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Abstract: An explicit analysis of the impact for the richness of species of the vegetation phenological
characteristics calculated from various remote sensing data is critical and essential for biodiversity
conversion and restoration. This study collected long-term the Normalized Difference Vegetation In-
dex (NDVI), the Leaf Area Index (LAI), the Fraction of Absorbed Photosynthetically Active Radiation
(FAPAR), and the Fractional Vegetation Cover (FVC), and calculated the six vegetation phenological
characteristic parameters: the mean of the growing season, the mean of the mature season, the mean
of the withered season, the annual difference value, the annual cumulative value, and the annual stan-
dard deviation in the Xinjiang Uygur Autonomous Region. The relationships between the vegetation
phenological characteristics and the species richness of birds and mammals were analyzed in spatial
distribution. The main findings include: (1) The correlation between bird diversity and vegetation
factors is greater than that of mammals. (2) For remote sensing data, FAPAR is the most important
vegetation parameter for both birds and mammals. (3) For vegetation phenological characteristics,
the annual cumulative value of the LAI is the most crucial vegetation phenological parameter for
influencing bird diversity distribution, and the annual difference value of the NDVI is the most
significant driving factor for mammal diversity distribution.

Keywords: biodiversity; species richness; birds; mammals; vegetation phenological characteristic;
remote sensing

1. Introduction

Biodiversity refers to the ecological complex formed by organisms and their environ-
ment and the integration of various ecological processes related to it [1–3], which provides
the fundamental guarantee for the sustainable development of human beings, and is also
an important indicator of ecosystem health [4–7]. Animal species diversity is the most intu-
itive manifestation of biodiversity on a spatial scale, as it not only represents the richness
and change of species in a habitat, but it also reflects the complex relationship between or-
ganisms and the environment [8–10]. The large-scale spatial distribution pattern of animal
species richness is affected by a variety of environmental factors [11–14], and vegetation
phenology characteristics is a critical one among them [15,16]. However, to our knowl-
edge there is few definitive method to quantitatively describe the relationship between
vegetation phenology characteristics and animal species richness on a large scale [17].
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Remote sensing technology has become a powerful tool for the estimation of the trend
of phenological phases over large areas, owing to its ability to conduct large-scale and long-
term observations [18–20]. Ground observations and the remote sensing data both indicated
that the spring phenology of plants has significantly advanced during the past decades [21].
Correspondingly, the phenology of numerous animals and its distributions have greatly
changed [22]. One main drawback of remote sensing phenology research is that the remote
sensing vegetation parameters that have been mostly studied the are the Normalized
Difference Vegetation Index (NDVI) and the Enhanced Vegetation Index (EVI) [23–25].
With the development of remote sensing technology, a series of remote sensing vegetation
parameters, such as the Fraction of Absorbed Photosynthetically Active Radiation (FAPAR),
the Leaf Area Index (LAI), and the Fractional Vegetation Cover (FVC), which can reflect the
characteristics of the vegetation canopy structure, have been proposed [26–28]. Compared
with the NDVI and EVI, these parameters can further reflect the habitat information for
species [29,30], and long-time series quantitative remote sensing datasets based on these
remote sensing vegetation parameters can provide an important opportunity to analyze
the spatial distribution pattern of animal species richness caused by vegetation phenology
changes on a large scale [31,32]. Nonetheless, the explicit analysis of the relationship
between the animal species richness and the different vegetation phenology parameters
extracted with remote sensing data is almost absent from the literature.

In this study, we compared the influences of remote sensing vegetation phenology
parameters on the distribution of animal diversity in Xinjiang Uygur Autonomous Region
(hereinafter referred to as “Xinjiang”), which covers nearly one-sixth of the territory of
China with three key regions of biodiversity [33–39]. Four remote sensing vegetation
parameters were selected: NDVI, LAI, FAPAR, and FVC, which are highly accurate and
are widely used. They were used to calculate and generate six types of phenological
characteristic parameters of the vegetation, including the mean value in the growing season,
the mean value in the mature season, the mean value in the withered season, the annual
difference value, the annual cumulative value, and the annual standard deviation. In this
study, animal species richness was analyzed including bird species richness and mammal
species richness. Overall, this study had three specific objectives: (1) to compare the effects
of vegetation on bird and mammal spatial distribution, (2) to evaluate the performance of
remote sensing vegetation parameters on animal diversity distribution, and (3) to analyze
the impact of vegetation phenological parameters on bird and mammal species richness.

