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Abstract: Saltcedar (Tamarix chinensis) is undergoing population declination and fragmentation due
to climate change and human disturbance. The existing restoration strategies usually focus on
improving the environmental conditions based on the environment–saltcedar relationship, while
they ignore the role of spatial autocorrelation resulting from biological interaction and ecological
processes. This oversight limits the efficiency and sustainability of the restoration. Here, we explored
the spatial pattern of the saltcedar population in the Yellow River Delta, China, and its relationship
with environmental factors, incorporating spatial autocorrelation. The plant and soil parameters
were extracted by an airborne LiDAR system integrated with fixed soil environment measurements.
The environment–saltcedar relationship incorporating spatial autocorrelation was evaluated with
different regression models. Results showed that saltcedars aggregated at small scales (2–6 m),
resulting from intraspecific facilitation and wind dispersal of seeds, while intraspecific competition
was responsible for the random distribution at large scales (>10 m). The long-distance dispersal of
seeds through water explained the significant positive spatial autocorrelation of saltcedars at distances
up to 125 m. Consequently, resulting from intraspecific facilitation and seed dispersal, aggregation
distribution and positive spatial autocorrelation within the saltcedar population improved the
adaptability of saltcedar to environmental stress and thereby reduced the impact of environmental
factors on the abundance of saltcedar.

Keywords: airborne LiDAR system; plant population restoration; spatial autocorrelation; spatial
distribution pattern; Tamarix chinensis; Yellow River Delta

1. Introduction

As the dominant shrubs in saltmarsh wetlands, saltcedar (Tamarix chinensis Lour.)
populations make a valuable contribution in preventing seawater intrusion [1]. The spa-
tial distribution and ecological processes of saltcedar populations are strongly influenced
by soil moisture and salinity gradients in saltmarsh wetlands [2]. Due to the change-
able hydrological regimes resulting from climate change and human disturbance, the soil
physicochemical properties and their spatial distribution in coastal saltmarsh wetland have
changed significantly [3]. The intensified soil salinization and changes in the soil salinity
gradient cause serious degradation of saltcedars, including a reduction in abundance,
population declination, as well as fragmentation of spatial distribution patterns [4,5]. The
common methods to restore the saltcedar population include hydrological regulation,
seedling transplantation, and propagule cuttage. These measures aim to provide suitable
physicochemical environmental conditions for individual growth and population restora-
tion, while ignoring the intrinsic biological interactions and ecological processes. As a
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result, some potential limitations are gradually emerging in the sustainable restoration
efficiency [6]. Plant populations present different spatial patterns at different spatial scales
under the influence of these biological interactions and ecological processes [7]. Therefore,
the potential biological interactions and ecological process within saltcedar populations
can be explored through spatial pattern analysis, which will provide theoretical guidance
for saltcedar restoration [8–10].

At present, the existing studies on the spatial pattern and formation mechanism of
saltcedar populations usually focus on the saltcedar individuals at different age stages [11,12]
and the saltcedars in different environmental conditions (e.g., water depth, soil salin-
ity) [13,14]. Due to the land–ocean interaction, many environmental factors (e.g., soil
salinity, soil moisture, and elevation) in coastal saltmarsh wetlands present spatial gradient
distribution [15]. Saltcedars usually gather to cope with unsuitable environmental condi-
tions [16]. Closely spaced individuals reduce soil evaporation and soil salinity by providing
shading or absorbing salt from the soil surrounding their roots [17]. This means that inter-
dependent intraspecific facilitation exists among saltcedar individuals; that is, saltcedars
are spatially autocorrelated. The existence of interdependence between saltcedars violates
the assumption of variable independence in classical regression techniques or bivariate
correlation analysis, resulting in overestimation of the role of environmental factors [18–22].
The efficiency and sustainability of restoration may be limited as a result if the restoration
strategy is based on this bias. In summary, clarifying the spatial autocorrelation of saltcedar
population and its role in the environment–saltcedar relationship is a key issue to guide
the restoration and management of the saltcedar population.

Spatial autocorrelation refers to the potential interdependence of random variables
in the same distribution area. Taking values of these variables at “neighboring” locations
usually has more similarity in measures than expected for randomly associated pairs of
observations [23–25]. Such similarity can increase (positive spatial autocorrelation) or de-
crease (negative spatial autocorrelation) with decreasing geographical distance [24,26]. One
account of spatial autocorrelation within plant populations is due to the spatially structured
and autocorrelated environmental variables (temperature, rainfall, soil conditions, etc.)
related to plant distribution. Another part is due to the influence of biological processes,
such as biological diffusion and species interaction [23]. Abiotic constraints, dispersal
limitations, and biotic interactions interact together at different spatial scales and influence
the spatial pattern of a plant population [27–29]. Therefore, it is important to integrate the
spatial information into the environment–plant relationship. A common method to analyze
the environment–plant relationship, incorporating the fine-scale spatial autocorrelation, is
the use of spatial autoregressive models [30–33]. A spatial weight matrix is introduced into
the spatial autoregressive models, which explain that patterns of response variables are
related to the values in neighboring locations instead of the prediction of explanatory vari-
ables [20]. The spatial autoregressive models provide appropriate and reasonable results in
explaining the influence of environmental factors on the abundance of species, and they
show better fitness than ordinary least squares models, a common method for parameter
estimation in linear regression [25,26,31]. Comparison of different regression analyses can
clarify the role of spatial autocorrelation in the environment–saltcedar relationship and
evaluate reasonably the impact of environmental factors on the spatial distribution of the
saltcedar population.

Currently, very few studies report on the spatial scale and driving mechanism of the
spatial autocorrelation of the saltcedar population. There are limited data for analyzing
the environment–saltcedar relationship incorporating spatial autocorrelation. In this study,
we aimed to delineate the spatial autocorrelation and its role in the spatial distribution of
the saltcedar population in the Yellow River Delta, China. Plant parameters of saltcedars
and topographic data of the study area were extracted from the unmanned aerial vehi-
cles equipped with light detection and ranging (UAV-LiDAR) system. Soil moisture and
salinity were measured manually to elucidate their contribution in explaining the spatial
distribution of the saltcedar population. Firstly, spatial point pattern analysis and spa-
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tial autocorrelation analysis were both applied to characterize the spatial pattern of the
saltcedar population. Then, combined with soil environmental factors, spatial autoregres-
sive models were used to analyze the environment–saltcedar relationship incorporating
the spatial autocorrelation of saltcedars. These results were jointly used to analyze the
generation process and mechanisms driving the spatial patterns of the saltcedar population
at different spatial scales. By understanding how saltcedars distribute at different spatial
scales, it would be expected to guide the restoration of plant populations and biodiversity
conservation in coastal saltmarsh wetlands.

