 309.2 0.42 36 5.96

Agios Athanasios 751 308.5 0.39 33 8.46

Kimmeria 22 307.8 0.24 88 2.10

The complexity of the data set, with no clear overall correlation of mosquito popula-
tions with the NDVI and LST parameters, combined with the nonlinearity of the relation-
ship between mosquito populations and altitude or water area, makes any attempt to model
the data quite challenging. In such cases, where complex environmental problems are
concerned, ANNs have proved to be robust modeling tools [11,38,39]. An ANN computes
a target variable using a set of input parameters x and a complex nonlinear mathematical
function f together with the associated noise ε:

y = f (x) + ε (1)

In the present work, the MLP ANN architecture was initially evaluated by altering the
number of hidden layers and the hidden layers nodes (or neurons) to define the optimum
architecture that results in the best performance metrics [40].

Let M be the number of input variables, then each node in the hidden layer receives
as input a weighted sum of the input variables signals (ak). In the case of K nodes in
the hidden layer, the input signal to each hidden layer node is defined by the following
equation [39]:

ak =
M

∑
i=1

w(1)
ki xi + w(1)

k0 , k = 1, . . . , K (2)

In Equation (2), w(1)
ki stands for the unknown weight between the Kth node in the

hidden layer and the ith input variable, in the first layer (superscript), and w(1)
k0 is the

unknown bias term.
A linear transfer function is then applied to transmit hidden layer signals to the next

layer [35]:

yj =
K

∑
k=1

w(2)
jk ok + w(2)

j0 (3)
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In Equation (3), the term yj is the node of the receiving layer, and w(2)
jk and w(2)

j0 the
weights and the bias term respectively. The number of output nodes will be either one
in the case when the network is used as a regression process, or more than one when the
ANN is used as a classifier.

The process for developing and testing the MLP ANN is distinguished in two phases.
The first one is the testing phase where the ANN is exposed to a portion, usually 50%
to 75% of the data set to determine an error factor. During testing the ANN learns the
underlying patterns within the training data set. The MLP ANN then back propagates
the error and adjusts the synapse weights so as to achieve a predefined accuracy. The
performance of the model is then evaluated using the testing data set through the following
performance metrics [35,39]:

Mean squared Error (MSE) which measures the distance between observed Oi and
predicted values Pi in the testing data set of size N:

MSE =
1
N

N

∑
i=1

(Pi −Oi)
2 (4)

MSE measures the global performance of a predictive model.
Scaled Root Mean squared Error (R∗):

R∗ =
RMSE

σ
=

√
1
N ∑N

i=1(Pi −Oi)
2

σo
(5)

In the above equation σo is the standard deviation of observed values.
Nash–Sutcliffe model efficiency (NSE) which ranges from −∞ to 1, [41] which mea-

sures the predictive ability of a model relative to the mean of observations:

NSE = 1− ∑N
i=1(Oi − Pi)

2

∑N
i=1
(
Oi −O

)2 (6)

where O stands for the mean value of observations. In the present work the training
data set was fixed to 75% of the whole data set and was randomly selected. The testing
data set comprises the remaining 25% of the data set. According to previous work [39,42]
a very good performance of a predictive model is found when NSE > 0.75 and R* < 0.50.
To improve the speed of convergence in the model, the input data set was scaled linearly,
to standardize the range from 0–1, prior to use in the MLP ANN [35].

Over-training of the ANN models can result in a very high performance in the training
data set and a very low performance in the testing phase, usually attributed to the complex-
ity and heterogeneity of the data set [43]. To generalize our ANN model, we performed a
k-fold cross validation exercise with k set to 100, thus repeating the training, testing and cal-
culation of the predicted error by 100 times. Then, the performance metrics were reported
in terms of mean of the 100 values resulted from the cross validation. The computational
process was performed using R, an open platform for statistical computing [44] and its
Neural net tool [45].