Study Area

Xinjiang is located between 73◦40–96◦18 E and 34◦25–48◦10 N. It is the hinterland
of the Eurasian continent, with a total area of approximately 1.66 million km2 (Figure 1).
The terrain of Xinjiang is covered by mountains and basins, and the climate is temperate
continental, with great differences in precipitation between the north and south. Northern
Xinjiang is in the middle temperate zone, affected by the westerly belt, with more precipi-
tation, and the annual average precipitation of Kanas Lake is more than 1000 mm [40,41].
Southern Xinjiang is in the warm temperate zone, with less precipitation, and the an-
nual average precipitation of Turpan is less than 20 mm. The statistical results show
that the existing cultivated land in Xinjiang is about 4.12 × 104 km2, the available grass-
land is about 48.82 × 104 km2, forest land is about 6.76 × 104 km2, natural desert is
about 43.03 × 104 km2, oasis is about 13.4 km2, and the total area of the water area is
0.55 × 104 km2. The rich and diverse ecological environment and unique geographical con-
ditions provide the sufficient prerequisites for the survival of species in different habitats.
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2. Methodology
2.1. Data Sources
2.1.1. Species Richness Data

The species distribution data of bird and mammal were provided by the Institute
of Aerospace Information Innovation, Chinese Academy of Sciences. The animal species
richness data used in this study includes bird species richness and mammal species richness.
The dataset is based on the spatial distribution information of the species recorded in the
“Xinjiang bird list” [42] and the “Xinjiang mammal (Mammalia) list” [43]. The number of
species within a 10 × 10 km grid was counted to generate the raster data [44]. The whole
of Xinjiang was divided into 10 × 10 km grids by ArcGIS 10.8, and the number of bird
and mammal species in each grid was calculated and further projected into the WGS84
coordinate system [44]. Each cell net contains information such as central coordinate,
species number, family number and so on.

2.1.2. Remote Sensing Data

The LAI refers to the ratio of the total leaf area to land area per unit land area, which is
an important parameter for characterizing the vegetation canopy structure [45]. This study
used Global LAnd Surface Satellite (GLASS) LAI, which is produced in the State Key
Laboratory of Remote Sensing Science, Beijing Normal University (Beijing, China) (Table 1).
The time span was from 2001 to 2010, the temporal resolution was constructed every 8 days,
and the spatial resolution was 1 × 1 km. This dataset was generated by inversion with
a generalized regression neural network and showed distinct advantages over the other
LAI products in terms of time-series continuity and spatial integrity, as well as a higher
accuracy in woodland and arable land [46–48].
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FAPAR refers to the proportion of photosynthetically available radiation absorbed by
vegetation in the photosynthetically available radiation reaching the top of the vegetation
canopy, which is a basic physiological variable describing the structure of vegetation, and it
is related to the matter and energy exchange process [49]. The spatial resolution and time
resolution of the GLASS FAPAR products were consistent with the GLASS LAI products.
Compared with other FAPAR products, the GLASS FAPAR product effectively avoids
various difficulties, such as soil albedo, which is not easily accessible on a regional scale.
Further, this dataset has a high temporal and spatial continuity in the central and high
latitudes of the Northern Hemisphere [50–52].

The FVC refers to the vertical projection area of green vegetation on the ground as
a percentage of the total area of the statistical area, and this is used to characterize the
extent of the regional vegetation coverage [53]. This research used GLASS FVC products.
The time span was from 2001 to 2010, the spatial resolution was 500 × 500 m, and the time
resolution was 8 days. The accuracy of the GLASS FVC products in the crop vegetation
coverage areas was higher than other FVC products [54–56].

The NDVI is the ratio of the difference between the near-infrared band and the
red-light band to the sum of the two. It comprehensively characterizes the vegetation
growth trend, vegetation coverage, and nutritional status and can reflect the plant canopy
background influence [57,58]. This research used the MOD13A2 NDVI C6 product, with a
time span from 2001 to 2010, a spatial resolution of 1 × 1 km, and a time resolution of
16 days. The C6 version of the dataset improves the sensitivity of the product to vegetation
on the basis of existing indicators and further eliminates the influence of factors such as
high observation coverage, low viewing angle, cloud and cloud shadows, and aerosol
concentration on data accuracy [59–61].

The original format of the remote sensing data mentioned above is HDF5. They were
converted into the TIF grid format and resampled to 10 × 10 km resolution by cubic
convolution.

Table 1. Dataset information.