2. Methodology
2.1. Study Area Description

Saltcedars are mainly distributed in the Yellow River Delta, China (117◦31′–119◦18′ E,
36◦55′–38◦16′ N). The delta is flat (<15 m above sea level) and covers a large area (>5400 km2).
Saltcedars, together with other typical halophytes (e.g., Phragmites australis, Suaeda het-
eroptera, and Imperata cylindrica), form various community types. These communities are
important in wind break, dike consolidation, climate regulation, biodiversity maintenance,
and community succession in the delta areas.

Aerial surveys for areas where saltcedars were typically distributed were carried out to
obtain DEM, orthophoto, geographic coordinates, and information about plant parameters
(abundance, density, tree height, and crown diameter) during October 2018 using an UAV-
LiDAR system (Figure 1). The grid dividing method was used to divide the entire area
into 35 quadrats. Topsoil samples (~ −20 cm) were collected using a five-point sampling
method in every quadrat to measure soil water and salt content. Soil samples were dried at
60 °C until a constant mass was reached in an oven. The samples were weighed before and
after being dried. The difference in these values was used to calculate the soil moisture.
Dried soil samples were ground and passed through a 35-mesh screen (Φ = 20 cm). The
samples were then mixed within deionized water (mass ratio, soil:water = 1:5) in a 50 mL
centrifugal tube. After shaking for 0.5 h, the supernatant was left to stand for 24 h. Salinity
was then measured using an electronic meter (Bante 540-DH, Shanghai Bante Instruments
Co., Ltd., Shanghai, China) [3].

2.2. Photogrammetry Workflow

A six-rotor-wing unmanned aerial vehicle (UAV, DJI Matrice 600 pro) equipped with
a mini-LiDAR system (Genius V+Rfans, SureStar Laser Technology Co.Ltd., Beijing, China)
and a Sony (A7R) compact digital camera with a 48-megapixel image sensor was used
to collect point clouds and aerial photographs of the study area (Figure 1). The drone
was flown in automated survey mode, whereby it followed a pre-programmed global
positioning system (GPS) path in DJI GO application software, to avoid human piloting
error and to achieve a consistent forward and side overlap of ≥80% between aerial images.
The UAV was flown at 50 m altitude with a velocity of 4 m/s. In the meantime, the camera
triggered a photo every 2 s. The aerial survey generated 1177 photographs and point clouds
for the entire targeted area. We then recorded the centroid coordinates of each photograph
as x, y, and z using a novel real-time kinematic-global positioning system (RTK-GPS) with
centimeter-level relative positioning accuracy.

We checked for system error by conducting post-processing of data of position and
orientation system (POS, including differential global positioning system (DGPS) and
inertial measurement unit (IMU)) with POSPac UAV 8.2.1 software. The flight trajectories
of UAV and exterior orientation elements of photographs were calculated as well. By
combining trajectories and laser ranging data, the original point cloud data (.Las) were
obtained with UI_v3.9.3_Rfans software. Throughout the entire process, the different coor-
dinate systems (IMU coordinate system, laser scanning coordinate system, UAV coordinate
system, navigation coordinate system, and geocentric coordinate system) were unified
to the World Geodetic System-1984 (WGS-1984) coordinate system. The original point
clouds were classified automatically by TerraSolid software (TerraScan and TerraModeler
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modules) to establish DEM and contour lines of the study area by separating ground points.
This software was also used to separate different vegetation types based on tree height.
Individual plant segmentation and identification was processed by PointCloudCatalyst
software. By combining the original photos with the exterior orientation element of photos,
a digital orthophoto map (DOM) of the study area was integrated with Pix4Dmapper 2.0
software after manually removing images during takeoff and landing.
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The geographic coordinate information of saltcedars was extracted from individual
plant segmentation and identification, and was manually checked to eliminate invalid
points. Invalid points included obvious mismatches between coordinate points and plant
position in DOM, or non-target plants. Finally, 3083 effective saltcedar trees were confirmed.
To further analyze the relationship between environmental factors (soil moisture (%), soil
salinity (ppt), and ground elevation (m)) and the spatial distribution pattern of the saltcedar
population, the entire study area was split into 35 grids using ArcGIS 10.6 (see Section 2.1).
For each grid, information on saltcedars was extracted, including abundance, density (trees
per 100 m2), average tree height (m), and average crown diameter (m). The geographical
coordinates of each grid had a one-to-one correlation with the coordinates of the soil
sampling quadrats. After clipping the edge of the study area regularly, data of soil and
saltcedar features obtained in the 33 quadrats were used in the following spatial analysis.

A single-sample Kolmogorov–Smirnov test was used to test the normality of raw
data in SPSS Statistics 23.0. Logarithmic transformation was used to ensure that the data
followed a normal distribution when raw data were not normally distributed. All data
were expressed as mean ± standard error.
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2.3. Spatial Data Analysis
2.3.1. Analysis of Spatial Distribution Patterns

Second-order statistics methods (Ripley’s K function and the pair-correlation function
g(r)) were applied to analyze the spatial distribution pattern of the saltcedar population,
based on the spatial geographical coordinates of every saltcedar tree (3083 trees in total).
Ripley’s K and g(r) function were defined as:

K(r) =
A
n2

n

∑
i=1

n

∑
j=1

Ir
(
uij

)
Wij

(i 6= j) (1)

g(r) =
K′(r)
2πr

(r ≥ 0) (2)

A heterogeneous Poisson process (HPP) was adopted as a null hypothesis model
when calculating the g(r) function. Gaussian kernel function (bandwidth R = 30.00 m) was
used to estimate the intensity, and to compare patterns. We performed 199 Monte Carlo
simulations, and selected an estimate of 95% simulation envelopes. The maximum distance
was half of the shortest side of the plot (400 m), and the step length was 1 m. If the function
value calculated from the realistic population distribution data was above the envelope, it
represented an aggregated distribution of saltcedar population; if the real data fell within
the envelope, they represented a random distribution of saltcedar population; otherwise,
they represented a regular distribution. Spatial point pattern analysis was conducted in
Programita 2014 software [27,34].

2.3.2. Spatial Autocorrelation Analysis

The spatial autocorrelation index (Moran’s I) was used to evaluate the degree of
spatial correlation of the saltcedar population and environmental factors. Moran’s I reflects
the similarity of the attribute values of adjacent positions. The spatial weight matrix
was constructed based on queen contiguity (order of contiguity = 1). Global spatial
autocorrelation was used to determine whether aggregation features existed for plants in a
targeted area; however, the type and location of the spatial pattern needed to be further
analyzed by local indicators of spatial association (LISA). Global and local Moran’s I were
measured and defined, respectively, as:

I =
n

n
∑

i=1

n
∑

j=1
ωij

×

n
∑

i=1

n
∑

j=1
ωij(xi − x)

(
xj − x

)
n
∑

i=1
(xi − x)2

(3)

Ii =
n(xi − x)

n
∑

j=1,j 6=i

(
xj − x

)2

n

∑
j=1,j 6=i

ωij
(
xj − x

)2 (4)

I generally ranges between [−1 and 1]; I < 0 represents a negative autocorrelation,
I = 0 represents no correlation, and I > 0 represents a positive autocorrelation. Usually,
a significance test of Moran’s I is performed with a Z score to judge the significance of
spatial autocorrelation. When the Zscore is greater than 1.96 or less than −1.96 (a = 0.05), it
indicates a significant spatial autocorrelation; when the Zscore is in the interval [−1.96, 1.96],
it indicates an independent random distribution. Global and local spatial autocorrelation
of soil and saltcedar features in the study area were calculated with Geoda 1.16 software.