To investigate the relative importance of various input variables in the model, a
methodology known as the connection weight technique was applied [39,46]. Therefore,
the connection or synapse weights in the input-hidden and hidden-output layers of the
ANN are used. If M is the number of input variables and K is the number of hidden layer
nodes, then IH, a K ×M matrix is calculated with the input-hidden layer weights. Then,
HO, a vector of K length is computed with the hidden-output layers weights. Each column
of the IH matrix is multiplied element-wise with HO, giving a product matrix PK×M. The
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importance vector IV of length K is then calculated by summing across the rows of P. The
relative importance of each input variable is evaluated from IV as follows:

reli =
|IVi|

∑K
i=1|IVi|

(7)

3. Results
3.1. Parameter Estimation

A total number of 7653 mosquitoes were collected from all traps. Mosquitoes were
identified morphologically using established keys, while in cases where species share
the same morphological features, DNA barcoding identification was applied. COI barcodes
of the mosquitoes identified in this study were the same as those previously deposited
by our group in NCBI GenBank Database. Porto Lagos, Ah Giannh and Maggana in
Prefecture of Xanthi were the sites with most mosquitoes corresponding to 62.17% of the
mosquitoes in the data set, indicating the high spatial variability of mosquito populations
in various examined locations. Figure 3 shows the distribution of mosquitoes in the
monitoring stations of the study area.
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To highlight specific environmental features that impact mosquito populations in
time and space, different environmental parameters were evaluated against mosquito
populations. Time lags from 9 to 14 days prior to observation date were evaluated for LST
and NDVI time series data, and a time lag of 13 days was found to demonstrate the highest
correlation to the mosquito populations subsequently, graphs of all input variables with
the mean mosquito populations in the various classes of the independent variables were
developed. Classes provided on the x-axis of Figure 4a–e are based on the quartiles of each
independent variable. In can be seen from Figure 4a that there is an abrupt increase in mean
number of mosquitoes with an increase in the water bodies areas surrounding observation
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points. The opposite is observed in Figure 4b, where an abrupt drop in the number of
observed mosquitoes is found with an increase in altitude. Furthermore, an increase in
mosquitoes is observed with an increase in LST (Figure 4c), whereas the NDVI class of
0.27–0.39 seems to favor the development of mosquito abundance (Figure 4d). Concerning
development of mosquito populations over time, the highest values are observed during
June, decreasing then until late August, followed by a slight increase thereafter (Figure 4e)
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A correlation analysis was done to examine the relationships between the mosquito
time series data and the time-variant environmental variable of LST and NDVI. Table 2
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presents the overall and the within-group correlations coefficients of mosquito observa-
tions with LST and NDVI. The overall correlation coefficients are weak for both examined
variables, implying the absence of a clear relationship. Because the data sets are comprised
of group observations corresponding to different locations, the within-group correlation
coefficients were computed and are presented on Table 2. Within-group correlation coeffi-
cients of LST and NDVI in various time lags are provided as Supplementary Materials S2.
The analysis of within group correlation indicated high correlation coefficients (but not
always statistically significant at the level of p < 0.05) between mosquito populations and
both LST and NDVI with highest values at a lag of 13 days. This phenomenon is well
known and has been described previously in works related to group data [47,48], so it is im-
portant to decompose the overall correlation into components that measure the correlation
within the groups. This is a special case where the overall correlation coefficient can lead to
misleading conclusions regarding the nature of the underlying relationship between two
variables. Considering the complex and the heterogeneous nature of the data set shown in
Figure 3 and the underlying nonlinear relationships apparent in the data shown in Figure 4,
a machine learning model in the form of an MLP Neural Network model seems to offer a
viable alternative to traditional regression models.

Table 2. Correlation coefficient of LST and NDVI with number of mosquitoes in each location.

Locations LST NDVI

Overall 0.347 *** −0.036

Within-group correlation coefficients

Abdhra 0.655 0.976 ***

Agios Athanasios 0.773 * 0.991 ***

Ah Giannh Beach 0.843 * 0.729

Diomhdeia 0.604 0.139

Erasmio 0.332 0.358

Evmoiro 0.531 0.647

Evripedo 0.571 0.581

Industrial area of Drama 0.830 * 0.804 *

Kalampaki 0.921 ** 0.973 ***

Kimmeria 0.943 ** 0.871 *

Kipseli 0.744 0.839 *

Kokkinogeia 0.950 ** 0.946 **

Maggana 0.866 * 0.967 ***

Mavrobatos 0.937 ** 0.906 **

Paranesti 0.837 * 0.990 ***

Porto Lagos 0.704 0.899 **

Town of Drama 0.787 * 0.901 **
Significance codes: <0.001 *** 0.001 ** 0.01 *.