Data Type Data Name Data Sources Time
Resolution (d)

Spatial Resolution
(km) Time Span Data Type

Species richness
data

Species richness of
birds/mammals

Literature
query statistics ** 10 km 2001–2010 Grid

Remote sensing
vegetation

parameter data

LAI GLASS LAI 8 d 1 km 2001–2010 Grid
FAPAR GLASS FAPAR 8 d 1 km 2001–2010 Grid

FVC GLASS FVC 8 d 0.5 km 2001–2010 Grid

NDVI MOD13A2
NDVI C6 16 d 1 km 2001–2010 Grid

Ecological
function

zoning data

Ecological function
zoning

China
ecological
function

regionalization
database

** ** ** Vector

Note: ** indicates that this item is not involved.

2.1.3. Ecological Function Zoning Data

In this study, the ecological function zoning data used were obtained from the Eco-
Environment Research Center of the Chinese Academy of Sciences. This dataset integrates
the evaluation data of China’s ecological environmental problems, ecosystem sensitivity,
and the importance of ecosystem service functions. It uses a spatial overlay, a correlation
analysis, and the expert integration method, while the other methods divide the national
ecological function areas from top to bottom, among which Xinjiang is divided into 19 eco-
logical function sub-regions. For the geographical location and name number of each
subregion, please refer to Appendix A Table A1.
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2.2. Research Method
2.2.1. Bivariate Spatial Autocorrelation Analysis

The bivariate local autocorrelation (Moran’s I) module in the GeoDa spatial analy-
sis model was used in this study to explore the correlation between bird and mammal
species richness and the spatial distribution of vegetation factors in Xinjiang. The bivariate
local spatial autocorrelation can reflect the clustering relationship of two variables in a
certain space. The reference distribution was generated by a random sequence used in
the significance test. The results generated were Moran’s I scatter diagram and a LISA
(Local indicators of Spatial association) cluster diagram [62]. Global Moran’s I value of
the two variables determines the intensity and direction of the spatial correlation between
the two variables, and this can measure the degree of convergence or how discrete the
two variables are at the global level [63]. The LISA clustering graph provides information
about spatial clustering, the location of outliers, and spatial correlation types, which can be
divided into four types: “high–high”, “low–low”, “high–low”, and “low–high”. This study
used the ecological function division as the basic statistical analysis unit. It should be
noted that because the relationship between birds, mammals, and vegetation factors was
explored overall, only the NDVI was selected to characterize the spatial distribution of
vegetation in Xinjiang.

2.2.2. Dynamic Threshold Method of Vegetation Phenology

To avoid the influence of regional spatial differentiation [64–66], this study divided
Xinjiang into 19 subregions (Table A1) based on the data of the ecological function division
and divided the vegetation phenological nodes in each subregion as well. The annual
average time series change curve of the NDVI in different ecological subregions was
obtained. Referring to the improved dynamic threshold method of vegetation phenological
characteristics [67,68] (Table 2), the entire year growth process of vegetation was divided
into three stages: “growing season, mature season, and withered season.” Because Xinjiang
contains a large area of desert, the Gobi Desert, and glaciers, there is often little vegetation
coverage in these areas, and the annual vegetation change is very fuzzy [69–71]. Therefore,
the ecological subregions with a NDVI less than 0.12 were not divided by phenological
characteristics.

Table 2. Vegetation growth and development period division.

Developmental Period Definition Symbol

Growing season

It starts from the time when the time series curve
grows to 20% of the amplitude and ends at the

time when it grows to 80%. Indicates the period
of vegetation growth and development.

SOS—EOS

Mature season

It starts from the time when the time series curve
grows to 80% of the amplitude and ends when it

drops to 80% of the amplitude. Indicates the
period of the maturing of the vegetation.

EOS—SOW

Withered season

It starts from the time when the time series curve
drops to 80% of the amplitude, it ends when the

time drops to 20% of the amplitude. Indicates
the period of the withering of the vegetation.

SOW—EOW

SOS (Start of season): The vegetation growing season begins; EOS (End of season): The vegetation growing season
end. SOW (Start of Withered): The vegetation Withered season begins; EOW (End of Withered): The vegetation
withered season end.

(1) Mean value of vegetation growth season, maturity season, and withered season:

VPR(Xi) =
∑n

o=1 V(Xn)

n
(1)
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VPR(Xi) is the average value of the LAI, NDVI, FAPAR, and FVC at different growth
and development stages in the i year; X is either the growing season, mature season,
or withered season; n is the amount of data in which the remote sensing vegetation
characterizes the parameters at different developmental stages; and VXn is the remote
sensing vegetation parameter values on the nth day of the different development periods.

