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Abstract: Gully erosion susceptibility mapping is an essential land management tool to reduce soil
erosion damages. This study investigates gully susceptibility based on multiple diagnostic analysis,
support vector machine and random forest algorithms, and also a combination of these models,
namely the ensemble model. Thus, a gully susceptibility map in the Kondoran watershed of Iran
was generated by applying these models on the occurrence and non-occurrence points (as the target
variable) and several predictors (slope, aspect, elevation, topographic wetness index, drainage density,
plan curvature, distance to streams, lithology, soil texture and land use). The Boruta algorithm was
used to select the most effective variables in modeling gully erosion susceptibility. The area under
the receiver operating characteristic curve (AUC), the receiver operating characteristics, and true skill
statistics (TSS) were used to assess the model performance. The results indicated that the ensemble
model had the best performance (AUC = 0.982, TSS = 0.93) compared to the others. The most effective
factors in gully erosion susceptibility mapping of the study region were topological, anthropogenic,
and geological. The methodology and variables of this study can be used in other regions to control
and mitigate the gully erosion phenomenon by applying biophilic and regenerative techniques at the
locations of the most influential factors.

Keywords: ensemble modeling; data mining; gully erosion; watershed management; land use

1. Introduction

Gully erosion is the most destructive type of water erosion, commonly occurring
in arid and semi-arid regions. Gully erosion is considered when the cross-section of
the erosion channel is greater than 929 cm2 [1]. Gullies are usually created on plain
and plateau areas depending on several factors such as land use, soil type, lithology,
topography and vegetation cover [2,3]. Gullies are the most destructive type of water
erosion, and have many effects such as land degradation, reduced soil fertility, and damage
to infrastructures [4]. Generally, gullies were observed more in semi-arid and arid regions
of Iran. A study of gully data in Iran indicated that the average length and depth of gullies
in Iran were about 570 m and 2.8 m, respectively, which produced 21 m3/m sediment per
unit gully length [5]. To this end, the assessment of the gully erosion status is necessary to
mitigate its destructive effects in Iran and other countries. Application of physically-based
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soil erosion models and machine learning methods are used for investigating and modeling
soil erosion [6].

Several authors have applied physically-based models such as AGNPS (Agricultural
Non-point Source model) [7]; LISEM (Limburg Soil Erosion Model) [8] and RUSLE (Revised
Universal Soil Loss Equation) [9–11] to determine soil erosion status. However, these
models are complicated and large data sets are needed. In contrast, the remote sensing data,
such as synthetic aperture radar (SAR), light detection and ranging (LiDAR), Quickbird,
Landsat, SPOT 5, Google Earth, etc., with the aid of geographic information system (GIS)
tools, provide evidence for detecting gully erosion and hazard modeling in regions with
limited data [12–16]. The list of abbreviations is included in Appendix A Table A1.

Currently, GIS-based machine learning techniques are used for gully erosion suscepti-
bility mapping [17]. In several studies, data mining approaches, including support vector
machine (SVM) [18], random forest (RF) [19], maximum entropy (MaxEnt) [20], Generalized
Linear Model (GLM) [21] with the aid of the remote sensing data and GIS tools have been
applied to study gull erosion susceptibility. The SVM model can be generalized in terms of
linear and non-linear kernels to avoid over-fitting. However, the SVM model cannot be
used to determine the importance of predictor variables. In this regard, the importance of
predictor variables on gully erosion can be obtained using the MDA model [22]. However,
the assumption of normality of each predictor variable is one of the limitations of the MDA
model [23]. On the other hand, the RF model is insensitive to outliers and over-fitting, and
can handle multiple input variables without needing variables deletion [24].

Each of these models contains specific weaknesses in modeling gully susceptibility
mapping, which can be resolved using the ensemble modeling method [25]. Generally, in
previous studies, individual models were applied for gully erosion susceptibility analysis,
while few studies considered ensemble models [25,26]. Therefore, testing the ensemble
model as the combination of individuals to compare its performance versus the SVM, RF
and MDA models in gully erosion susceptibility mapping (GESM) must be investigated.
Further, in previous studies, the importance of conditioning factors was obtained using
susceptibility models. In contrast, the Boruta variable selection algorithm might extract the
most important predictors [27].

In the Kondoran plain region (especially in the Kondoran and Armak villages), gully
erosion resulted from the sensitive soil, poor quality of downstream lands caused by flood-
ing through salt domes, wind, and water erosion, as well as many years of unprincipled
management. Although this destructive erosion already existed in the region, its expansion
rate has increased dramatically in recent years. Therefore, identifying vulnerable areas to
gully erosion will help to reduce land degradation. Process-oriented and stochastic models
using GIS might be helpful to detect gullies and map gully erosion vulnerability.

Therefore, this study aimed to investigate the SVM, MDA and RF models approach
for mapping gully susceptibility, select the most important features using the Boruta
variable selection algorithm, and employ an ensemble modeling method to produce a gully
susceptibility map and compare it with individual models’ performance.

2. Material and Methods
2.1. Study Area

The Kondoran watershed (KW) is located along 54◦19′ to 54◦30′ E longitude and 26◦40′

to 26◦56′ N latitude in Hormozgan province, south of Iran. Its area covers 258.86 km2 of
the region, varying by 3 m to 1406 m above sea level [28]. The annual precipitation average
in the study region is about 83.62 mm and the climate is hot and humid [29]. In the study
area, there are several land use types including bare rock, barren lands, poor rangeland,
residential lands, salt land and shrublands. The study region with an estimated population
of 1628 people includes four rural regions of Armak (971 people), Kondoran (485 people),
Glango (34 people) and Lavaran (138 people) [30]. Runoff and gully erosion are the main
issues of the region. The soil of the region is erosion-sensitive and mostly is loamy and silty.
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Soil sensitivity, heavy rains, land-use change, vegetation degradation and human
interventions have caused deep gullies with depths of 1–10 m. The KW gullies contain
the widest area of soil erosion in the south of Iran, which significantly has been spread
toward infrastructure and settlements and has caused significant damage to roads, electrical
installations, buildings, fertile lands of rural regions, and other infrastructure, and which
is increasing every year. Figure 1 displays the gullies’ locations in the study region in
Hormozgan province, Iran.

