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Abstract: A learner’s cognitive load is highly associated with their academic achievement within
learning systems. Diagnostic information about a learner’s cognitive load is useful for achieving
optimal learning, by enabling the learner to manage and control their cognitive load in the e-
learning environment. However, little empirical research has been conducted to obtain diagnostic
information about the cognitive load in e-learning systems. The purpose of this study was to analyze
a personalized diagnostic evaluation for a learner’s cognitive load in an e-learning system, using
the Bayesian Network (BN) as a learning analytic method. Data from 700 learners were collected
from Cyber University. A learner’s cognitive load level was measured in terms of three components:
extraneous cognitive load, intrinsic cognitive load, and germane cognitive load. The BN was built by
representing the relationship among the extraneous cognitive load, intrinsic cognitive load, germane
cognitive load, and academic achievement. The conditional and marginal probabilities in the BN
were estimated. This study found that the BN provided diagnostic information about a learner’s
level of cognitive load in the e-learning system. In addition, the BN predicted the learner’s academic
achievement in terms of their different cognitive load patterns. This study’s results imply that
diagnostic information related to cognitive load helps learners to improve academic achievement
by managing and controlling their cognitive loads in the e-learning environment. In addition,
instructional designers are able to offer more appropriately customized instructional methods by
considering learners’ cognitive loads in online learning.

Keywords: diagnostic information; cognitive load; e-learning system; Bayesian Network; learning
analytics

1. Introduction

In the post-Corona era, the current educational system faces major changes in moving
from face-to-face classroom learning to online learning systems [1]. E-learning systems
play a pivotal role in improving the quality of learning in remote education [2,3]. Moreover,
previous research reports that the academic performances in distance learning with learning
technologies are similar to those in face-to-face classroom learning [4]. Since the traditional
educational environment has largely shifted to an e-learning environment, the educational
system has started to pay attention to identifying a learner’s characteristics related to
e-learning instruction, which could enhance learner-centered online learning [5]. For
example, identification of a learner’s characteristics related to instructional formats and
techniques in an online learning system (e.g., adaptation to a new learning technology,
engagement in e-learning, the degree of difficulty of the topics in e-learning) can be useful
information for the development and operation of effective e-learning systems [6]. Most of
all, instructional design considering human cognitive processing has been emphasized in
multimedia learning systems in order to effectively activate learners’ cognitive processes [7].
Kalyuga (2011) emphasized the need for an instructional design that takes into account the
cognitive load of human cognitive processing in an online learning environment [8].
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Cognitive load theory states that optimal learning can be achieved by reducing the
loads that prevent learning and enhancing the mental efforts that systematically organize
the new information [9]. That is, optimal learning occurs when learners effectively man-
age and control their cognitive load [10]. Educational instruction focuses on offering a
learning environment in which learners can manage their cognitive load without their
working memories becoming overloaded. Properly measuring a learner’s cognitive load
can provide useful diagnostic information for developing effective learning systems and
offering customized instructional techniques that allow learners to effectively control their
cognitive load.

Previous studies have reported that the cognitive load explains learners with different
learning patterns, and how e-learning instructional design should reflect human cognitive
systems [11,12]. Specifically, cognitive load theory states that there are three components to
cognitive load: extraneous cognitive load, intrinsic cognitive load, and germane cognitive
load [13]. The intrinsic, external, and germane cognitive loads affect the level of learning
transfer and academic achievement differently. In addition, they influence learners’ mo-
tivation, engagement, and adaptation to the learning system. Specifically, cognitive load
theory states that optimal learning occurs by minimizing unnecessary extraneous cognitive
loads that interfere with the transition of learning, and maximizing mental and cognitive
efforts that organize knowledge and skills [8,14]. Therefore, diagnostic information about
the strengths and weaknesses of a learner’s learning cognitive load related to academic
achievement provides an informative evaluation of the effectiveness of instruction. From
this point of view, educational research must consider how the cognitive load can be
efficiently measured and controlled [12,15,16].

This study investigated a learner’s cognitive load in an e-learning system using
learning analytics obtained by a Bayesian Network (BN) [17,18]. We estimated a personal
diagnostic information regarding the cognitive load from the BN. In addition, we identified
the patterns of the relationships among the extraneous cognitive load, intrinsic cognitive
load, germane cognitive load, and academic achievement in an e-learning system.