Autocorrelation coefficients were calculated separately against different distance
classes and plotted as spatial correlograms [35]. These nondirectional correlograms indi-
cated the degree of association between values of a variable at different spatial scales. The
significance of Moran’s I coefficients in correlograms was calculated by comparing them
with those obtained from the 199 Monte Carlo simulations. The significance of an entire
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correlogram was usually calculated using a Bonferroni correction [36]. Spatial correlograms
of soil and saltcedar features were calculated in PASSaGE 2.0 (PASSaGE: Pattern Analysis,
Spatial Statistics and Geographic Exegesis) [37].

2.4. Spatial Regression Analysis

The abundance of a plant is an important quantitative index to reflect the relationship
between plant distribution and environmental factors [38]. We used the abundance of
saltcedar as a dependent variable, while other variables (including soil moisture, soil
salinity, elevation, tree density, crown diameter, and tree height of saltcedars) were used as
explanatory variables. To eliminate the influence of dimensions and magnitude between
variables, all variables were standardized as zero-mean normalization in SPSS Statistics
23.0 before the regression analysis. Data standardization was calculated as x′ = x−x

σ . x is
the mean value of all sample data, and σ is the standard deviation of all sample data.

To compare the effectiveness in predicting the spatial distribution of the saltcedar
population, two spatial autoregressive models (spatial lag model (SLM) and spatial error
model (SEM)) and one classical multiple linear regression model (estimated by ordinary
least square (OLS)) were selected. SLM assumes that the spatial autocorrelation of the
response variable is caused by an inherent property, whereas SEM assumes that the au-
toregressive process is found only in the error term because of inherent or induced spatial
autocorrelation [19]. The general forms of these regression models were defined as:

YOLS = βX + η (5)

YSLM = βX + ρwY + η (6)

YSEM = βX + λwε + η (7)

where w is the weighted matrices according to the contiguity of spatial elements, ρ and λ
are the regression parameters to be estimated, β is the regression coefficient of explanatory
variables, ε is the spatially dependent error term, η ~ N (0, σ2In), η is the random error term,
σ2 is the variance of η, and I is the unit matrix. Spatial autocorrelation of the residuals of
OLS, SLM, and SEM was also tested. The goodness of fit of the regression models was
examined by R2, maximum likelihood logarithm (LIK), Akaike’s Information Criterion
(AIC), and Schwartz index (SC). Higher R2 and LIK (or lower AIC and SC) indicated
the strong explanatory ability of these models. It indicated a significant difference in the
goodness of fit between two models if the AICs between the two models differed by more
than three. Spatial regression analyses were calculated in Geoda 1.16.

3. Results
3.1. Descriptive Statistics and Spatial Distribution of Soil Properties and Saltcedar Features
3.1.1. Descriptive Statistics

The aerial survey covered an area of 33.17 ha, in which 3083 saltcedar trees were
extracted through individual plant segmentation and identification with the point clouds
obtained from the UAV-LiDAR system, with an average of 0.93 plants/100 m2. The spatial
distributions of their tree height and crown diameter are demonstrated in Figure 2. Trees
of low (<1.50 m), intermediate (1.50–2.00 m), and high (>2.00 m) height accounted for
20.82%, 50.44%, and 28.74% of all saltcedars, respectively. Trees with small (<1.00 m),
intermediate (1.00–1.60 m), and large (>1.60 m) crown diameter accounted for 25.33%,
67.27%, and 7.40% of all saltcedars, respectively. For all 3083 trees, the average tree
height and average crown diameter of saltcedars were 1.84 ± 0.01 m and 1.18 ± 0.01 m,
respectively. Average soil salinity, average soil moisture, and average ground elevation
were 1.87 ± 0.12 ppt, 21.19 ± 0.26%, and 1.23 m, respectively. Furthermore, the result of
the Kolmogorov–Smirnov test showed that the original data (soil properties and saltcedar
features) followed a normal distribution (p > 0.05). The coefficient of variation (CV) reflected
the spatial variability of soil properties and saltcedar features. The CVs of soil salinity,
density, and abundance of saltcedar (36%, 47%, and 36%, respectively) showed strong
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variability (CV > 30%). Maps of soil and saltcedar features based on the inverse distance
weighting interpolation method also demonstrated a heterogeneous spatial distribution
(Figure 3).
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ing interpolation.

3.1.2. Spatial Distribution Patterns of Saltcedars

Second-order statistics showed that Ripley’s K function described a successive random–
clustered–regular–random distribution with scale increasing. In comparison, the pair-
correlation function g(r) showed a successive regular–clustered–random distribution
(Figure 4). The spatial distribution pattern of the saltcedar population was clustered
at a distance of 2–6 m and random above 10 m. The saltcedar population presented the
strongest aggregation effect at the distance of 6 m.
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(grey interval) correspond to the 5% and 95% confidence intervals. The insert figures describe the point pattern analysis of
saltcedars at the maximum distance (400 m).

3.2. Spatial Autocorrelation Analysis of Soil and Saltcedar Variables

Both soil environmental factors and saltcedar features were significantly and positively
spatially autocorrelated (Table 1). In this study, the longest boundary of the study area
was 685 m and was divided into ten distance classes. The upper bound of each distance
class was 125, 178, 221, 256, 305, 338, 391, 443, 502, and 685 m, successively. However, due
to the large breadth of the class, the coefficients in the largest distance class were often
unreliable [35]. After removing unreliable coefficients in the largest distance class, the cor-
relograms of soil properties and saltcedar features at different distance scales showed that
spatial autocorrelation decreased with the increasing distance (Figure 5). The spatial auto-
correlation of elevation, soil salinity, and moisture all peaked in the 0–125 m distance class,
indicating a significant positive spatial autocorrelation between closer points at 0–125 m.
The spatial autocorrelation of the saltcedar population changed noticeably, especially for
the abundance of saltcedar. Overall, soil properties and the saltcedar population showed a
positive significant spatial autocorrelation up to 125 m.
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this value was often not plotted in correlogram analyses [35]. All correlograms were globally significant (p < 0.05).
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Table 1. Moran’s I and significant test of the features of soil and saltcedar (Tamarix chinensis) in the
study area.