Figure 1. Study region and gully erosion overlaid in the Kondoran watershed, Iran.

2.2. Data Set

The present study applied data of 140 gullies in the Kondoran watershed, collected
through a field study using a GPS (Global Positioning System). Furthermore, the infor-
mation of 100 gully absence places was gathered. Of these, 70% of data were randomly
selected for training the learning models, and the rest (30%) were used to test and validate
the fitted models [31]. Figure 2a,b shows examples of gully erosion within the study region.
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Figure 2. Gully erosion within the Kondoran watershed (a) barren land (b) a shrubland recently become barren.

2.3. Predictor Variables of Gully Erosion Susceptibility

Gullies are created under various conditions. Therefore, different variables influence
gully formation and development. Selecting appropriate variables is one of the critical
and effective issues in modeling gully erosion susceptibility. Various researchers have
considered different variables as influence factors on gully erosion. Previous studies have
considered 11 factors for gully erosion susceptibility modeling [32,33].

Figure 3 presents the methodological diagram of the present study. Using the Boruta
algorithm, the most critical variables were selected for modeling gully erosion susceptibility.
The evidential belief function (EBF) algorithm was applied to describe the correlation
among predictor variables and gully erosion status. The gully susceptibility map in the
Kondoran watershed of Hormozgan was generated by applying the multiple diagnostic
analysis (MDA), support vector machine (SVM), and random forest (RF) algorithms. The
models were applied to the occurrence and non-occurrence points. The AUC (area- under-
the-curve) and ROC (receiver operating characteristics) have been used to assess model
performance. The ensemble model was used to combine these models and produce the
ensemble gully susceptibility map of the region.

2.3.1. Slope Angle

Slope angle is an essential factor that affects gully erosion. Gully erosion occurs when
macropores become larger by infiltration of water into the soil [34]. The larger macropores
result in a greater risk of soil collapse and gully erosion. Gentle slopes have a higher
penetration rate than steeper slopes. Thus, gentle slopes are more prone to gully erosion.
In this study, the slope angle map (degree) was obtained based on the digital elevation
model (DEM) (Figure 4a).
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Figure 3. The methodological flow chart of this study.
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Figure 4. Conditioning factors map: (a) slope angle; (b) slope aspect; (c) elevation; (d) soil type; (e) LS factor; (f) plan
curvature; (g) TWI; (h) land use; (i) lithology; (j) drainage density; (k) distance to river.
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2.3.2. Slope Aspect

The slope aspect is another factor that influences solar radiation reaching the ground,
soil moisture, and vegetation cover [35]. Thus, it is considered an effective factor in
mapping gully erosion susceptibility. The study region’s slope aspect map was generated
using DEM 30 m and classified into nine classes (Figure 4b).

2.3.3. Elevation

Elevation affects the microclimate and vegetation cover. This factor affects the runoff
production process as one of the main stimuli of gully erosion. Therefore, this study
considered elevation as one predictor for gully erosion susceptibility modeling [36]. In the
present study, a DEM of 30 m was used, extracted from a topographic map on a scale of
1:50,000 (Figure 4c).

2.3.4. Soil Texture

Soil texture and soil erodibility significantly affect gully erosions [37]. The study
region’s soil texture map was provided at a 1:50,000 scale using the database of the Agricul-
tural Research Center of Hormozgan Province [38] In this study, the soil texture is classified
into four classes of loamy skeletal, coarse loamy, fine silty and fine loamy (Figure 4d).

2.3.5. Length-Slope Factor

The length-slope factor determines the influence of topography on erosion; therefore,
it is considered one of the critical factors in predicting gully erosion status [39]. This factor
is computed as below:

LS =
[

FAG ∗ Cell−size
22.13

]0.6
×

[
Sin(slope−grid) ∗ 0.01745

0.0896

]1.3

(1)

in which the FAG is the flow accumulation grid and 0.01745 is a coefficient that converts
the radian to degree measure. The LS index was obtained using SAGA-GIS 7.3.6 software
based on 30 m DEM (Figure 4e).

2.3.6. Plan Curvature

Plan curvature is defined as the curvature of contour lines in the horizontal plane [40].
This factor affects converging and diverging surface flow, flow rate, and soil erosion. Thus,
plan curvature can be applied as an important predictor of gully erosion. The plan curvature
map was generated using DEM in an ArcGIS 10.7 environment. The plan curvature map
of the study area was categorized into three classes, including concave, convex and flat
categories (Figure 4f). The positive and negative values of plan curvature indicate the
convexity and concavity of curvature slope, and the values close to zero determine that the
surface is flat [1].