1.1. Cognitive Load Theory

Optimal learning can be achieved by managing and controlling the cognitive load
in a learning system [19–21]. In multimedia learning environments, information about a
learner’s cognitive load can be critical for providing effective learning instruction [22].

Sweller (1988) proposed that the cognitive load has three components: intrinsic cogni-
tive load, extrinsic cognitive load, and germane cognitive load [23]. Intrinsic cognitive load
reflects the degree of complexity and difficulty of the content, topics, and objectives that
learners must manage during a course. That is, if a learner thinks that the topics and content
in a course are difficult and complex, the intrinsic cognitive load is high. For example, a
previous study used the question “How easy or difficult do you consider this theory at
this moment?” to measure the intrinsic cognitive load [24]. Since the perceived difficulty
and complexity in the domain, content, and topics that a learner should manage during a
course are highly associated with the intrinsic cognitive load, the intrinsic cognitive load
can be dependent on learners’ previous expertise and experiences [25].

The extraneous cognitive load is the unnecessary cognitive load that prevents learners
from forming a mental model of the knowledge, skills, and abilities of a particular domain.
In an e-learning system, the extraneous cognitive load mostly results from poorly designed
teaching processes, such as how information is presented in the learning system and the
functions that facilitate learning activities (e.g., discussion and Q&A section). Therefore, the
instructional design in multimedia learning focuses on how to reduce extraneous cognitive
loads in the learning system [26,27]. For example, a previous study used the question
“How difficult was it to learn with the materials?” to measure the extraneous cognitive
load [14,24,28]. However, it is not easy in an e-learning system to provide an optimal
instructional design that fits all learners, due to the variable characteristics of learners [29].
Therefore, diagnostic information regarding a learner’s extraneous cognitive load is useful
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in order to design a customized optimal e-learning environment. A systematic e-learning
environment can be designed by minimizing extraneous cognitive loads and providing
learning activities that consider a learner’s intrinsic cognitive load, which activates learning
transfer as much as possible [30,31].

Lastly, the germane cognitive load reflects when a learner makes a cognitive and
mental effort to organize new knowledge [32]. Therefore, the germane cognitive load is
positively associated with learning outcomes. The mental effort of learning is associated
with learners’ behaviors relating to motivation and engagement on a course, and adaptation
to new learning environments [33]. Consequently, the germane cognitive load can be
measured by answering a question about how much a learner is emotionally engaged in
and contributes to a course [34].

Considering the three components of cognitive load, effective e-learning should
provide a customized instructional design minimizing the extraneous cognitive load,
offering learner-fit content given the learner’s intrinsic cognitive load, and maximizing
the germane cognitive load [35,36]. Therefore, learning analytics regarding a learner’s
cognitive load in e-learning can provide useful diagnostic information to help instructors
and learners increase learning. The purpose of this study was to propose a personalized
diagnostic evaluation of a learner’s cognitive load in an e-learning system, using the BN.

1.2. Learning Analysis for Diagnostic Information Using Bayesian Network Analysis

BN analysis is a probability-based statistical modeling framework for reasoning and
making decisions with uncertain and inconsistent patterns [37]. The BN combines a
probability theory and a graph theory to represent the probabilistic relationships among
variables under uncertainty [38]. A graphical representation is used in the BN through
a graph model, to facilitate an efficient representation. The graphical representation is
basically a concept of a finite acyclic directed graph (DAG). The DAG consists of nodes and
edges. The nodes are unobservable or observable variables. Edges are the relationships
among variables. A graph is a pair G = (A, E), where A is a set of nodes (variables) and E
is a set of edges in which one edge is a line between two vertices.

In the directed graph (G = (A, E)), there is an independent/dependent relationship
among the variables. To express the independent and dependent relationship, there are
two concepts, such as the parent variable and children variable. The sets of variables have
arrows pointing from themselves to another set of variables (A), hence are independent,
and are called parents of A. They are denoted pa (A| G) or simply pa (A). The variable A
with an edge toward it is the children of A.; hence, the children variable is dependent to
the parent variable. The relationship between the parent variables and children variables is
expressed as the conditional probability and marginal probability.