(2) Vegetation annual difference value:

VRR(Xi) = VPMAX(Xi) − VPMIN(Xi) (2)

VRR(Xi) is the annual difference in the LAI, NDVI, FAPAR, and FVC in the i year;
X is the remote sensing vegetation parameter; VPMAX(Xi) is the maximum value of the X
parameter in the i year; and VPMIN(Xi) is the minimum value of the X parameter in the
i year.

(3) Vegetation annual cumulative value

VCR(Xi) =
n

∑
o=1

V(Xni) (3)

VCR(Xi) is the annual cumulative value of the LAI, NDVI, FAPAR, and FVC in the
i year; X is the remote sensing vegetation parameter; and V(Xni) is the remote sensing
vegetation parameter value on the nth day of the i year.

(4) Vegetation annual standard deviation

VSR(Xi) =

√√√√∑n
o=1

(
V(Xni) − µ(Xi)

)2

n
(4)

VSR(X) is the annual standard deviation of the LAI, NDVI, FAPAR, and FVC in the i
year; V(Xni) is the remote sensing vegetation parameter value on the nth day of the i year;
µ(Xi) is the average value of the remote sensing vegetation parameter X in i year; n is the
data volume of remote sensing vegetation parameters in year i; and X is the remote sensing
vegetation parameters.

After calculating the annual vegetation phenological parameters, the mean values of
the 10-year vegetation phenological characteristic parameters were obtained through the
mean synthesis, as shown in Table 3.

Table 3. Long-term series of vegetation phenological characteristic parameters and their definitions.

Vegetation Parameter Index Definitions

VPR(Xbin) Growing season value of remote sensing vegetation parameter X
VPR(Xpeak) Mature season value of remote sensing vegetation parameter X
VPR(Xend) Withered season value of remote sensing vegetation parameter X

VRR(X) Annual difference value of remote sensing vegetation parameter X

VCR(X)
Annual cumulative value of remote sensing vegetation

parameter X

VSR(X)
Annual standard deviation value of remote sensing vegetation

parameter X

2.2.3. GeoDetector Method

Based on the factor detector of the GeoDetector method, this study analyzed the
relationship between the vegetation phenological characteristic parameters generated
by the different quantitative remote sensing products and the species richness of the
birds and mammals. The GeoDetector method is a statistical method used to detect
the spatial heterogeneity of a variable of interest and to reveal the underlying driving
forces [72,73]. The method is composed of four modules: a risk detector, a factor detector,
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an ecological detector, and an interaction detector. The factor detector reflects the influence
of vegetation phenological characteristic parameters on species richness by calculating the q
value (the influence of each vegetation characteristic parameter on species richness) and the
p value (whether it passes the significance test level, that is, an explanatory power) [73,74].
The factor detector is expressed as follows:

q = 1 − ∑L
h=1 Nhσ2

h
Nσ2 (5)

h = 1, . . . . . . , L is the stratification of the dependent variable Y or single factor X;
Nh and N are the number of units in layer h and the whole area, respectively; and σ2

h and
σ2 are the variances of the Y value in layer h and the entire area, respectively.

Each ecological function subregion was divided into a 5 × 5 km grid, and 700 points
were selected from the grid to explore the impact of the vegetation phenology on the spatial
distribution of the animal species richness.

3. Results
3.1. Analysis of the Spatial Pattern Relationship between Species Richness and Vegetation Factors

The high value areas of mammal species richness are mainly distributed in the Altai
Mountains in the north of Xinjiang, Tianshan Mountains in the middle, and the foot of the
Kunlun Mountains in the south. Meanwhile, the low-value areas are mainly distributed
in the Tarim Basin, Turpan Basin, and Jungar Basin in the middle (Figure 2), and the
distribution of bird species richness is divided by the Tarim River and the Yarkant River
Basin. The bird species richness in northern Xinjiang was higher than that in southern
Xinjiang, while in the Zhunger region and the foot of the southern slope of Tianshan
Mountain it was lower than that in the other surrounding areas.
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Moran’s I scatter diagram of the bivariate local autocorrelation is shown in Figure 3.
With the number of permutations of the random sequence set to 999 times, the p values
of the bivariate autocorrelation results of the birds and mammals with the NDVI were
less than 0.05, indicating that the results pass the significance test. According to Moran’s I
scatter plot, Moran’s I index of birds and mammals with the NDVI were all greater than 0,
showing a strong positive correlation distribution trend in general. Further, Moran’s I of
birds (0.534) > Moran’s I (0.229) for mammals indicates that, in terms of spatial relationship,
the correlation between the bird species richness and vegetation factors was greater than
the correlation between the mammal species richness and vegetation factors. In addition,
Moran’s I scatter diagram divided the whole into four quadrants, where the first quadrant
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represented the “high–high” aggregation of the spatial distribution of species richness
and the NDVI, the second quadrant represented the “low–high” dispersion, and the third
quadrant represented the “low–low” aggregation, and the fourth quadrant represented the
“high–low” dispersion. In the study area, there were far more ecological function subre-
gions proportional to NDVI (aggregation) than inversely proportional (discrete) ecological
function subregions. With 95% confidence as the standard, the bivariate local autocor-
relation LISA cluster map shows (Figure 4) that for birds, the areas where bird species
were in abundance and the NDVI showed a “high-high” distribution were mainly concen-
trated in northern Xinjiang. The four subregions were II0501, II0502, II0601, and II0701.
The areas of “low-low” distribution were concentrated in the four subregions of III0302,
III0303, III0304, and III0305 in southern of Xinjiang. The four subregions were II0501, II0502,
II0601, and II0701. The areas with a “low–low” distribution were concentrated in the four
subregions of III0302, III0303, III0304, and III0305 in southern Xinjiang. For mammals,
the species richness and the NDVI showed a “high–high” distribution in the subregions
II0502 and II0601, and a “low–low” distribution in subregions II0802, II0804, and II0805.
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Figure 4. LISA cluster map of bird and mammal species richness and vegetation factors. Note:
See Table A1 for the number and name of each partition.