2.3.7. Topographic Wetness Index

The topographic wetness index (TWI) is obtained by combining the upstream catch-
ment area and slope, and is commonly used to quantify the topography’s influence on
hydrological processes. It also determines the effect of topography on the level of satura-
tion surface to produce runoff [41]. TWI calculates the probability of flow accumulation
in soil due to the upstream catchment area and slope [42]. Thus, TWI was applied as a
topographical variable for modeling gully erosion. The TW index is obtained using the
following equation:

TWI = ln
As

tan b
(2)

where As is the specific area of the upstream watershed (m2/m) and b is the slope angle
in degree scale. In this study, the TWI was generated in SAGA-GIS software based on the
30 m DEM (Figure 4g).
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2.3.8. Land Use

Land use is another factor that affects gully erosion and land degradation [13]. The
land use map of the study region was provided at a 1:50,000 scale from the Agricultural
Research Center of the Hormozgan Province [43]. According to Figure 4h, barren land
(without vegetation), poor rangeland, bare rock, salt land, residential lands and shrublands
are the main land use types of the study area. The map of the predictor variables was
generated in raster format and then classified using the existing function GIS software.
Table 1 indicates information on predictor variables that affect gully erosion susceptibility.

Table 1. Predictor variables of the gully erosion susceptibility maps.

Factors Variable Type Scale

Soil texture Categorical 1:50,000
Elevation (meter) Continuous 30 × 30 m

Distance to stream (meter) Continuous 30 × 30 m
Drainage density (km/km2) Continuous 30 × 30 m

Slope angle Continuous 30 × 30 m
Slope aspect Categorical 30 × 30 m

Land use Categorical 1:50,000
Lithology Categorical 1:50,000

Plan curvature Continuous 30 × 30 m
Topographic wetness index (TWI) Continuous 30 × 30 m

LS factor Continuous 30 × 30 m

2.3.9. Lithology

The lithology factor has an important role in the gully erosion phenomenon since it
depends on lithological properties and weathering of materials at the ground surface [1].
In this study, the lithological map of the study region at a 1:50,000 scale was provided from
the Geological Survey of Iran [38].

2.3.10. Drainage Density

Drainage density is defined as the entire length of the channel per unit of watershed
area (km/km2) [44]. Regions with higher drainage density contain lower infiltration
and higher runoff. Higher drainage density facilitates the evacuation of sediments from
upstream areas in watersheds, causing expanding gully erosion. Thus, drainage density
can be considered a predictor variable of gully erosion hazard [36]. The study area’s
drainage map was created using the line density function in an ArcGIS 10.7 environment
(Figure 4j).

2.3.11. Distance to River

Distance to the river is the most important factor that affects the gully erosion process.
The drainage network affects the stability and slope saturation degree, and consequently,
the soil erosion process [45]. Common surface materials near the rivers contain higher
moisture, which results in an acceleration of the processes of shedding, separation and soil
transfer. Soil saturation depends on proximity to the stream and therefore, areas closer to
streams are more susceptible to gully erosion [32]. The distance to the stream map of the
study region was provided using the Euclidean distance method in ArcGIS 10.7 software.
Finally, the map was classified into five categories of less than 276.5 m, 276.5 to 611.8 m,
611.8 to 1055.13 m, 1055.13 to 1806.48 m, and 1806.48 to 3118.41 m, based on the natural
break approach (Figure 4k). The map of the predictor variables was generated in raster
format and then classified using existing functions in GIS software. Table 1 indicates the
information of predictor variables that affect gully erosion susceptibility.
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2.4. Collinearity between Independent Variables

Existing collinearity between variables reduces the model’s accuracy and perfor-
mance [33]. The tolerance coefficient and variance inflation factor (VIF) are two important
indices for investigating dependency between variables [46]. Variables often have collinear-
ity problems when the tolerance coefficient or VIF between them are respectively less than
0.1 or greater than 5 [7].

2.5. Boruta Variable Selection Algorithm

Feature selection is an important step in classification and regression modeling. Fea-
ture selection algorithms are used to remove the unimportant predictors to improve the
model accuracy [47,48]. The Boruta algorithm is a feature selection algorithm that is placed
under the RF classification method [49]. It uses shadow features which are copies of orig-
inal features. The shadow features are randomly assigned to objects; therefore, decision
trees are generated based on the shadow features.

The importance of an attribute is measured by the loss of accuracy of the classification
model caused by attributes that are randomly assigned to objects. Then, the mean and
the standard deviation of the accuracy loss are calculated, and the Z-scores are obtained
by dividing the mean and its standard deviation. In the Boruta algorithm, the Z-score is
considered as the measure of importance. Therefore, the set of the importance of shadow
attributes is used as a reference for detecting the importance of original attributes. Then,
the importance of original features is compared with the highest importance of shadow
features [27]. The Boruta algorithm has the following steps:

(1) The information system is extended by generating the shadow attributes (at least five
for each attribute).

(2) The random forest algorithms are run on each copy of the new dataset and the
Z-scores are computed.

(3) The maximum Z-score (MZS) of shadow attributes is computed.
(4) The importance of each attribute is compared with the MZS.
(5) The attributes with importance significantly lower than MZS are removed (consid-

ered as unimportant), and those with importance significantly higher than MZS are
considered as important.

(6) All shadow attributes are removed and the procedure is repeated until the importance
is assigned to all attributes.

The Boruta algorithm has advantages in comparison with other feature selection
algorithms [27]. First, this algorithm follows an all-relevant variable selection approach
in which it considers all features that are related to the output variable; whereas, most of
the other variable selection algorithms follow a minimum optimum approach where they
depend on a small subset of features which causes a minimum error on a selected classifier.
Second, it considers multi-variable relationships and also can investigate interactions
between variables. In this study, the Boruta package in R software was used to determine
the importance of gully erosion susceptibility factors.

2.6. Investigating the Relationship between Gully Erosion and Conditioning Factors

This study applies the evidential belief function (EBF) algorithm to describe the
correlation among predictor variables and gully erosion status. The evidential belief
function (EBF) is a robust approach for obtaining reliable models through incorporating
various factors to reduce uncertainty [50]. The statistical EBF model is computed based on
Dempster-Shafer theory to combine the representations of several independent variables
to achieve a combined measure of belief.