Moran’s I Zscore p

Soil salinity 0.50 4.82 p < 0.05
Soil moisture 0.42 4.00 p < 0.05

Ground elevation 0.23 3.40 p < 0.05
Density 0.19 2.26 p < 0.05

Abundance 0.26 2.61 p < 0.05
Crown diameter 0.27 2.76 p < 0.05

Tree height 0.20 16.78 p < 0.05

3.3. Quantification of Factors Influencing the Distribution of Saltcedars

Stepwise regression was used to remove explanatory variables with high VIF values
(>7.5) from the regression model. The OLS model between the abundance of saltcedars
and explanatory variables was delineated as: YZabundance = −0.01 + 0.37 XZmoisture −0.26
XZsalinity + 0.57 XZcrown, (R2 = 0.52, p < 0.01). Using the same variables in the OLS, the
environment–saltcedar relationship was also delineated through SLM and SEM (Table 2).
The contribution of soil moisture and soil salinity to the abundance of saltcedar was reduced
by 11.67% and 10.04% in the SLM and by 13.57% and 4.77% in the SEM, respectively. Pairs
of predicted and observed values for the abundance of saltcedars in the three regression
models were all discretely distributed around the 1:1 reference line (Figure 6). Spatial
autocorrelation and correlograms of residuals showed no spatial autocorrelation in the
residuals of OLS, SLM, and SEM (Figure 6). Thus, these models were suitable for evaluating
environment–saltcedar relationships. Overall, there was no significant difference in the
prediction performance of the three regression models for the abundance of saltcedar.
However, comparison of the goodness of fit among three regression models indicated that
R2 in SEM was greater than that in SLM and OLS. Furthermore, the AIC values of SEM
were the lowest among the three regression models, in which a value of SEM differed by
over three from the values in OLS and SLM (Table 2). The goodness of fit showed that,
compared with OLS and SLM, SEM could better explain the variation in the abundance
of saltcedars. Overall, SEM had more advantages in explaining the relationships between
environmental factors and saltcedar population distribution in saltmarsh.

Table 2. Parameter estimation and goodness of fit test of OLS, SLM, and SEM.

Variable Coefficient SE t-Statistic Probability

OLS

Constant −0.01 0.12 0.00 0.98
Zmoisture 0.37 0.13 2.87 0.00 **
Zsalinity −0.26 0.13 −2.02 0.04 *
Zcrown 0.57 0.12 4.64 0.00 **

Goodness of fit R2 = 0.52, LIK = −32.36, AIC = 76.95, SC = 78.71

SLM

Constant 0.04 0.11 0.38 0.71
Zmoisture 0.41 0.13 3.17 0.00 **
Zsalinity −0.29 0.12 −2.39 0.02 *
Zcrown 0.57 0.11 4.99 0.00 **

ρ −0.23 0.24 −0.94 0.35
Goodness of fit R2 = 0.58, LIK = −32.10, AIC = 74.21, SC = 81.69

SEM

Constant 0.02 0.10 0.16 0.87
Zmoisture 0.36 0.11 3.14 0.00 **
Zsalinity −0.27 0.11 −2.39 0.02 *
Zcrown 0.55 0.11 4.86 0.00 **

λ −0.14 0.30 −0.45 0.65
Goodness of fit R2 = 0.57, LIK = −32.01, AIC = 72.61, SC = 78.60

*: indicates a statistically significant coefficient (p < 0.05); **: indicates a statistically significant coefficient (p < 0.01).
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Figure 6. Performance of different regression models. Scatter diagrams between observed and predicted values of the
abundance of saltcedars (Tamarix chinensis) are shown in the upper three panels (A: OLS; B: SLM; C: SEM). Nondirectional
spatial correlograms for the residuals of different regression models are shown in the bottom three panels (D: OLS; E: SLM;
F: SEM). Solid circles indicate the significant spatial autocorrelation (p < 0.05) and asterisks indicate the nonsignificant
spatial autocorrelation. All correlograms were globally significant (p < 0.05).

4. Discussion
4.1. Spatial Pattern of Saltcedar Population and Mechanisms Driving Its Formation

Our results showed that the saltcedar population exhibited an aggregated distribution
at 2–6 m scales, and a random distribution at large scale (>10 m). Previous studies also
reported a similar spatial distribution pattern of the saltcedar population [12,14,39,40]. The
aggregation patterns of plant populations at small scales are often the result of intraspecific
facilitation and local seed dispersal. Seeds of saltcedar are light and small, with hairs on the
epidermis, making them highly suited to dispersal to different distances by wind or water.
A previous study reported that saltcedar populations could disperse around 2.5 km yr−1

(approximately 6.85 m d−1) by wind and 11 km yr−1 (approximately 34.25 m d−1) along
rivers and other waterways [41]. For wind-dispersed seeds, they usually germinate within
24 h in moist soil [42]. The intensive dispersal and germination in the short term resulted
in aggregated distribution in small areas. Therefore, the aggregated distribution at 2–6 m
might correspond to the distance at which the wind dispersal of seeds influenced the
spatial distribution of saltcedar populations.

Biotic interaction is another important factor driving the spatial patterns of plant
populations at different scales. Generally, the increasing abundance of plants at small
scales promotes a balance between aboveground and underground biomass [43] or branch
and leaf growth [44]. These balances contribute towards regulating the net photosynthetic



Sustainability 2021, 13, 8291 11 of 15

and transpiration rates of plants, and benefiting their adaptation in the heterogeneous
soil environments. Furthermore, the densely packed distribution of halophytes results
in habitat amelioration (i.e., decline in soil salinity and increase in soil water content),
enhancing seed germination and seedling growth [45,46]. As the intensity of environmen-
tal stress declines, the intraspecies facilitation weakens while intraspecific competition
increases [47,48]. This phenomenon is the result of increased demand for resources by
individual plants, which intensifies competition among individuals [49]. Moreover, with
the increasing resistance of individual to soil environmental stresses, the interdependence
among saltcedars declines. As a result of the reducing interdependence and increasing
biotic competition, the plant population presents random or uniform distribution at a large
scale [50]. Due to the transformation of these biological interactions, the spatial distribution
pattern of the saltcedar population gradually changed from the aggregating pattern at
small scales (2–6 m) to the random distribution at large scales (>10 m).

4.2. Origin of Spatial Autocorrelation in Saltcedar Population

Spatial autocorrelation is considered to be a general attribute of ecological variables
and can be found at any scale in the ecosystem [24]. Spatial autocorrelation of plant popu-
lations is caused by the dependence of spatially autocorrelated environmental variables
(induced or exogenous spatial autocorrelation) or by the inherent biological processes of
the variable itself (inherent or endogenous spatial autocorrelation) [23,51]. In this study,
results showed that soil environmental factors and saltcedar features both had positively
significant spatial autocorrelation (Table 1). The saltcedar population had a positive spatial
autocorrelation at distances up to 125 m (Figure 5). This indicated that saltcedar trees
within a 125 m distance tended to have similar occupancy. For saltcedar populations, their
spatial autocorrelation is not only caused by the spatially autocorrelated soil salinity and
moisture, but also related to the ecological processes [23]. Dispersal is a major factor driving
endogenous spatial autocorrelation [52]. A previous study reported that saltcedar seeds
could germinate in water, even when afloat, and that seedlings could survive submerged
for a few weeks [42]. Thus, the viability of the water-dispersed seeds of saltcedar could
be maintained for long periods and at great distances. Even when germinating in water,
seedlings could continue dispersing along rivers or other waterways until reaching suitable
conditions for colonization, such as open sunny ground with low competition [42]. There-
fore, the largest scale of saltcedars presenting a positively significant spatial autocorrelation
(125 m) might correspond to the distance at which long-distance seed dispersal by water
influenced population distributions.