3.2. Analysis of Remote Sensing Vegetation Parameters and Vegetation Phenological
Characteristics

The yearly time-series change curve for each ecological subregion is shown in Figure 5.
The vegetation change in each ecological subregion showed a trend of increasing first and
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then decreasing, with the largest annual variation range in zone II0501, with a range of
0.420, followed by zone II0604, with a range of 0.415.
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Comparing the phenological change curve of each ecological subregion, the results
showed that the beginning of the growing season and the end of the withered season
varied in the different ecological subregions. The beginning of the growing season in
II0502, II0503, II0601, II0603, and II0604 were earlier than those in II0501, II0701, II0702,
and II0803, while the end of the withered season was the opposite. Overall, the duration of
the vegetation growth season in Xinjiang was 48–96 days, the duration of the mature season
was 64–96 days, and, the duration of the withered season was 64–112 days. The duration of
the growth season was shorter than that of the mature and withered seasons. In addition,
the duration of the withered season varied in different ecological zones when compared to
the mature and growing seasons.

Overall, the spatial distribution of vegetation in Xinjiang is characterized by obvious
geopolitical features. Vegetation is mainly distributed in the Altay Mountains in the north,
northern, and southern slopes of the Tianshan Mountains in the middle, oases around the
Tarim Basin, and foot of the Kunlun Mountains in the south. Comparing the characteristic
parameters of the growth season, the mature season, and the withered season, it can be
observed that the vegetation changes mainly occurred in the western part of the Tianshan
Mountains, the foot of the Altay Mountains, and the woodlands and grasslands of the oasis
around the Tarim Basin. The spatial distribution trend of the annual variation range and
the annual standard deviation of vegetation parameters was consistent. This indicates that
the vegetation change in Xinjiang was stable in the growth cycle and the seasonal change
characteristics of vegetation were evident. The annual cumulative value of vegetation
phenological characteristic parameters represents the comprehensive situation of each
vegetation parameter. Through comparison, the spatial distribution trend of the four
vegetation parameters was relatively consistent, but there were still differences in some
areas. For example, the annual cumulative value of the NDVI showed a higher value on
the northern slopes of the Altai Mountains, but the other three vegetation parameters in
this area were relatively low.

3.3. Analysis of the Relationship between Vegetation Phenological Characteristic Parameters and
Species Richness

Overall, the driving force (q value) of the vegetation phenological characteristics gener-
ated by the four quantitative remote sensing datasets to the spatial distribution of mammal
species richness was higher than that of birds (Table 4). The mean value in the withered
season of FVC and the other factors of the two species (birds and mammals) passed the sig-
nificance test level (p < 0.05). From the perspective of the vegetation parameters, among all
the vegetation parameters, the six vegetation phenological characteristic parameters based
on the FAPAR had the highest driving force for species richness for the two classes of
animals. Compared with bird species, the difference in the driving forces of the pheno-
logical characteristic parameters based on various remote sensing vegetation parameters
on mammal species richness were more evident. In addition to the FAPAR-based vegeta-
tion parameters, the driving forces of the remaining vegetation parameters on mammal
species richness from high to low were LAI-based, NDVI-based, and FVC-based vegetation
parameters. Specific to the different vegetation phenological characteristic parameters,
the annual standard deviation of the NDVI had the largest driving effect on the richness of
mammal species (q value), and the annual cumulative value of LAI had the largest driving
effect on the richness of birds (q value). Moreover, it can be observed from the factor detec-
tion results of the mean values of the vegetation growth season, the vegetation maturity
season, the vegetation withering season with the species richness of birds and mammals,
that for mammals, the q values of the four types of vegetation parameters FAPAR, FVC,
LAI, and NDVI were 0.019, 0.021, 0.063, and 0.045, respectively. For birds, the range of
variation in the q values was 0.004, 0.020, 0.031, and 0.029, respectively. This shows that the
vegetation conditions at different growth and development periods had little effect on the
species richness of birds and mammals.
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Table 4. The detection results of bird and mammal species richness and vegetation phenological characteristic parameters.