The formal notation of the conditional probability distribution associated with each
variable, given all of its parent variables, is as follows:

P(Ai = ai|pa(Ai))

The formal notation of a joint distribution associated with a BN is as follows:

P(X1 = x1, X2 = x2, · · · , XP = xP) =
P

∏
p=1

P(Xp = xp|pa
(
Xp

)
)

Lastly, if there are no parents (i.e., pa(A) is empty), then the conditional probability is
regarded as a marginal probability.

This study used a BN to infer a learner’s cognitive load in an e-learning course.
The graphical representation shows the relationship among the intrinsic cognitive load,
extraneous cognitive load, germane cognitive load, and academic achievement. Then,
the marginal and conditional probabilities were estimated for the learner’s cognitive load
pattern, regarding their academic achievement.
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1.3. Research Objectives

The main purpose of this study is to estimate a learner’s cognitive load in an e-learning
system using the BN. We first built the BN as the representation of extraneous cognitive
load, intrinsic cognitive load, germane cognitive load, and academic achievement. The
BN estimated the parameters of the conditional and marginal probabilities of the variables
in the network. Lastly, we predicted diagnostic information about the learner’s cognitive
load in terms of academic achievement. Therefore, the research questions of this study are
as follows:

(1) Does BN estimate a learner’s levels of extraneous, intrinsic, and germane cognitive
load?

(2) Does BN predict a learner’s academic achievement based on the patterns of three
cognitive load components?

The findings of this study provide useful information on how to design e-learning
instructions, considering an individual learner’s cognitive load pattern.

2. Methods
2.1. Participants

The study was conducted using data collected from 700 students in Cyber University.
A total of 754 students were attending the e-learning class, but 54 students did not take the
mid-term or final exam. Hence, we did not include 54 students in this study. The e-learning
class sampled was an Introduction to Statistics in Social Science class. The course consisted
of 14 classes on basic statistics. We also collected the final academic achievements based
on the scores of mid-term exams and final exams during the course. The final academic
achievement was computed by transferring the sum scores of mid-term and final exam
scores to the standardized scores. The standardized scores were divided into A–D grades
(i.e., A is above 90, B is between 80 and 90, C is between 60 and 80, and D is below 60).
Table 1 shows the descriptive statistics of the subjects.

Table 1. Descriptive statistics of subjects.

Percent Count

Educational Level

1 Year 45.0% 315
2 Year 22.3% 156
3 Year 16.1% 113
4 Year 16.6% 116

Age

20 s 37.7% 264
30 s 31.0% 217
40 s 16.7% 117
50 s 14.6% 102

Gender
Male 65.1% 456

Female 35.0% 245

Job Status
Full Time 49.3% 345
Part Time 30.9% 216

No 19.9% 139

2.2. Data Analysis

Descriptive statistics of all the measures were computed according to the mean, stan-
dard deviation, skewness, and kurtosis. We analyzed the data to estimate the parameters
of the conditional and marginal probabilities in the representation of the BN. This study
used the Netica provided by Norsys Software Corporation [39]. This software can be
downloaded from the website: http://www.norsys.com (accessed on 10 July 2021). The
probabilities of the network can be estimated using the function of “Learning EM” in Netica.
Expectation and Maximization (EM) algorithms, gradient ascent, and Markov chain Monte

http://www.norsys.com
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Carlo Estimation (MCMC) are commonly used in BN software programs. This study used
the EM algorithm to estimate the parameters of the BN [40].

2.3. Measures

Previous studies have proposed several cognitive load scales to measure extraneous
cognitive load, intrinsic cognitive load, and germane cognitive load [10,14]. Proper mea-
sures of the cognitive load enable learners and educators to efficiently manage and control
cognitive loads [12–14]. In this study, we used the following items for measuring the three
components of cognitive load, based on previous studies [10,14].

For the intrinsic cognitive load, we used three items: (1) the topics covered in this
course were difficult based on my previous knowledge, skills, and educational experiences;
(2) the concepts and definitions covered in this course were complex based on my previous
knowledge, skills, and educational experiences; (3) the class quizzes and class activities
with other learners were difficult based on my previous knowledge, skills, and educational
experiences. Since the previous research stated that the intrinsic cognitive load is related
to the difficulty and complexity of learning activities during a course, we asked about the
degree of difficulty and complexity of the topics, concepts, and exams in the course.