The regression analysis in this study showed that the abundance of saltcedars was
influenced significantly by soil salinity and moisture rather than elevation, which was
consistent with previous studies [1,53]. However, only considering soil conditions could not
fully explain the abundance of saltcedar. Crown diameter has a closely positive correlation
with the abundance of saltcedars. This may be because the increasing crown diameter is
conducive to maintaining soil moisture and providing a shading condition for the growth
of seedlings, which can be regarded as intraspecific promotion [17]. These results reflected
the existence of intraspecific facilitation within the saltcedar population. Moreover, it is
noteworthy that the classical multiple linear regression model (OLS) in this study could
not describe the environment–saltcedar relationship very well (R2 = 0.52). Two potential
factors might have led to this result. One factor was that the OLS model ignored the
spatial autocorrelation, which was an important factor in the spatial distribution of the
saltcedar population. By comparison, SEM, which incorporated the spatial autocorrelation
of saltcedars, presented a better explanatory ability in evaluating the relationship between
soil environmental factors and plant spatial distribution. This was consistent with the result
of other studies [25,26,31,54]. Another factor might be due to the accuracy of individual
plant segmentation and identification. In this research, different vegetation types were
separated based on tree height. Some young trees with low height might have been ignored
or classified into other types. This might also have resulted in the unsatisfactory correlation
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coefficient. In the future, an aerial survey of vegetation types, and a combination of a
UAV-LiDAR system with multispectral imaging technology or simultaneous localization
and mapping (SLAM) technology, would promote the quality of point clouds and the
accuracy of individual plant segmentation and identification [55]. Other effective measures
include increasing the density of fixed monitoring sites, prolonging the monitoring time,
and enriching the monitoring soil elements.

Overall, as a result of intraspecific facilitation and seed dispersal, the saltcedar pop-
ulation was aggregated at 2–6 m scales and presented a positive spatial autocorrelation
at distances up to 125 m. The existence of positive spatial autocorrelation in the saltcedar
population led to overestimation of environmental factors when analyzing the environment–
saltcedar relationship by the traditional OLS method. This study highlighted the impor-
tance of spatial autocorrelation when analyzing the environment–saltcedar relationships.
Future study should cautiously estimate the influence of soil environmental factors on the
spatial distribution of saltcedar populations.

4.3. Implications for Ecological Management and Restoration of Saltcedar Population

Currently, saltcedar populations, as well as other halophytes in coastal saltmarsh,
are undergoing increasingly serious degradation and fragmentation because of the mul-
tiple impacts of global climate change and human disturbance [4,5]. Generally, spatial
pattern analysis plays an instructional role for the restoration and management of plant
populations. Based on life history strategies and distribution patterns of species, differ-
ent implementation approaches are adopted for population restoration. Previous studies
suggest that restoration efforts would be more effective for trees in forests and corals with
an r-selected life history if organisms were added to landscapes in uniform and gridded
patterns [56,57]. Conversely, for the plants with a competitive disadvantage or inhabiting
harsh environments, aggregated arrangement could be more effective in increasing flow-
ering individuals and reproductive biomass, which would contribute to maintaining the
plant population in the following generations [58].

In this study, the results suggested an aggregation distribution of the saltcedar popu-
lation at small scales and a positive significant relationship between the abundance and
crown diameter of saltcedars. Consistent with previous studies, these results implied that
saltcedar individuals could be transplanted as patches with scopes of 2–6 m. Aggregation
of saltcedar individuals would promote the survival rates and colonization ability after
transplantation into a new habitat [39]. Some engineering measures in favor of hydrological
connectivity are also recommended to restore the saltcedar population through assisting
seed dispersal. For example, ditch excavation provides channels for seed spreading with
water [59]. Modifying microtopography contributes to seed interception and provides a
surface runoff channel for seed dispersal [60,61].

In addition, the UAV-LiDAR system shows good application prospects in topographic
mapping, plant population monitoring, and pattern analysis in saltmarsh. As an emerging
remote sensing technology, the UAV-LiDAR system allows the efficient survey of target
areas at different spatial scales, especially local-scale monitoring [62]. UAV-LiDAR systems
overcome the disadvantages of traditional remote sensing approaches, which are not
able to meet the time frequency requirements in analyzing ecological processes and the
required high spatial resolution in analyzing fine-scale information [63]. Future research
on the spatial pattern analysis and restoration of plant populations in saltmarsh should be
conducted over the long term and at broad scales, combining UAV-LiDAR systems with
diverse monitoring methods, such as remote sensing technologies and multispectral or
hyperspectral imaging techniques. Such information would assist in understanding the
distribution patterns of plant populations at different spatiotemporal scales and guide
theoretically their ecological management and restoration in saltmarsh.
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5. Conclusions

This study extracted plant and soil parameters by integrating the UAV-LiDAR system
with fixed soil environment measurements, and further analyzed the spatial pattern of
the saltcedar population and the environment–saltcedar relationship, incorporating the
fine-scale spatial autocorrelation. The results showed that saltcedars presented clustered
distribution at small scales (2–6 m) due to intraspecific facilitation and wind dispersal
of seeds. In comparison, intraspecific competition was responsible for the random dis-
tribution of saltcedars at large scale (>10 m). The saltcedar population had a positive
significant spatial autocorrelation, with Moran’s I peaking at 0–125 m, which was related to
water-dispersed seeds. After incorporating the spatial autocorrelation of saltcedars when
analyzing the environment–saltcedar relationship, the interpretation ability of soil moisture
and salinity for the abundance of saltcedars decreased by 11.67% and 10.04% in SLM, and
by 13.57% and 4.77% in SEM, respectively. Meanwhile, there was a significant positive
correlation between the abundance and crown diameter of saltcedars, which had a stronger
effect on the abundance of saltcedar (>55%) than soil factors.

Consequently, these results suggested that due to intraspecific facilitation and seed
dispersal, the saltcedar population was clustered and autocorrelated spatially at different
scales. This spatial pattern improved the adaptability of saltcedars to environmental
stress and thus reduced the impact of environmental factors on the abundance of saltcedar.
Therefore, during the restoration of the saltcedar population in the future, biotic interactions
and seed dispersal should be given more attention, in addition to the existing measures (e.g.,
improving environmental factors). Transplanting saltcedars as patches with appropriate
size and constructing channels to facilitate seed dispersal are both recommended measures
to restore and manage the saltcedar population in saltmarsh. These measures will profit
the restoration and management of the saltcedar population as well as other halophytes in
coastal saltmarsh.