Vegetation
Parameters

Vegetation
Phenological
Characteristic

Parameters

Bird q
Value

Mammal q
Value

Vegetation
Parameters

Vegetation
Phenological
Characteristic

Parameters

Bird q
Value

Mammal q
Value

NDVI

VPR(NDVI,bin) 0.059 * 0.139 *

FVC

VPR(FVC,bin) 0.064 * 0.141 *
VPR(NDVI,end) 0.076 * 0.097 * VPR(FVC,end) 0.053 0.100
VPR(NDVI,peak) 0.088 * 0.142 * VPR(FVC,peak) 0.073 * 0.120 *

VRR(NDVI) 0.037 * 0.208 * VRR(FVC) 0.086 * 0.154 *
VSR(NDVI) 0.035 * 0.243 * VSR(FVC) 0.078 * 0.136 *
VCR(NDVI) 0.042 * 0.046 * VCR(FVC) 0.077 * 0.148 *

FAPAR

VPR(FAPAR,bin) 0.101 * 0.169 *

LAI

VPR(LAI,bin) 0.086 * 0.179 *
VPR(FAPAR,end) 0.105 * 0.188 * VPR(LAI,end) 0.067 * 0.122 *
VPR(FAPAR,peak) 0.103 * 0.174 * VPR(LAI,peak) 0.098 * 0.185 *

VRR(FAPAR) 0.074 * 0.198 * VRR(FVC) 0.092 * 0.158 *
VSR(FAPAR) 0.070 * 0.189 * VSR(LAI) 0.090 * 0.164 *
VCR(FAPAR) 0.111 * 0.199 * VCR(LAI) 0.115 * 0.178 *

Note: * means passing the randomness test, that is, p < 0.05.

4. Discussion
4.1. Spatial Pattern Relationship between Species Richness and Vegetation Factors

In this study, the high-value areas of mammal species richness were mainly con-
centrated in the valleys between the mountains and the high value areas of bird species
richness were mainly concentrated in the river-intensive areas. This indicates that the
spatial distribution of mammal species was greatly affected by altitude factors, as the ele-
vation would lead to a decrease in temperature, thus affecting the species habitat, and the
spatial distribution of bird species was mainly affected by water sources, which is the
same as the research results of Wu [75] on a global scale. This study found that the areas
where bird species richness and vegetation showed a “high–high” aggregation pattern
were mainly concentrated in the II0501, II0502, II0601, and II0701 subregions in northern
Xinjiang, the mammal species richness and vegetation showed a “high–high” aggregation
pattern mainly concentrated in subregions II0502 and II0601. This is because there are large
areas of mountain forests and grasslands in the Altay Mountains and Tianshan Mountains
in the north of Xinjiang. Further, the Erqis, Yili, and Wulungu rivers, which are formed by
the melting of alpine snow, provide sufficient water for the survival of the species, and the
suitable habitat conditions attract many species. There are large desert areas such as the
Gobi, Taklimakan, and Lop Nur, in the subregions II0802, II0804, and II0805 in central
Xinjiang, the climate is dry and hot, and the vegetation distribution is rare, because the abil-
ity of birds for activity is far greater than mammals [76,77], mammals are more restricted
by the environmental conditions in the above mentioned areas, leading to the “low–low”
aggregation mode of the mammals and vegetation. In every subregion in Xinjiang southern,
owing to the influence of the Kunlun Mountains (high altitude, cold climate, and large
amount of alpine snow) the conditions are not conducive to the growth of vegetation; at the
same time, the flight height of birds is greatly affected by the elevation [78,79]. Therefore,
the “low–low” aggregation model of the bird species and vegetation was observed in
this region.