For the extraneous cognitive load, we asked three questions about whether the in-
structional design and methods were appropriate; (1) the format of the lecture screen is
designed to be easy to learn; (2) the functions for learning activities in this e-learning course
(e.g., buttons and menus for Q&A session, discussion session with other learners, learning
activities with other learners, quizzes, exams, etc.) are easy to access; (3) the instruction
is designed to support adaptation to the learning environment and improve the sense of
belonging to the course. If a learner thinks that the instructional materials are appropriately
designed for learning, the learner’s extraneous cognitive load should be low.

Finally, we used three items to measure the germane cognitive load, as follows: (1)
Did you concentrate and become engaged during the lectures? (2) Did you put in mental
and emotional effort for this class? (3) Did this course enhance your motivation to gain
new knowledge, understanding, and application of skills in the domain? A learner’s
engagement, concentration, and motivation on a course are important mental efforts for
achieving optimal learning. The germane cognitive load can reflect various cognitive
and mental efforts required to master knowledge, skills, and abilities. All items are
dichotomously scored, so that students can answer one of two options with Yes and No.

3. Results
3.1. Descriptive Statistics

The descriptive statistics of the intrinsic cognitive load, extraneous cognitive load,
germane cognitive load, and academic achievement were computed including the mean,
standard deviation, skewness, and kurtosis (Table 2).

Table 2. Descriptive statistics of the three cognitive load components.

Mean (SD) Skewness Kurtosis

Intrinsic Cognitive Load 1.46 (0.90) 0.073 −0.75
Extraneous Cognitive Load 1.65 (1.01) −0.186 −1.04
Germane Cognitive Load 1.79 (0.92) −0.25 −0.83
Academic Achievement 2.59 (0.93) −0.04 −0.87
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We also conducted a correlational analysis among the four variables (i.e., intrinsic cog-
nitive load, extraneous cognitive load, germane cognitive load, and academic achievement).
We found that extraneous cognitive load and intrinsic cognitive load were negatively
associated with academic achievement, while germane cognitive load was not statistically
significantly related to academic achievement in this study (Table 3).

Table 3. Correlation analysis of the variables in this study.

Sub-Factor Intrinsic
Cognitive Load

Extraneous
Cognitive Load

Germane
Cognitive Load

Academic
Achievement

Intrinsic Cognitive
Load 1 0.006 −0.061 −0.135 **

Extraneous
Cognitive Load 1 −0.005 −0.156 **

Germane
Cognitive Load 1 0.069

Academic
Achievement 1

** p < 0.01.

3.2. Bayesian Network Analysis for Diagnostic Information about the Cognitive Load

The BN has been proposed for modeling student performance in educational settings,
to estimate and diagnose proficiency [41–43].

In this study, we used the BN to estimate diagnostic information about a learner’s
cognitive load pattern, regarding their academic achievement. First, we built a BN rep-
resenting the relationships among the extraneous cognitive load, intrinsic cognitive load,
germane cognitive load, and academic achievement. The BN was constructed by using the
plausible hypothesized conditional probability for each item related to the three cognitive
load components, and the marginal probability of academic achievement. Figure 1 displays
an initial BN representation using Netica software. The BN consisted of three cognitive
load nodes, which were each loaded with three items. The three levels of each cognitive
load were estimated based on the responses to nine items. A higher level indicated a higher
cognitive load. In addition, academic achievement was represented in the BN.

Figure 1 is an initial BN. First, nine item nodes had two values for Yes and No. Second,
a proficiency node regarding academic achievement had four grades (i.e., A grade, B grade,
C grade, and D grade). Third, the three cognitive loads had three values (i.e., level 1, level
2, and level 3). All variables are observed except the cognitive load variables. Therefore,
the cognitive load variables were estimated based on the responses to the survey items
(Figure 2).

At the first step, for the proficiency variable, equal probabilities were considered to
take the values for four grades when prior information regarding learner proficiencies on
the course had not yet been obtained [18]. In addition, the cognitive load nodes also took
equal probabilities of each level when no prior information had been obtained regarding
learners’ cognitive load. For the item nodes, hypothesized conditional probabilities re-
flecting task characteristics associated with the states of the cognitive load nodes could be
considered. In this study, equal probabilities were used for the item nodes, which means
that there was no prior information regarding the relationship between the cognitive load
components and the items for the learners. Therefore, all probabilities in this BN were
estimated by the data collected from this study, and no prior information was used.