3.2. Model Results

The optimum model architecture was found to be that with two hidden layers with
three and two hidden nodes in the first and second hidden layer respectively. The architec-
ture of the developed model and synapse weights can be seen in Figure 5.



Sustainability 2021, 13, 7655 11 of 17

Sustainability 2021, 13, x FOR PEER REVIEW 12 of 18 
 

3.2. Model Results 
The optimum model architecture was found to be that with two hidden layers with 

three and two hidden nodes in the first and second hidden layer respectively. The 
architecture of the developed model and synapse weights can be seen in Figure 5. 

 
Figure 5. Architecture of the neural network. 

Model performance was reported as the distribution of the performance metrics in 
the 100-fold cross-validation exercise and also the mean values of the cross-validation. 
Figure 6a–c illustrates the distribution of the error in the cross-validation process in the 
form of Box plots. Mean MSE is equal to 739. Figure 6a illustrates the distribution of 
MSE in the 100-fold cross-validation exercise. Accordingly, the distribution of the scaled 
RMSE (R*) is found on Figure 6b, with a mean R* of 0.162. Distribution of the NSE is 
found on Figure 6c, with a mean NSE of 0.83 in the cross-validation process. 

 
Figure 6. Distribution of error metrics of the MLP NN model in the 100-fold cross-validation exercise: (a) MSE, (b) Scaled 
RMSE and (c) NSE. 

The model output is visualized on Figure 7, where the mean output of the 100-fold 
validation is presented versus the observed values, indicating a satisfactory performance 
in accordance with the performance metrics demonstrated in Figure 6. 

Figure 5. Architecture of the neural network.

Model performance was reported as the distribution of the performance metrics in
the 100-fold cross-validation exercise and also the mean values of the cross-validation.
Figure 6a–c illustrates the distribution of the error in the cross-validation process in the
form of Box plots. Mean MSE is equal to 739. Figure 6a illustrates the distribution of MSE
in the 100-fold cross-validation exercise. Accordingly, the distribution of the scaled RMSE
(R*) is found on Figure 6b, with a mean R* of 0.162. Distribution of the NSE is found on
Figure 6c, with a mean NSE of 0.83 in the cross-validation process.
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RMSE and (c) NSE.

The model output is visualized on Figure 7, where the mean output of the 100-fold
validation is presented versus the observed values, indicating a satisfactory performance
in accordance with the performance metrics demonstrated in Figure 6.

Concerning the analysis of the relative importance of input variables, Figure 8 shows
that the parameter with the highest importance in the model is LST with a relative weight
of 0.768, with water area being the second most important parameter in the developed
model with a relative importance of 0.131. The three remaining variables, Altitude, Julian
Date and NDVI share the remaining relative importance and seem to be far less important
in the model.
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Figure 8. Relative importance for each input variable in the MLP NN.

To demonstrate the usefulness of our model, we tested the distribution of West Nile
Virus (WNV) incidents in various municipalities within and neighboring the study area,
in relation to mean Landsat 8 derived LST in each specified municipality from 1 July to
5 September 5 2019. The reported WNV incidents were both for West Nile Neuro-invasive
Disease (WNND) and for non-WNND cases as shown on Figure 9. According to [23,24,49]
manifestations of WNV (West Nile Virus) infection range from asymptomatic infection,
WNV fever or a West Nile Neuro-invasive Disease (WNND).

The correlation of LST and WNV incidents shown Figure 9 is 0.96 for the WNF with
WNND cases and 0.77 for the WNF without WNND cases.
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4. Discussion

While in situ observations are scarce and costly to implement, remotely sensed envi-
ronmental information can be used as an alternative to predict the spatial and temporal
patterns for mosquito abundance not only as an environmental indicator, but also because it
is related to mosquito vector-borne disease transmission and prevalence. The current analy-
sis produced satisfactory results as evidenced by the performance metrics of the developed
model. A demonstration of the usefulness of such an approach is illustrated by comparing
WNV disease incidents with the spatial distribution of LST in various municipalities in
northeast Greece. Using the developed model, the mosquito populations can be predicted
13 days ahead of present, thus enabling a substantial window where preventative measures
for disease outbreaks can be enforced. Our methodology employs freely accessible and
open source data and tools. An additional advantage of our methodology is the use of NN
models which are nonparametric and are capable of simulating nonlinear relationships,
even for highly heterogeneous data sets.