The degree of uncertainty (Unc), degree of disbelief (Dis), degree of belief (Bel), and
degree of plausibility (Pls) are the main parameters of the EBF approach, and each describes
particular information of a dataset [51]. The Bel and Pls are respectively defined as the
lower and upper bound of probabilities, and the uncertainty degree (Unc) is described as
the difference between Bel and Pls, which shows the ignorance or doubt that the evidence
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supports a hypothesis. Additionally, Dis is a degree of disbelief in evidence concerning the
hypothesis, and the Dis value is obtained using (1-Pls) or (1-Unc-Bel) equations.

2.7. Modeling Gully Erosion Susceptibility
2.7.1. Support Vector Machine

The support vector machine (SVM) is a supervised learning approach that is used for
classification or regression modeling. This method is defined based on statistical learning
theory and uses the structural risk minimization (SRM) method to obtain an optimized
solution [52]. The SVM applies linear or non-linear (polynomial or radial) kernels to learn
a classification model. This study applied the radial basis (RBF) kernel due to the high
performance of this function. In this study, the SVM method was run using R software
3.5.3 and the SDM (Species Distribution Modelling) package [53].

2.7.2. Random Forest Model

Random forest (RF) is a classification approach that is obtained based on the improve-
ment of bagging (bootstrap aggregation) trees [54]. The bagging tree is a decision tree
that is built on bootstrap samples [55]. The main difference between random forest and
bagging is the number of predictors in each bootstrapping step. On the other hand, for p
predictors, the bagging trees use m = p, while the random forest splits m ≈ √p predictors
in each bootstrapping tree. Finally, the RF model is defined as the average of bootstrapping
trees. The RF procedure is used to reduce the variance of the statistical learning method.
Robustness to outliers, limiting overfitting and errors are further advantages of the RF
approach [56].

2.7.3. Multiple Discriminant Analysis

Multiple discriminant analysis is a classification approach that is used to predict
categorical responses. This model, also known as the Fisher discriminant analysis, is
defined based on Bayes’ theorem. The MDA attempts to estimate the conditional probability
and the predictors are assumed to follow a multivariate normal distribution. The linear
(LDA) and quadratic (QDA) discriminant analysis are special cases of MDA used for binary
responses when respectively, a linear or non-linear boundary between classes is assumed.
The normality assumption of the predictor variables is a limitation of using the MDA
method. For the normal case, the conditional probability leads to the linear combination
for which the coefficients should be estimated [57].

2.7.4. Ensemble Model

The ensemble model (EM) is a combination of several learning models and is com-
monly used to improve classification algorithms by decreasing variance and bias or improv-
ing prediction accuracy [58]. Incorporating the single models’ predictions is done using
weighted and unweighted averaging. In this study, the ensemble model was assembled
using weighted averaging based on AUC statistics Equation (3):

EM =
∑n

i=1 (AUCi ∗ M̂i)

∑n
i=1 AUCi

(3)

where EM is the ensemble model, and AUCi is the AUC value of the ith single model (Mi).
In the present study, the SVM, RF, MDA and ensemble methods have been run using R

software 3.5.3 and the SDM (Species Distribution Modelling) package [53]. The probability
maps were provided based on all models and were classified using the natural break
method in ArcGIS 10.7. The classification map obtained from the EM is different from
the maps obtained from the other three models. This is because the EM is the weighted
average of SVM, RF and MDA models using the AUC weighting and the unclassified maps
of every single model are merged to create an ensemble model. To merge the unclassified
output map of single models, the weighted average is used.
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2.7.5. Evaluation Model Performance

This study applied AUC (area under the receiver operating characteristic curve) and
True Skill Statistics (TSS) to evaluate model performance. The AUC statistics describe the
area under the receiving operator characteristics curve (ROC) and are used as a measure of
classification accuracy. The greater AUC indicates a better classification result [58]. Each
observation belongs to a positive (gully existence) or negative (non-existence) category in
gully classification. The AUC determines the classification accuracy based on the ROC. The
number of positive and negative pixels correctly classified is called true positive (TP) or
true negative (TN). In contrast, it can be defined as the false positive (FP) and false-negative
(FN) for wrongly classified pixels [59]. In the ROC curve, the X-axes represent the specificity
and Y-axes indicate the sensitivity and are defined as below:

Sensitivity =
TP

TP + FN
(4)

Speci f icity =
TN

FP + TN
(5)

The AUC varies between 0 and 1, such that a value close to 0 indicates that the
learning model is not able to classify the observations, while an AUC close to 1 shows that
the observations are classified very well [60]. In addition, an AUC less than 0.6, between
0.6 to 0.8, and greater than 0.8, describes low, moderate and high classification accuracy,
respectively [33].

The true skill statistic (TSS), also known as Hanssen–Kuipers discriminant, is an-
other common measure for evaluating classification accuracy [61]. TSS statistics explain
the ratio of true predictions (true positive and true negative) [62]. TSS value changes
between −1 to +1, where +1 determines high classification accuracy and values be-
low zero show a performance no better than random [62]. The TSS is computed as
TSS = Sensitivity + Specificity−1.

3. Results
3.1. Multi-Collinearity Test

Multi-collinearity is a serious problem in regression and classification, and refers to a
situation in which two or more predictor variables are linearly correlated. In this study, we
applied variance inflation factor (VIF) and tolerance (TOL) criteria to explore collinearity
between explanatory variables. According to these criteria, a TOL less than 0.1 and a VIF
above 10 indicate that there exists a collinearity problem among predictor variables. Table 2
provided VIF and TOL values between gully erosion predictors. As shown, there exists no
collinearity between predictor variables.