The estimated marginal probabilities of four statuses in academic achievement are
listed in Table 4. In addition, the estimated marginal probabilities of the three levels of
the cognitive load components (i.e., intrinsic cognitive load, extraneous cognitive load,
and germane cognitive load) are shown in Table 5. Lastly, Table 6 displays the estimated
marginal probabilities of nine items regarding the three cognitive loads.
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Table 4. Estimated marginal probabilities of four states in academic achievement (% probability).

Status Academic Achievement

A grade 18.5
B grade 34.7
C grade 33.5
D grade 13.3

To understand what a learner’s cognitive load pattern is, Figure 3 displays the es-
timated three cognitive load nodes with nine items. Once a learner’s responses to the
nine items have been obtained, this information is propagated through the network via
Bayes’ theorem to yield the posterior probability distribution of the learner’s levels for the
three cognitive load components (i.e., extraneous cognitive load, intrinsic cognitive load,



Sustainability 2021, 13, 10149 9 of 13

and germane cognitive load). We can see the cognitive load pattern in Figure 3. The BN
representation in Figure 3 shows three cognitive load components when a learner has a
particular response pattern to the items. Suppose that a learner’s responses to all items are
(Yes, Yes, Yes, No, Yes, No, Yes, Yes, Yes). The learner’s levels of extraneous cognitive load,
intrinsic cognitive load, and germane cognitive load would be (Level 1, Level 1, and Level
3), with probabilities of (75.6, 53.2, and 53.9), respectively.

Table 5. Estimated marginal probabilities of three states of the cognitive load components
(% probability).

Intrinsic Cognitive
Load

Extraneous
Cognitive Load

Germane Cognitive
Load

Level 1 39.7 30.9 10.2

Level 2 59.7 53.8 67.5

Level 3 0.60 15.3 22.3

Table 6. Estimated marginal probabilities of three states of the cognitive load components
(% probability).

Item 1 Item 2 Item 3 Item 4 Item 5 Item 6 Item 7 Item 8 Item 9

Yes 60.3 53.7 50.7 55.3 57.1 33.5 58.0 63.4 51.5

No 39.7 46.3 49.3 44.7 42.9 66.5 42.0 36.6 48.5

Sustainability 2021, 13, x FOR PEER REVIEW 10 of 13 
 

 
Figure 3. A BN representation of the predicted levels of the three cognitive load components when a learner has a partic-
ular response pattern for the items. 

 
Figure 4. A BN representation of the predicted levels in academic achievement when a learner has 
a particular cognitive pattern. 

4. Discussion 
The aim of this study was to introduce learning analytics using a BN for estimating 

a learner’s cognitive loads in an e-learning system. In addition, we predicted a learner’s 
academic achievement based on the learner’s cognitive load pattern. The findings from 
this study suggest that the BN can capture evidence to identify an individual learner’s 
cognitive load pattern, as well as predict the learner’s academic achievement based on the 
cognitive load pattern. More specifically, the BN estimates the levels of a leaner’s extrinsic, 
intrinsic, and germane cognitive load based on a leaner’s responses to the questions about 
cognitive load. For an example of three cognitive load components, when a learner has a 
particular response pattern to the questions, such as (Yes, Yes, Yes, No, Yes, No, Yes, Yes, 
Yes), the BN reports that the learner’s levels of extraneous cognitive load, intrinsic cogni-

Figure 3. A BN representation of the predicted levels of the three cognitive load components when a learner has a particular
response pattern for the items.

Next, Figure 4 shows the predicted levels of academic achievement when a learner has
a particular cognitive pattern. Considering a situation in which a learner has the cognitive
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load pattern (Level 3 in extraneous cognitive load, Level 3 in intrinsic cognitive load, and
Level 1 in germane cognitive load), the academic achievement of the learner would be a
grade D, with the probability of 64.3, on this course.
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4. Discussion