Author Contributions: Conceptualization, L.J. and T.S.; Data curation, L.J. and T.S.; Formal analysis,
L.J., T.S. and P.Z.; Funding acquisition, T.S.; Investigation, L.J. and Y.Z.; Methodology, L.J., Y.Z. and
P.Z.; Project administration, T.S.; Resources, T.S.; Software, L.J. and Y.Z.; Supervision, T.S.; Validation,
T.S.; Visualization, L.J.; Writing—original draft, L.J.; Writing—review and editing, T.S., W.Y., D.S. and
Q.L. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the Joint Funds of the National Natural Science Foundation of
China (No. U1806217) and the Fund for Innovative Research Group of the National Natural Science
Foundation of China (No. 51721093).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: We sincerely thank Qingchen Li and Yao Lu (South Surveying & Mapping
Instrument Co., Ltd.) and Qiang Tan (Beijing SureStar Technology Co. Ltd.) for their technical
support in point cloud collection and processing.

Conflicts of Interest: The authors declare that they have no known competing financial interests or
personal relationships that could have appeared to influence the work reported in this paper.

References
1. Gao, M.; Wang, X.; Hui, C.; Yi, H.; Zhang, C.; Wu, X.; Bi, X.; Wang, Y.; Xiao, L.; Wang, D. Assembly of plant communities in

coastal wetlands-the role of saltcedar Tamarix chinensis during early succession. J. Plant Ecol. 2015, 8, 539–548. [CrossRef]
2. Qi, M.; Sun, T.; Zhan, M.; Xue, S. Simulating dynamic vegetation changes in a tidal restriction area with relative stress tolerance

curves. Wetlands 2015, 36, 31–43. [CrossRef]
3. Feng, Y.; Sun, T.; Zhu, M.; Qi, M.; Yang, W.; Shao, D. Salt marsh vegetation distribution patterns along groundwater table and

salinity gradients in yellow river estuary under the influence of land reclamation. Ecol. Indic. 2018, 92, 82–90. [CrossRef]
4. Cui, B.; Yang, Q.; Zhang, K.; Zhao, X.; You, Z. Responses of saltcedar (Tamarix chinensis) to water table depth and soil salinity in

the Yellow River Delta, China. Plant Ecol. 2010, 209, 279–290. [CrossRef]

http://doi.org/10.1093/jpe/rtu037
http://doi.org/10.1007/s13157-015-0639-1
http://doi.org/10.1016/j.ecolind.2017.09.027
http://doi.org/10.1007/s11258-010-9723-z


Sustainability 2021, 13, 8291 14 of 15

5. Liu, Q.; Li, F.; Zhang, Q.; Li, J.; Zhang, Y.; Tu, C.; Ouyang, Z. Impact of water diversion on the hydrogeochemical characterization
of surface water and groundwater in the Yellow River Delta. Appl. Geochem. 2014, 48, 83–92. [CrossRef]

6. Sun, Q.; Lin, H.; Zhang, M.; Jiao, L.; Zhang, Y.; Yang, W.; Sun, T. Research progress on ecological restoration of coastal salt marsh.
J. Beijing Norm. Univ. 2021, 57, 151–158.

7. Jiao, L.; Li, F.; Liu, X.; Wang, S.; Zhou, Y. Fine-scale distribution patterns of Phragmites australis populations across an environmental
gradient in the salt marsh wetland of Dunhuang, China. Sustainability 2020, 12, 1671. [CrossRef]

8. Fullerton, A.H.; Steel, E.A.; Lange, I.; Caras, Y. Effects of spatial pattern and economic uncertainties on freshwater habitat
restoration planning: A simulation exercise. Restor. Ecol. 2010, 18, 354–369. [CrossRef]

9. Larson, A.J.; Churchill, D. Tree spatial patterns in fire-frequent forests of western North America, including mechanisms of
pattern formation and implications for designing fuel reduction and restoration treatments. For. Ecol. Manag. 2012, 267, 74–92.
[CrossRef]

10. Viers, J.H.; Fremier, A.K.; Hutchinson, R.A.; Quinn, J.F.; Thorne, J.H.; Vaghti, M.G. Multiscale patterns of riparian plant diversity
and implications for restoration. Restor. Ecol. 2012, 20, 160–169. [CrossRef]

11. Wu, P.; Peng, X.; Yang, S.; Gao, Y.; Bai, F.; Yi, S.; Du, N.; Guo, W. Spatial distribution patterns and correlation of Tamarix chinensis
population in coastal wetlands of Shandong, China. Chin. J. Plant Ecol. 2019, 43, 817–824.

12. Liu, Y.; Liu, J.; Chen, Y.; Jing, S.; Feng, R.; Mao, G. Research on distribution patterns and population structure of Tamarix chinensis
in the intertidal zone of coastal wetlands in Yellow River Delta. Ecol. Sci. 2017, 36, 153–158.

13. Zhao, X.; Cui, B.; Sun, T.; Lv, J.; Lu, F. Analysis of spatial point pattern of Tamarix chinensis in different habitats. Ecol. Sci. 2011, 30,
142–148.

14. He, Q.; Cui, B.; Hu, Q.; Yang, S.; Zhao, X. Fractal analysis on the distribution patterns of Tamarix chinensis under environmental
gradients of different water table depth. Bull. Soil Water Conser. 2008, 28, 70–73.

15. Chambers, L.G.; Osborne, T.Z.; Reddy, K.R. Effect of salinity-altering pulsing events on soil organic carbon loss along an intertidal
wetland gradient: A laboratory experiment. Biogeochemistry 2013, 115, 363–383. [CrossRef]

16. Bertness, M.D.; Callaway, R. Positive interactions in communities. Trends Ecol. Evol. 1994, 9, 191–193. [CrossRef]
17. Bertness, M.D.; Hacker, S.D. Physical stress and positive associations among marsh plants. Am. Nat. 1994, 144, 363–372. [CrossRef]
18. Legendre, P.; Dale, M.R.T.; Fortin, M.J.; Gurevitch, J.; Hohn, M.; Myers, D. The consequences of spatial structure for the design

and analysis of ecological field surveys. Ecography 2002, 25, 601–615. [CrossRef]
19. Valcu, M.; Kempenaers, B. Spatial autocorrelation: An overlooked concept in behavioral ecology. Behav. Ecol. 2010, 21, 902–905.

[CrossRef] [PubMed]
20. Kissling, W.D.; Carl, G. Spatial autocorrelation and the selection of simultaneous autoregressive models. Glob. Ecol. Biogeogr.

2008, 17, 59–71. [CrossRef]
21. Kim, D. Modeling spatial and temporal dynamics of plant species richness across tidal creeks in a temperate salt marsh. Ecol.

Indic. 2018, 93, 188–195. [CrossRef]
22. Maheu-Giroux, M.; de Blois, S. Landscape ecology of Phragmites australis invasion in networks of linear wetlands. Landscape Ecol.