4.2. Analysis of Vegetation Parameters and the Phenological Characteristics of Remote Sensing

In this study, we found that the largest annual change in vegetation growth in the
Xinjiang region was zone II0501, with a range of 0.420, followed by zone II0604, with a
range of 0.415. In these two subregions, the entire Altay Mountain range and the Middle
Tianshan Mountain range are distributed there, the normal ecological environment was
good, the vegetation grew vigorously, and the vegetation development cycle changed
significantly in 1 year. The results showed that the start and end times of the vegetation
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growth season and withered season in different ecological subregions varied. For example,
the start time of the growth season in II0502, II0503, II0601, II0603, and II0604 were earlier
than those of II0501, II0701, and II0702, and II0803. However, the end time of the with-
ered season was the opposite, which is mainly affected by latitude and elevation [80,81].
The higher the latitude and the higher the elevation, the later the vegetation enters the
growing season and the earlier the end of the withered season. Conversely, the lower the
latitude and the lower the elevation, the earlier the vegetation enters the growing season
and the later the end of the withered season.

4.3. Analysis of the Relationship between Vegetation Phenological Characteristic Parameters and
Species Richness

The results showed that the driving force of the four vegetation parameters on mam-
mal species richness was higher than that of birds, which is mainly due to two reasons. First,
birds have a stronger range and ability of activity than mammals and are less affected by to-
pographical variability. Second, mammals are often much larger in size than birds, and they
need more energy than birds. Among the four vegetation parameters, the FAPAR had the
highest driving force on bird and mammal species richness, indicating that the amount of
solar radiation absorbed by vegetation has a significant impact on animal species diversity,
which is consistent with the results of Long and Kerr et al. [82,83]. From the perspective
of vegetation phenological characteristic parameters, the annual cumulative value of the
LAI had the greatest impact on the spatial distribution of bird species richness, while the
annual standard deviation of the NDVI had the greatest impact on the spatial distribution
of mammal species richness, which is mainly due to the different demands of birds and
mammals on vegetation factors. The dependence of birds on vegetation factors is mainly
due to the requirements of the habitat conditions (such as nesting) [84,85]. Compared
with other vegetation phenological characteristic parameters, the annual cumulative value
of the LAI can better reflect the three-dimensional structure information of plant canopy
leaves, and it can comprehensively characterize the growth of plants. Therefore, the an-
nual cumulative value of the LAI is the vegetation phenological characteristic parameter
that has the greatest impact on the spatial distribution of birds; mammals have a more
comprehensive dependence on vegetation factors [86–88], the more stable the vegetation
conditions, the smaller the interference on mammals. The annual standard deviation of
the NDVI can better reflect the change and stability of the vegetation factors. Therefore,
the annual standard deviation of the NDVI is the vegetation phenological characteristic
parameter that has the greatest impact on the spatial distribution of mammals. The effect
of vegetation in the different growth and development periods on the richness of birds
and mammals was relatively small. This result is since, in the study area, although the
vegetation growth progress in different geographical regions was different due to different
topographical conditions, climatic conditions, and other factors, the overall change trend
over one entire year was still consistent. Although wild birds and mammals have a strong
migration ability, there is little difference in the developmental stage of vegetation in the
range of their survival ability. In addition, most of the animal species distributed in Xinjiang
belong to fixed habitat animals; after long-term evolution, they have fully adapted to the
living environment of the habitat. In essence, the spatial distribution of animals is the
result of their active or passive adaptation to environmental changes [89,90]. Therefore,
the effect of seasonal vegetation replacement on bird and mammal species richness was
relatively small.

4.4. Limitations and Future Research

This study analyzed the relationship between the vegetation phenological character-
istic parameters and the species richness of birds and mammals in Xinjiang. However,
there are two known limitations: First, vegetation phenological parameters in this study
were all obtained from the quantitative remote sensing data. At present, there is still a
lack of mechanistic analysis from the perspectives of ecology, verification, and comparison
of field observation experiments. Second, this study analyzed the diversity of two class
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animal, while various species own different characteristics in detail. To better explain the
effects of the different vegetation parameters and the various vegetation phenological pa-
rameters on the distribution of animal diversity, future studies will consider the integrated
observation experiment of space–sky–earth and will analyze more specific animal classes
or singles species.