The aim of this study was to introduce learning analytics using a BN for estimating
a learner’s cognitive loads in an e-learning system. In addition, we predicted a learner’s
academic achievement based on the learner’s cognitive load pattern. The findings from
this study suggest that the BN can capture evidence to identify an individual learner’s
cognitive load pattern, as well as predict the learner’s academic achievement based on the
cognitive load pattern. More specifically, the BN estimates the levels of a leaner’s extrinsic,
intrinsic, and germane cognitive load based on a leaner’s responses to the questions about
cognitive load. For an example of three cognitive load components, when a learner has
a particular response pattern to the questions, such as (Yes, Yes, Yes, No, Yes, No, Yes,
Yes, Yes), the BN reports that the learner’s levels of extraneous cognitive load, intrinsic
cognitive load, and germane cognitive load would be (Level 1, Level 1, and Level 3), with
probabilities of (75.6, 53.2, and 53.9) (see Figure 3). Therefore, an instructor is able to have
an individual diagnostic information about a leaner’s cognitive load pattern. In addition,
the BN predicts the academic achievement with a particular cognitive load pattern, which
helps an instructor provide the next remedy step regarding cognitive load for improving
academic achievement. The BN is a useful statistical modeling method that can provide
diagnostic information about a particular learner, such as which cognitive load components
affect the learner during a course. This information is beneficial to learners, instructors, and
instructional developers, to enhance student learning in an e-learning system. In addition,
the correlation analysis found that extrinsic and intrinsic cognitive loads were negatively
associated with academic achievement. These results suggest that it is important to design
an e-learning environment to minimize the learner’s extrinsic cognitive load and provide
learning activities considering the learner’s intrinsic cognitive load. In particular, the
previous research suggested that the intrinsic cognitive load affects academic achievement
differently depending on students’ prior knowledge and intellectual level. For example,
leaners with high intelligent level prefer more difficult tasks and they are more motivated
in the class when they feel challenged. This is called expertise reversal effect [44]. The
expertise reversal effect explains the interaction effect between the intrinsic cognitive load
and levels of expertise in a particular content. Therefore, instructional designers and
instructors should consider that the relationship patterns between the intrinsic cognitive
load and academic achievement may vary depending on the learner’s characteristics.
In addition, the germane cognitive load was not significantly associated with academic
achievement in this study, which may be because the germane cognitive load is related to
learning transfer. The diagnostic information of the cognitive load in an e-learning system
could help learners, instructional designers, and instructors to identify the reasons why
a learner is struggling during an e-learning course. From the information, instructional
designers and instructors could provide effective instructional methods and a customized



Sustainability 2021, 13, 10149 11 of 13

learning environment. In other words, diagnostic information about the strengths and
weaknesses of a learner’s cognitive load during a course could be used to offer an effective
customized learning system, reducing the burdens of extraneous cognitive loads and
promoting the germane cognitive load.

The current study has several limitations. First, the application study was limited
to a particular discipline in the e-learning system. Future studies could be conducted
considering different disciplines within various e-learning formats. Second, this study
did not evaluate other learning variables which may influence the cognitive load and
academic achievement, such as learners’ ages, educational levels, and gender, etc. Because
diverse learners attend courses in e-learning systems within higher education, learners’
ages and previous educational experiences can be the important variables that might affect
the level of cognitive load and academic achievement. Future studies could consider
these confounding variables, in order to build more accurate BNs for providing diagnostic
information regarding a learner’s cognitive load. Moreover, the network in this study was
built based on a training data set. The future study with new data set should be collected
for computing the accuracy rate and cross validation of the BNs.

Nevertheless, this study, using BNs, was able to (1) infer a learner’s cognitive load
pattern based on the learner’s academic achievement in the e-learning system and (2)
predict the learner’s academic achievement by managing the learner’s strengths and
weaknesses related to their cognitive load during the course.

A large percentage of instructors using e-learning systems have indicated a desire
for more individualized diagnostic information regarding learners’ cognitive loads. Diag-
nostic information on cognitive load can help instructors obtain a better understanding
of the intrinsic and germane cognitive loads of learners with different levels of expertise.
Instructors are also able to identify which elements of cognitive load (e.g., prerequisite
knowledge, contributions or engagement on course, instructional techniques) promote
academic achievement. Consequently, instructional designers are able to offer customized
instructional methods to learners, considering their cognitive load in an online learning en-
vironment. Furthermore, this study implies that diagnostic information about the cognitive
load helps learners to improve their academic achievement by managing and controlling
their cognitive load in the e-learning environment.
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