2006, 22, 285–301. [CrossRef]
23. Badenhausser, I.; Gouat, M.; Goarant, A.; Cornulier, T.; Bretagnolle, V. Spatial autocorrelation in farmland grasshopper assem-

blages (Orthoptera: Acrididae) in western France. Environ. Entomol. 2012, 41, 1050–1061. [CrossRef] [PubMed]
24. Legendre, P. Spatial autocorrelation: Trouble or new paradigm? Ecology 1993, 74, 1659–1673. [CrossRef]
25. Zhang, L.; Ma, Z.; Guo, L. An evaluation of spatial autocorrelation and heterogeneity in the residuals of six regression models.

For. Sci. 2009, 55, 533–548.
26. Marrot, P.; Garant, D.; Charmantier, A.; Hadfield, J. Spatial autocorrelation in fitness affects the estimation of natural selection in

the wild. Methods Ecol. Evol. 2015, 6, 1474–1483. [CrossRef]
27. Wiegand, T.; Moloney, K.A. Rings, circles, and null-models for point pattern analysis in ecology. Oikos 2004, 104, 209–229.

[CrossRef]
28. Soberón, J. Grinnellian and Eltonian niches and geographic distributions of species. Ecol. Lett. 2007, 10, 1115–1123. [CrossRef]

[PubMed]
29. Kneitel, J.M.; Chase, J.M. Trade-offs in community ecology: Linking spatial scales and species coexistence. Ecol. Lett. 2004, 7,

69–80. [CrossRef]
30. Meng, Q.; Cieszewski, C.J.; Strub, M.R.; Borders, B.E. Spatial regression modeling of tree height–diameter relationships. Can. J.

For. Res. 2009, 39, 2283–2293. [CrossRef]
31. Wang, Q.; Ni, J.; Tenhunen, J. Application of a geographically-weighted regression analysis to estimate net primary production of

Chinese forest ecosystems. Glob. Ecol. Biogeogr. 2005, 14, 379–393. [CrossRef]
32. Kim, D.; Shin, Y.H. Spatial autocorrelation potentially indicates the degree of changes in the predictive power of environmental

factors for plant diversity. Ecol. Indic. 2016, 60, 1130–1141. [CrossRef]
33. Lichstein, J.W.; Simons, T.R.; Shriner, S.A.; Franzreb, K.E. Spatial autocorrelation and autoregressive models in ecology. Ecol.

Monogr. 2002, 72, 445–463. [CrossRef]
34. Wiegand, T.; Moloney, K.A. Handbook of Spatial Point-Pattern Analysis in Ecology; Chapman and Hall/CRC: New York, NY,

USA, 2014.

http://doi.org/10.1016/j.apgeochem.2014.07.009
http://doi.org/10.3390/su12041671
http://doi.org/10.1111/j.1526-100X.2009.00620.x
http://doi.org/10.1016/j.foreco.2011.11.038
http://doi.org/10.1111/j.1526-100X.2011.00787.x
http://doi.org/10.1007/s10533-013-9841-5
http://doi.org/10.1016/0169-5347(94)90088-4
http://doi.org/10.1086/285681
http://doi.org/10.1034/j.1600-0587.2002.250508.x
http://doi.org/10.1093/beheco/arq107
http://www.ncbi.nlm.nih.gov/pubmed/22476031
http://doi.org/10.1111/j.1466-8238.2007.00334.x
http://doi.org/10.1016/j.ecolind.2018.04.080
http://doi.org/10.1007/s10980-006-9024-z
http://doi.org/10.1603/EN11256
http://www.ncbi.nlm.nih.gov/pubmed/23068160
http://doi.org/10.2307/1939924
http://doi.org/10.1111/2041-210X.12448
http://doi.org/10.1111/j.0030-1299.2004.12497.x
http://doi.org/10.1111/j.1461-0248.2007.01107.x
http://www.ncbi.nlm.nih.gov/pubmed/17850335
http://doi.org/10.1046/j.1461-0248.2003.00551.x
http://doi.org/10.1139/X09-136
http://doi.org/10.1111/j.1466-822X.2005.00153.x
http://doi.org/10.1016/j.ecolind.2015.09.021
http://doi.org/10.1890/0012-9615(2002)072[0445:SAAAMI]2.0.CO;2


Sustainability 2021, 13, 8291 15 of 15

35. Rosenberg, M.S. The bearing correlogram: A new method of analyzing directional spatial autocorrelation. Geogr. Anal. 2000, 32,
267–278. [CrossRef]

36. Dale, M.R.T.; Fortin, M.J. Spatial Analysis: A Guide for Ecologists; Cambridge University Press: Cambridge, UK, 2005.
37. Rosenberg, M.S.; Anderson, C.D. PASSaGE: Pattern Analysis, Spatial Statistics and Geographic Exegesis. Version 2. Methods Ecol.

Evol. 2011, 2, 229–232. [CrossRef]
38. Ding, J.; Zhao, W.; Fu, B.; Wang, S.; Fan, H. Variability of Tamarix spp. characteristics in riparian plant communities are affected

by soil properties and accessibility of anthropogenic disturbance in the lower reaches of Heihe River, China. For. Ecol. Manag.
2018, 410, 174–186. [CrossRef]

39. Zhao, X.; Lv, J.; Sun, T. Relations between the distribution of vegetation and environment in the Yellow River Delta and SPPA for
Chinese tamarisk spatial distribution. J. Beijing For. Univ. 2009, 31, 29–36.

40. Wu, Y.; Dai, L.; Wang, Y.; Xie, L.; Zhao, S.; Liu, Y.; Zhang, M.; Zhang, Z. Coexistence mechanisms of Tamarix chinensis and Suaeda
salsa in the Yellow River Delta, China. Environ. Sci. Pollut. Res. 2020, 27, 26172–26181. [CrossRef]

41. Pearce, C.M.; Smith, D.G. Saltcedar: Distribution, abundance, and dispersal mechanisms, northern Montana, USA. Wetlands 2003,
23, 215–228. [CrossRef]

42. Di Tomaso, J.M. Impact, biology, and ecology of saltcedar (Tamarix spp.) in the southwestern United States. Weed Technol. 1998,
12, 326–336. [CrossRef]

43. Weiner, J. Allocation, plasticity and allometry in plants. Perspect. Plant Ecol. Evol. Syst. 2004, 6, 207–215. [CrossRef]
44. Westoby, M.; Falster, D.S.; Moles, A.T.; Vesk, P.A.; Wright, I.J. Plant ecological strategies: Some leading dimensions of variation

between species. Annu. Rev. Ecol. Syst. 2002, 33, 125–159. [CrossRef]
45. Reijers, V.C.; van den Akker, M.; Cruijsen, P.M.J.M.; Lamers, L.P.M.; van der Heide, T. Intraspecific facilitation explains the

persistence of Phragmites australis in modified coastal wetlands. Ecosphere 2019, 10, e02842. [CrossRef]
46. Cao, Q.; Yang, B.; Li, J.; Wang, R.; Liu, T.; Xiao, H. Characteristics of soil water and salt associated with Tamarix ramosissima

communities during normal and dry periods in a semi-arid saline environment. Catena 2020, 193, 104661. [CrossRef]
47. Brooker, R.W.; Maestre, F.T.; Callaway, R.M.; Lortie, C.L.; Cavieres, L.A.; Kunstler, G.; Liancourt, P.; Tielbörger, K.; Travis, J.M.J.;