5. Conclusions

In this study, we took Xinjiang as the study are, and collected the spatialized species
richness and vegetation parameters. We used a bivariate local autocorrelation (Moran’s I) to
analyze the spatial distribution relationship between the abundance of birds and mammals
and the vegetation factors. Using the GeoDetector method, the relationship between the
vegetation phenological characters and the species richness of birds and mammals in
Xinjiang were obtained. To discuss the difference of different vegetation parameters from
remote sensing data, four vegetation parameters and six phenological metrics were selected
and were calculated. This study improves our understanding of vegetation phenology’s
impact on the spatial distribution of animal species richness and provides a scientific basis
for biodiversity conservation and restoration

According to the analysis results, the following conclusions are drawn:
(1) The bivariate local autocorrelation Moran’s I scatter points show that the spatial

relationship between bird and mammal species richness and the vegetation factors showed
a strong positive correlation trend, with clustering characteristics, and Moran’s I of birds
(0.534) > Moran’s I (0.229) of mammals. In terms of spatial distribution, the correlation
between birds and vegetation factors is greater than that of mammals.

(2) The LISA cluster map showed that the spatial distribution of the abundance of bird
species and vegetation factors showed a “high–high” clustering area mainly in central and
northern areas of Xinjiang (II0501, II0502, II0601, and II0701 subregions). The areas with
“low–low” clusters were concentrated in the southern areas of Xinjiang (III0302, III0303,
III0304, and III0305 subregions). For mammals, the areas where the species richness and
vegetation factors had a “high–high” clustering were mainly concentrated in northern
areas of Xinjiang (II0502 and II0601 subregions). The areas with “low–low” clustering were
mainly concentrated in the central areas of Xinjiang (II0802, II0804, and II0805 subregions).

(3) From the aspect of the vegetation parameters, FAPAR is the most important vege-
tation parameter for birds and mammals. From the aspect of the vegetation phenological
characteristic parameters, the annual cumulative value of the LAI is the most important
driving factor for birds, and the annual variance of the NDVI is the most important driving
factor for mammals.
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Appendix A

Table A1. Xinjiang ecological area and subregion.

Number Ecological Area Ecological Subregions

II0501 Altaishan—Western Junggar Mountain
forest and grassland ecological area

Ecological subregion of larch forest of
Siberia on the southern slope of

altai mountain

II0502 Altaishan—Western Junggar Mountain
forest and grassland ecological area

Ecological subregion of Ertysi—wulungu
river desert steppe

II0503 Altaishan—Western Junggar Mountain
forest and grassland ecological area

Ecological subregion of Mountain
grassland in the western Junggar basin

II0601 Junggar Basin desert ecological area Desert—oasis agro-ecological subregion
in the western margin of Junggar basin

II0602 Junggar Basin desert ecological area Ecological subregion of shrub desert in
the eastern junggar basin

II0603 Junggar Basin desert ecological area
Ecological subregion of Fixed and

semi-fixed desert in the central
Junggar Basin

II0604 Junggar Basin desert ecological area
Agro-ecological subregion of shrub and
semi-shrub desert and oasis in southern

Junggar Basin

II0701 Tianshan Mountain forest and
grassland ecological area

Ecological subregion of Spruce
forest-grassland on the Northern Slope of

Tianshan Mountains

II0702 Tianshan Mountain forest and
grassland ecological area

Agro-ecological subregion of desert
steppe and oasis on the southern slope of

Tianshan Mountains

II0801 Tarim Basin Eastern Xinjiang
desert ecological area

Ecological subregion of desert oasis and
Agroecological in Turpan Hami Basin

II0802 Tarim Basin-Eastern Xinjiang desert
ecological area

Eastern Xinjiang gobi—mobile desert
ecological subregion

II0803 Tarim Basin-Eastern Xinjiang desert
ecological area

Desert—oasis agro-ecological subregion
in northern Tarim basin

II0804 Tarim Basin-Eastern Xinjiang desert
ecological area Taklimakan Desert ecological subregion

II0805 Tarim Basin Eastern Xinjiang desert
ecological area

Desert—oasis agro-ecological subregion
in southern Tarim basin

III0301
Pamir—Kunlun Mountains—Altun
Mountain Alpine Desert grassland

ecological area

Ecological subregion of alpine desert
steppe in the Pamir

Karakoram Mountains

III0302
Pamir—Kunlun Mountains—Altun
Mountain Alpine Desert grassland

ecological area

Desert ecological sub-area of
Altun Mountain

III0303
Pamir—Kunlun Mountains—Altun
Mountain Alpine Desert grassland

ecological area

The ecological subregion of alpine desert
steppe in the eastern part of

Kunlun mountains

III0304
Pamir—Kunlun Mountains—Altun
Mountain Alpine Desert grassland

ecological area

The ecological subregion of alpine desert
steppe in the middle part of

Kunlun mountains

III0305
Pamir—Kunlun Mountains—Altun
Mountain Alpine Desert grassland

ecological area

The ecological subregion of alpine desert
steppe in the west part of

Kunlun mountains
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