Table 2. Multi-collinearity among conditioning factors using variance inflation factor (VIF) and
tolerance (TOL).

Factors TOL VIF

Slope aspect 0.86 1.04
Distance to stream 0.36 2.79
Drainage density 0.37 2.68

Land use 0.32 3.08
Lithology 0.31 3.27
LS factor 0.44 2.40

Plan curvature 0.56 1.80
Slope angle 0.39 2.65

Soil 0.58 3.64
TWI 0.77 1.29

Elevation 0.77 2.65
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3.2. Gully Erosion Susceptibility Maps (GESM)

The maps of gully erosion susceptibility were generated using effective parameters
based on the SVM, RF and MAD models. Next, a new map was provided using the
ensemble model, which was defined based on the RF, MAD and SVM models. The maps
were classified into low, moderate, high, and very high susceptibility classes using the
natural break classification method (Figure 5). The results revealed that most parts of
the study region are allocated in the very high susceptibility category. Further analysis
of Table 3 indicated that the MDA model allocated the lowest part (429 km2, 1.67%) and
the highest part (169.93 km2, 66.03%) of the study regions respectively assigned to the
moderate and very high susceptibility, while according to the SVM model, the lowest part
(31.06 km2, 12.07%) and the highest part (121.52 km2, 47.22%) of the study regions belong to
the low and very high susceptibility classes. In this regard, based on the RF and ensemble
models, the low susceptibility areas respectively covered 73.37 km2 (28.51%) and 74.34 km2

(28.88%) of the study regions, while very high susceptibility areas respectively covered
84.07 km2 (32.67%) and 97.69 km2 (37.96%) of the study region. According to the results, in
all models, the study area’s central and eastern parts belong to the very high susceptibility
class and the northern parts of the region are in the low susceptibility class.

Table 3. Percentage and area belonging to susceptibility classes in the study region.

Model Value Percentage Area (km2)

RF

Low 28.51 73.37
Moderate 21.72 55.90

High 17.12 44.07
Very high 32.67 84.07
Total area 100 257.4

SVM

Low 12.07 31.06
Moderate 21.23 54.64

High 19.48 50.13
Very high 47.22 121.52
Total area 100 257.4

MDA

Low 30.19 77.69
Moderate 1.67 4.29

High 2.14 5.51
Very high 66.03 169.93
Total area 100 257.4

Ensemble

Low 28.88 74.32
Moderate 9.34 24.04

High 23.83 61.33
Very high 37.96 97.69
Total area 100 257.4

3.3. Evaluation of GESMs Performance

The performance of the fitted models for the gully erosion susceptibility maps was
evaluated using area-under-the-curve (AUC) and true skill statistics (TSS). The results are
reported in Table 4 and Figure 6. All models present high values in both AUC and TSS. The
ensemble model had the highest values in both criteria. Thus, the accuracy among the
fitted models in predicting gully erosion susceptibility is high.
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Figure 5. Gully erosion susceptibility maps (GESM) based on (a) the multiple diagnostic analysis (MDA), (b) support vector
machine (SVM), (c) random forest (RF), and (d) the ensemble model.
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Table 4. Area-under-the-curve (AUC) and true skill statistics (TSS) of the fitted models on gully
erosion data.

Metrics Ensemble RF SVM MDA

AUC 0.982 0.971 0.932 0.914
TSS 0.93 0.91 0.84 0.82

Figure 6. Accuracy assessment of gully erosion susceptibility based on testing data (30%).

3.4. Computing Variable Importance Using Boruta Algorithm

Results and outputs of the Boruta algorithm (Table 5) indicate that distance to the
stream (33.5), land use (17.41), elevation (12.18), and lithology (7.34) are the most important
gully erosion factors, followed by soil type, drainage density, LS factor, and slope angle.
In addition, the plan curvature, TWI, and slope aspects have the least rank among the
predictor variables and should be ignored from the modeling process.

Table 5. Variable importance information was obtained after running the Boruta algorithm.

Factors Mean
Importance

Median
Importance

Min.
Importance

Max.
Importance Decision

Distance to
stream 33.5 33.12 27.89 38.8 Confirmed

Land use 17.41 17.22 15.62 19.12 Confirmed
Elevation 12.18 12.04 10.06 14.29 Confirmed
Lithology 7.34 7.15 5.47 9.26 Confirmed
Soil type 4.6 4.21 2.86 6.43 Confirmed
Drainage
density 2.43 2.38 0.27 4.58 Confirmed

LS factor 1.34 1.27 0.13 2.56 Confirmed
Slope 0.57 0.53 0.045 1.08 Confirmed

Plan curvature −1.44 −1.49 −2.96 0.07 Rejected
TWI −1.98 −1.96 −3.63 −0.34 Rejected

Aspect −2.57 −2.51 −4.39 −0.78 Rejected
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3.5. Evaluating the Relationship among Conditioning Factors and Gully Erosion Using the
Evidential Belief Function (EBF) Model

The relationship between gully erosion and predictor variables was investigated and
results are shown in Table 6. According to the results, the highest weight of distance
to streams variable (0.51) has been assigned to class 1, [0–276.5], and is regarded as the
most effective factor on gully erosion occurrence in the study area. For this factor, higher
distances (>1055.3 m) have zero weight in Bel measure. In this regard, the class [1.8–3.69]
km/km2 of drainage density variable had the highest Bel (0.45) weight and is considered
as the area with a high probability of gully occurrence. The highest correlation (Bel = 0.44)
of gully erosion with TWI variable belongs to the [12–22.3] class, which denotes a positive
correlation between these two variables.

Table 6. The relationship between conditioning factors and gully erosion using the evidential belief function (Unc: degree
of uncertainty; Dis: degree of disbelief; Bel: degree of belief; Pls: degree of plausibility).