Anthelme, F.; et al. Facilitation in plant communities: The past, the present, and the future. J. Ecol. 2007, 96, 18–34. [CrossRef]
48. Qi, M.; Sun, T.; Xue, S.; Yang, W.; Shao, D.; Martínez-López, J. Competitive ability, stress tolerance and plant interactions along

stress gradients. Ecology 2018, 99, 848–857. [CrossRef] [PubMed]
49. Lin, Y.; Berger, U.; Yue, M.; Grimm, V. Asymmetric facilitation can reduce size inequality in plant populations resulting in delayed

density-dependent mortality. Oikos 2016, 125, 1153–1161. [CrossRef]
50. Yang, J.; Zhang, Z.; Dawazhaxi; Wang, B.; Li, Q.; Yu, Q.; Ou, X.; Ali, K. Spatial distribution patterns and intra-specific competition

of pine (Pinus yunnanensis) in abandoned farmland under the Sloping Land Conservation Program. Ecol. Eng. 2019, 135, 17–27.
[CrossRef]

51. Wagner, H.H.; Fortin, M.J. Spatial analysis of landscapes: Concepts and statistics. Ecology 2005, 86, 1975–1987. [CrossRef]
52. Beale, C.M.; Lennon, J.J.; Yearsley, J.M.; Brewer, M.J.; Elston, D.A. Regression analysis of spatial data. Ecol. Lett. 2010, 13, 246–264.

[CrossRef]
53. Terrones, A.; Moreno, J.; Agulló, J.C.; Villar, J.L.; Vicente, A.; Alonso, M.Á.; Juan, A. Influence of salinity and storage on

germination of Tamarix taxa with contrasted ecological requirements. J. Arid Environ. 2016, 135, 17–21. [CrossRef]
54. Overmars, K.P.; de Koning, G.H.J.; Veldkamp, A. Spatial autocorrelation in multi-scale land use models. Ecol. Model. 2003, 164,

257–270. [CrossRef]
55. He, G.; Yuan, X.; Zhuang, Y.; Hu, H. An Integrated GNSS/LiDAR-SLAM pose estimation framework for large-scale map building

in partially GNSS-denied environments. IEEE T. Instrum. Meas. 2021, 70, 1–9.
56. Sleeman, J.C.; Boggs, G.S.; Radford, B.C.; Kendrick, G.A. Using agent-based models to aid reef restoration: Enhancing coral cover

and topographic complexity through the spatial arrangement of coral transplants. Restor. Ecol. 2005, 13, 685–694. [CrossRef]
57. Pringle, R.M.; Doak, D.F.; Brody, A.K.; Jocque, R.; Palmer, T.M. Spatial pattern enhances ecosystem functioning in an African

savanna. PLoS Biol. 2010, 8, e1000377. [CrossRef]
58. Stoll, P.; Prati, D. Intraspecific aggregation alters competitive interactions in experimental plant communities. Ecology 2001, 82,

319–327. [CrossRef]
59. Zeng, S.; Zhang, T.; Gao, Y.; Li, B.; Fang, C.; Flory, S.L.; Zhao, B. Road effects on vegetation composition in a saline environment. J.

Plant Ecol. 2012, 5, 206–218. [CrossRef]
60. Wang, Q.; Cui, B.; Luo, M.; Qiu, D.; Shi, W.; Xie, C. Microtopographic structures facilitate plant recruitment across a saltmarsh

tidal gradient. Aquat. Conserv. Mar. Freshwat. Ecosyst. 2019, 29, 1336–1346. [CrossRef]
61. Wang, Q.; Cui, B.; Luo, M.; Shi, W. Designing microtopographic structures to facilitate seedling recruitment in degraded salt

marshes. Ecol. Eng. 2018, 120, 266–273. [CrossRef]
62. Zhang, J.; Hu, J.; Lian, J.; Fan, Z.; Ouyang, X.; Ye, W. Seeing the forest from drones: Testing the potential of lightweight drones as

a tool for long-term forest monitoring. Biol. Conserv. 2016, 198, 60–69. [CrossRef]
63. Anderson, K.; Gaston, K.J. Lightweight unmanned aerial vehicles will revolutionize spatial ecology. Front. Ecol. Environ. 2013, 11,

138–146. [CrossRef]

http://doi.org/10.1111/j.1538-4632.2000.tb00428.x
http://doi.org/10.1111/j.2041-210X.2010.00081.x
http://doi.org/10.1016/j.foreco.2017.10.003
http://doi.org/10.1007/s11356-020-08883-1
http://doi.org/10.1672/1-20
http://doi.org/10.1017/S0890037X00043906
http://doi.org/10.1078/1433-8319-00083
http://doi.org/10.1146/annurev.ecolsys.33.010802.150452
http://doi.org/10.1002/ecs2.2842
http://doi.org/10.1016/j.catena.2020.104661
http://doi.org/10.1111/j.1365-2745.2007.01295.x
http://doi.org/10.1002/ecy.2147
http://www.ncbi.nlm.nih.gov/pubmed/29345307
http://doi.org/10.1111/oik.02593
http://doi.org/10.1016/j.ecoleng.2019.04.026
http://doi.org/10.1890/04-0914
http://doi.org/10.1111/j.1461-0248.2009.01422.x
http://doi.org/10.1016/j.jaridenv.2016.08.001
http://doi.org/10.1016/S0304-3800(03)00070-X
http://doi.org/10.1111/j.1526-100X.2005.00087.x
http://doi.org/10.1371/journal.pbio.1000377
http://doi.org/10.1890/0012-9658(2001)082[0319:IAACII]2.0.CO;2
http://doi.org/10.1093/jpe/rtr014
http://doi.org/10.1002/aqc.3120
http://doi.org/10.1016/j.ecoleng.2018.06.012
http://doi.org/10.1016/j.biocon.2016.03.027
http://doi.org/10.1890/120150

	Introduction 
	Methodology 
	Study Area Description 
	Photogrammetry Workflow 
	Spatial Data Analysis 
	Analysis of Spatial Distribution Patterns 
	Spatial Autocorrelation Analysis 

	Spatial Regression Analysis 

	Results 
	Descriptive Statistics and Spatial Distribution of Soil Properties and Saltcedar Features 
	Descriptive Statistics 
	Spatial Distribution Patterns of Saltcedars 

	Spatial Autocorrelation Analysis of Soil and Saltcedar Variables 
	Quantification of Factors Influencing the Distribution of Saltcedars 

	Discussion 
	Spatial Pattern of Saltcedar Population and Mechanisms Driving Its Formation 
	Origin of Spatial Autocorrelation in Saltcedar Population 
	Implications for Ecological Management and Restoration of Saltcedar Population 

	Conclusions 
	References