Studies using remote sensing techniques have been conducted previously to link
detected larval habitats, or map vector densities and associating climate and environmental
parameters, directly to the prevalence of mosquito-borne diseases, such as malaria [26].
In our work, we used environmental information from Landsat 8, also taking advantage
of the MODIS high temporal resolution, to predict populations of mosquitoes. Analysis
of relative importance of various parameters in the NN model, indicated that LST is by
far the parameter with the highest relative importance. In a previous work on the use of
a combination of remotely sensed environmental data to model malaria vector densities
in West Africa, a negative correlation with MODIS LST was reported [26], which does not
agree with the findings of the present work. Other works in northwest Argentina report a
positive correlation between LST and specific mosquito species to explain seasonal varia-
tion in malaria outbreaks [6]. It is possible that the predictive ability of each environmental
variable is site specific but may also depend on the mosquito species found is each study.
The fact that LST proves to be the parameter with the highest relative importance does
not mean that the rest of parameters are neglected. It simply means that for mosquito
populations to grow, LST should be high enough, irrespective of the presence of other
favorable conditions. This is also proved by the strong seasonality of the phenomenon
in the study area. Climate change has been associated with the changing risk patterns
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of mosquito vector-borne diseases such as malaria [3]. A recent review investigating the
impact of climate change on mosquito borne diseases concluded that 69% of the studies
predicted an increase in mosquito related diseases with increasing temperatures [50]. It
is thus evident that mosquito populations and the related diseases are associated with
environmental/climate factors. Most of the previous work relied on moderate resolution
remotely sensed data [6,11], whereas in the present work, we exploited the high resolution
of Landsat 8 derived LST and NDVI and the high temporal resolution of MODIS LST.
Overall, the main assumptions of the paper are that the distribution of an abundance
of mosquitoes depends directly on environmental and climatic conditions and that LST,
NDVI, altitude and water area could be used to predict when peaks of mosquito-related
disease incidences, such as malaria, may occur. Further studies focusing on the effects of
environmental variables on the instances of malaria could help to predict future malaria oc-
currence along the border of Argentina and Bolivia. These studies are relevant considering
that Argentina is included in the malaria pre-elimination phase. The results that will be
obtained from future studies about the prediction of malaria occurrences can be used to
indicate whether vector Anopheles species are likely to alter their geographical range, thus
also indicating where new cases of malaria are likely to occur.

Future research efforts should focus on the abundance of specific mosquito species
and their relationship to environmental factors for longer time periods. Data availability
restricted our work to only one summer period, that of 2019, which is certainly a limitation
of the present work. However, a clear outcome is that although environmental parame-
ters certainly impact the development of mosquito populations, their actual population
development can be predicted in a timely manner by using time series of remotely sensed
information. This time window offers a substantial advantage in effecting appropriate
control measures. In general, anthropogenic variables and different land use might also
play significant roles in the development and variability of mosquito populations. Factors
involved in farming methods, such as the crop type, method of irrigation and other fac-
tors, may alter local mosquito population densities. Moreover, changes in land uses at a
local scale, such as where sample sites are situated, can increase the number of suitable
larval habitats. These issues represent a significant field of interest for future work.

5. Conclusions

In this study, we examined how mosquito population abundance is impacted by satellite-
derived NDVI and LST time series data along with other environmental factors such as
the water area surrounding the observation points and altitude. A predictive model was
created by applying a machine learning technique in the form of an MLP NN model. The
model was applied to a full set of mosquito data, for 17 locations in northeastern Greece
during the summer of 2019, and it provided a satisfactory output, indicating a strong
predictive ability. Among the examined environmental parameters, LST demonstrated the
highest relative importance and in water area the second higher importance, indicating
the strong seasonality of mosquito abundance and their relation to the presence of surface
waters. As mosquito populations are directly connected to outbreaks of diseases such as
West Nile virus and malaria, a predictive model for the spatial and temporal distribution
of mosquito populations that uses freely available environmental information is quite
attractive because it enables local authorities to adopt preventive measures to combat
the spread of vector borne diseases in a timely manner.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/su13147655/s1, Supplementary Material s1: Table S1: Time series data of mosquito popu-
lations in the study area along with environmental factors examined (LST, NDVI, Altitude, Water
area), Supplementary Material S2: Table S2_1: Correlation coefficients of LST at various time lags,
Table S2_2: Correlation coefficients of NDVI at various time lags.
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