Factor Class Bel Dis Unc Pls

Elevation (meter)

3–125 1.0 0.0 0.0 1.00
125–381 0.00 0.27 0.73 0.73
381–697 0.00 0.25 0.75 0.75
697–1014 0.00 0.25 0.75 0.75

1014–1406 0.00 0.24 0.76 0.76

Distance to stream (meter)

0–276.5 0.51 0.12 0.36 0.88
276.5–611.8 0.26 0.20 0.54 0.80

611.8–1055.13 0.23 0.24 0.52 0.76
1055.13–1806.48 0.00 0.22 0.78 0.78
1806.48–3118.41 0.00 0.21 0.79 0.79

Slope aspect

Flat 0.07 0.11 0.82 0.89
N 0.10 0.11 0.79 0.89

NE 0.25 0.10 0.65 0.90
E 0.11 0.11 0.78 0.89

SE 0.11 0.11 0.78 0.89
S 0.09 0.12 0.80 0.88

SW 0.04 0.12 0.83 0.88
W 0.11 0.11 0.78 0.89

NW 0.11 0.11 0.78 0.89

Land use

Barren lands 0.71 0.11 0.19 0.89
Poor rangeland 0.00 0.33 0.67 0.67

Bare rock 0.00 0.16 0.84 0.84
Salt land 0.00 0.16 0.84 0.84

Shrublands 0.29 0.09 0.62 0.91
Residential lands 0.00 0.16 0.84 0.84

Soil texture

Loamy skeletal 0.00 0.36 0.64 0.64
Coarse loamy 0.06 0.17 0.78 0.83

Fine silty 0.94 0.18 −0.12 0.82
Fine loamy 0.00 0.30 0.70 0.70

TWI

2.01–5 0.13 0.27 0.60 0.73
5–8 0.14 0.23 0.63 0.77

8–12 0.28 0.26 0.46 0.74
12–22.3 0.44 0.24 0.32 0.76

Lithology

Aj 0.00 0.14 0.86 0.86
Gs 0.00 0.16 0.84 0.84
Mn 0.00 0.14 0.86 0.86
Qaf 0.13 0.14 0.73 0.86
Qal 0.16 0.14 0.70 0.86
Qfp 0.71 0.02 0.28 0.98
Qp 0.00 0.13 0.87 0.87
Sd 0.00 0.13 0.87 0.87
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Table 6. Cont.

Factor Class Bel Dis Unc Pls

Slope angle (degree)

0–5 0.55 0.09 0.37 0.91
5–10 0.45 0.21 0.34 0.79
10–20 0.00 0.24 0.76 0.76
20–30 0.00 0.23 0.77 0.77
<30 0.00 0.23 0.77 0.77

Drainage density

0–0.46 0.10 0.29 0.60 0.71
0.46–1.15 0.14 0.28 0.57 0.72
1.15–1.8 0.30 0.21 0.49 0.79
1.8–3.69 0.45 0.22 0.33 0.78

Plan curvature
<−0.01 0.00 0.49 0.51 0.51
−0.01–0.01 1.00 0.00 0.00 1.00

<0.01 0.00 0.51 0.49 0.49

LS factor

0–2.05 0.88 0.02 0.10 0.98
2.05–5.91 0.12 0.25 0.63 0.75

5.91–10.28 0.00 0.25 0.75 0.75
10.28–15.68 0.00 0.24 0.76 0.76
15.68–65.55 0.00 0.23 0.77 0.77

In the case of elevation factor, the complete correlation (Bel = 1) between gully ero-
sion and [3–125] m category denoted that the gully erosion generally occurs in lowlands
and there is a low probability for the gully erosion occurrence in higher elevation lands.
Additionally, the results of the relationship between gully erosion and slope length factor
indicated that the highest Bel value (0.88) was observed at the [0–2.5] class, signifying that
commonly, the gully erosion in the region occurs with low slope length (<5.91). In the case
of slope degree, the highest Bel value was observed between gully erosion and the [<10◦]
classes. Further, the slope aspect results determined that most of the gullies have been
formed (Bel = 0.25) in the north-east directions in the study area.

In the case of the lithology variable, the highest correlation (Bel = 0.71) was obtained
between gully erosion and Qfp, followed respectively by Qal and Qaf classes. In other
lithological units, the Bel value was zero. The plan curvature is another predictor variable
that defines the curvature of a contour line in the horizontal plane and determines a region’s
position [45,63]. As the result indicated, the [−0.1 −0.1] curvature class had the highest
impact (Bel = 1) on gully erosion occurrence, compared to the other curvature classes.

Concerning the land-use variable, most gully erosions have occurred in the barren
lands (0.71), followed by shrublands (0.29). Finally, the soil type analysis indicated that the
highest correlation (Bel = 0.94) was observed between gully erosion and the fine silty soil
texture category, followed by the coarse loamy class (Bel = 0.06).

4. Discussion

Gully erosion constitutes a serious problem for land degradation in a wide range of
environments. The Kondoran watershed is one of the most susceptible regions to gullying
in the Hormozgan province due to environmental factors and human interventions. Indeed,
this study provides an understandable platform to inform decision-makers about the
current situation of this study area. To this end, we evaluated gully erosion susceptibility
in the study area based on multiple diagnostic analysis (MDA), support vector machine,
and random forest (RF) algorithms, and also a combination of these models, namely the
ensemble model.

Each of the models contains specific weaknesses in modeling gully susceptibility
mapping, which can be resolved using the ensemble modeling method. The ensemble
method is a procedure that combines a specific number of learning models in such a way
that its predicted response is the weighted average of the predicted response obtained from
the incorporated models [26]. The evaluation of the performance of models showed that the
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ensemble model had the highest accuracy in predicting gully erosion susceptibility. These
results are consistent with the findings of Pourghasemi et al. [64] in using the ensemble
model for predicting gully erosion susceptibility.

The outputs of fitted models were spatially different because it depends on the dif-
ferent structures of the models, and also the importance of input variables to each model.
For instance, the MDA model is highly correlated with altitude, the SVM model has the
highest correlation with LS factor, while the RF and the ensemble models showed the
highest correlation with the distance to the stream predictors. The Boruta feature selection
algorithm was applied to determine the most important gully erosion factors. Results
and outputs of the Boruta algorithm indicated that distance to the stream was the most
influential factor on gully erosion susceptibility. This result corroborates the findings of
Conoscenti et al. [45], and Rahmati et al. [61].

The relationship between gully erosion and predictor variables was investigated
using the EBF model. The results showed that the highest weight of distance to streams
variable had been assigned to the regions with the nearest distance to streams. Therefore,
most gullies in study regions have been formed close to the streams because the soils
near streams are water-saturated, and as a result, the disintegration and collapse of soil
particles intensifies; subsequently, gully erosion susceptibility increases [64]. The regions
with the most drainage density had a high probability of gully occurrence due to lower
infiltration and more runoff events [31]. The highest correlation of gully erosion with the
TWI variable belongs to the regions with the higher topographic wetness. Generally, the
higher topographic wetness results in a higher probability of occurrence of gully erosion,
corroborating with Pourghasemi et al. [64] and Hembram et al. [65].

The study of elevation factor indicated that gully erosion generally occurs in lowlands
and there is a low probability for the gully erosion occurrence in higher elevation lands.
The probability of washing and disintegrating the soil particles increases in lowland regions
because the runoff accumulation is higher than in elevated regions. As a result, the gully
erosion hazard increases in lowlands, in line with the findings of Dickson et al. [66] and
Amiri et al. [7]. According to the results, the regions with lower slope angles and slope
length are more prone to gully erosion than the regions with higher slope angles and slope
length, and this is similar to the findings of Azareh et al. [32]. When the slope increases,
the water velocity increases; subsequently, the soil erosion rate increases. However, gully
erosion generally forms on low slopes and flat areas. In other words, to form a gully
erosion, water flow should accumulate at a point and create a hole; a phenomena which
commonly happens to low slopes.

Investigating the lithology variable indicated that the highest gully erosion has oc-
curred in Quaternary floodplain deposits (Qfp). These sediments contain fine-grained
floodplain deposits, silt, and fine-grained sand and clay. Therefore, these regions are the
most susceptible to gully erosion. In the case of the land-use variable, most gully erosions
have occurred in the barren lands that, due to the lack of vegetation, are more susceptible
to gully erosion. This is consistent with the finding of Fernández-Raga et al. [62]. Soil type
analysis showed that most gully erosions have occurred in the fine silty category, followed
by the coarse loamy class. These soils are more susceptible to erosion because their particles
are easily separated and transferred after moisture absorption, and thereby cause the gully
erosion phenomenon [67,68].

Raising the level of public awareness about this phenomenon, not interfering and
misappropriating in nature, preventing the destruction of natural resources, preventing
land-use change and runoff management in watersheds by implementing watershed
management projects, especially rainwater harvesting systems and vegetation restoration,
can be considered as some of the most important preventive measures in controlling gully
erosion and land degradation in the Hormozgan province [69].
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The study of gully erosion susceptibility maps indicated that, in all models, the central
and eastern parts of the studied region belong to a very high sensitivity class, while the
northern part of the region is located in the low sensitivity class. Most of the gullies
are located in lowlands, near the streams, in silty soils, in barren lands and shrublands,
and in proximity to the rural settlements. In the past few years, the gully erosion was
expanded toward the Kondoran and Armak villages lands in the middle part of the study
region. Therefore, experts and planners should prioritize the management of these lands
to reduce damages caused by gully erosion. Distance to streams and elevation cannot
change; meanwhile, restoration and development of the degraded land might change the
land use and decrease the susceptibility to gully erosion [70,71]. Additionally, sustainable
soil management could be achieved by afforestation of the barren lands and regenerative
agriculture techniques in areas most susceptible to gully erosion [72,73].

5. Conclusions

In recent years, gully erosion has caused losses of a large volumes of soil in the
Kondoran watershed in Hormozgan province, Iran. Therefore, accurate prediction of gully
erosion susceptibility is a fundamental issue to protect the soil and reduce the erosion rate.
This study applied four classification models, including random forest (RF), support vector
machine (SVM), multivariate discriminant analysis (MDA), and the ensemble model (as
the combination of the three previous models) to provide gully erosion maps of the study
region. The accuracy of gully erosion susceptibility maps was evaluated using the area
under ROC curve (AUC) and TSS metrics. Results and outputs indicated that the ensemble
method (AUC = 98.2%, TSS = 0.93) has better performance than the RF (AUC = 97.1%,
TSS = 0.91), SVM (AUC = 93.2%, TSS = 0.84) and MDA (AUC = 91.4%, TSS = 0.82) models.

The Boruta feature selection algorithm was used to determine the most important
factors in gully erosion susceptibility mapping. It was found that gully occurrence in
the study area was mainly influenced by topological factors (elevation, and distance
from streams), anthropogenic factors (land use and proximity to rural settlements), and
geological factors (lithology and soil texture). Further, the results of the Boruta algorithm
denoted that the plan curvature, TWI, and slope aspect could be ignored from the modeling
process. The results indicated that the central, eastern, and southern parts of the study area
are more susceptible to gully erosion. Models and predictors applied in this study can be
used in similar areas. Regenerative agriculture techniques and afforestation of these lands
should be prioritized to reduce land degradation in the present and future.
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Appendix A

Table A1. The abbreviations included in the text are reported alphabetically.

AGNPS Agricultural Non-point Source

AGNPS is a computer-simulation model that simulates the behavior of
runoff, sediment, and nutrient transport from watersheds that have
agriculture as their prime use. The model operates on a cell basis and is a
distributed parameter, event-based model.

AUC of ROC
Area-under-the-curve of
Receiver Operating
Characteristics

The AUC statistics describe the area under the ROC curve and are used as a
measure of classification accuracy. The greater AUC indicates a better
classification result.

Bel Belief
Belief is one of the functions that is used in EBF model. It is the pessimistic
measures of the spatial relationship of response variable, i.e., Bel indicates
the lower probabilities of evidence that supports a hypothesis.

DEM Digital Elevation Model
A digital elevation model (DEM) is a representation of the bare ground (bare
earth) topographic surface of the Earth excluding trees, mountains,
buildings, and any other surface objects.

Dis Disbelief
Disbelief is one of the functions that is used in EBF model. It is a degree of
disbelief in evidence for the hypothesis and the Dis value is obtained from
1–Pls or 1-Unc–Bel.

EBF Evidential Belief Function

The evidential belief function (EBF) algorithm describes the correlation
among predictor variables and response variable. The statistical EBF model
is computed based on Dempster-Shafer’s theory to combine the
representations of several independent variables to achieve a combined
measure of belief.

GIS Geographic Information System A geographic information system (GIS) is a conceptualized framework that
provides the ability to capture and analyze spatial and geographic data.

GLM Generalized Linear Model

GLM is the extension of the classic linear regression model. Contrasted with
the normal linear model, the response variables of GLM are not confined to
normal distribution, and these response variables can also obey binomial or
Poisson distributions. In addition, the link function is introduced into GLM
to establish the relationship between the expectation of the response variable
and the linear combination of explanatory variables.

GPS Global Positioning System GPS (Global Positioning System) is a radio wave receiver used to provide
coordinates that give the exact position of an element in a certain space.

LiDAR Light Detection and Ranging
LiDAR is a method for determining ranges (variable distance) by targeting
an object with a laser and measuring the time for the reflected light to return
to the receiver.

LISEM Limburg Soil Erosion Model
The Limburg soil erosion model (LISEM) is a physically-based hydrological
and soil erosion model which can be used for planning and
conservation purposes.

MaxEnt Maximum Entropy
MaxEnt is a data mining method to predict the occurrence of one event
based on maximum entropy that approximates the probability distribution
of presence data based on environmental limitations.

MDA Multiple Diagnostic Analysis

Multiple discriminant analysis is a classification approach that is used to
predict categorical responses. This model, also known as the Fisher
discriminant analysis, is defined based on Bayes’ theorem. The MDA
attempts to estimate the conditional probability and the predictors are
assumed to follow a multivariate normal distribution.

Pls Plausibility
Plausibility is one of the functions that is used in EBF model. It is the
optimistic measures of the spatial relationship of response variable, i.e., Pls
indicates the upper probabilities of evidence that supports a hypothesis.

RF Random Forest Random forest (RF) is a classification approach that is obtained based on the
improvement of bagging (bootstrap aggregation) trees.
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Table A1. Cont.

RUSLE Revised Universal Soil
Loss Equation

RUSLE is an easily and widely used model that estimates rates of soil
erosion caused by rainfall and associated overland flow.

SAR Synthetic Aperture Radar

Synthetic aperture radar (SAR) is a form of radar that is used to create
two-dimensional images or three-dimensional reconstructions of objects,
such as landscapes. SAR uses the motion of the radar antenna over a target
region to provide finer spatial resolution than conventional stationary
beam-scanning radars.

SVM Support Vector Machine

The support vector machine (SVM) is a supervised learning approach that is
used for classification or regression modeling. This method is defined based
on statistical learning theory and uses the structural risk minimization (SRM)
method to obtain an optimized solution.

TOL Tolerance

Tolerance is relevant and frequently used quantities that may be consulted to
examine individual predictors for potentially strong contributions to (near)
multicollinearity. This index reflects estimates of the degree of
interrelationship of an independent variable with other explanatory
variables in a regression model. The TOL less than 0.1 indicates that there
exists a collinearity problem among predictor variables.

TSS True Skill Statistic

The true skill statistic (TSS) is known as Hanssen–Kuipers discriminant, and
is commonly measure for evaluating classification accuracy. The true skill
statistics is defined based on the components of the standard confusion
matrix representing matches and mismatches between observations
and predictions.

TWI Topographic Wetness Index

The topographic wetness index (TWI) is a physically-based index of the
effect of local topography on runoff flow direction and accumulation. The
index is a function of both the slope and the upstream contributing area. The
computation of TWI is performed using both geographic information
systems (GIS) and Python, a programing software used to enhance
computing capabilities. The indices help identify rainfall runoff patterns,
areas of potential increased soil moisture, and ponding areas.

Unc Uncertainty
Unc value is one of the functions that is used in EBF model. It is the
difference between the Pls and Bel function, which shows the ignorance or
doubt that the evidence supports a hypothesis.

VIF Variance Inflation Factor

Variance inflation factor measures how much the behavior (variance) of an
independent variable is influenced, or inflated, by its interaction/correlation
with the other independent variables. Variance inflation factors allow a quick
measure of how much a variable is contributing to the standard error in the
regression. VIF is the reciprocal of Tolerance. The VIF above 10 indicates that
there exists a collinearity problem among predictor variables.
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