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Abstract: Regulating the curbside usage of delivery vehicles and ride-hailing services as well as
micromobility has been a challenge in the last years, a challenge which might worsen with the increase
of autonomous vehicles. The contribution of the research outlined in this paper is an evaluation
method of the land use of on-demand meal delivery services such as Deliveroo and UberEats. It
evaluates the effect parking policies, operating strategy changes, and scheduling options have on
the land consumption of bicycle couriers and sidewalk automated delivery robots (SADRs). Various
operating strategies (i.e., shared fleets and fleets operated by restaurants), parking policies (i.e.,
parking at the restaurant, parking at the customer or no parking) and scheduling options (i.e., one
meal per vehicle, multiple meals per vehicle) are simulated and applied to New York City (NYC).
Additionally, the time-area requirements of on-demand meal delivery services are calculated based
on GPS traces of Deliveroo and UberEats riders in two UK cities. The simulation in the paper shows
that SADRs can reduce the time-area requirements by half compared with bicycle couriers. The
effect of operating strategy changes and forbidding vehicles to park at the customer’s home is small.
Delivering multiple meals in one tour halves the time-area requirements. The time-area requirements
based on GPS traces is around 300 m2·min per order. The study allows policymakers to learn more
about the land use of on-demand meal delivery services and how these can be influenced. Hence, they
can adjust their policy strategies to ensure that on-demand meal delivery services are provided in a
way that they use land effectively, reduce external costs, improve sustainability and benefit everyone.

Keywords: time-area concept; sidewalk automated delivery robots; bicycle courier; on-demand meal
delivery; parking policies; land consumption; shared mobility; land use

1. Introduction

With increasing urbanization, the number of highly dense megacities climbs [1]. The
resulting growth in production and consumption in cities increases demand for urban
freight transport [1]. As a solution, app-based platform technologies that facilitate crowd-
shipping form an emerging service that connects supply (i.e., delivery couriers) with
demand (i.e., customers) [2]. For example, the market of on-demand meal delivery plat-
forms such as Grubhub (www.Grubhub.com, accessed on 5 February 2021) and Eat24
(www.eat24.com accessed on 5 February 2021) is increasing and generated a revenue of US
$107.4 billion worldwide in 2019 [3] and Domino’s Pizza Inc. delivers more than a million
orders per day [3]. On-demand meal delivery can be divided into platform-to-customer
delivery such as Deliveroo and restaurant-to-customer delivery such as Domino’s. The
latter service can either be provided by the restaurant itself as with Domino’s or restaurants
can outsource the delivery service to aggregator platforms such as Delivery Hero and Just
Eat [3]. However, the expectation of customers to receive the order in less than an hour and
only a few minutes after it has been cooked [4], makes consolidation of deliveries difficult,
which increases the vehicle kilometer travelled (VKT) and the occupied road space.
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The delivery process usually follows the following process: The online platform
receives an order and sends a delivery request to couriers who meet specific criteria (e.g.,
close geographical proximity, good ratings). Then the courier, who accepted the delivery
request, picks up the order and deliveries it to the customer. Sometimes multiple deliveries
are combined into one delivery tour.

On-demand meal providers, who commonly rely on crowdsourced delivery couriers
(e.g., bicycle couriers), show an increasing interest in shared sidewalk autonomous delivery
robots (SADRs). Companies that are testing/have tested SADRs for on-demand meal
delivery include Domino’s Pizza Inc, Starship Technologies, Dispatch, Marble (partnering
with Yelp and Eat24), and Thyssenkrupp (partnering with TeleRetail) [5]. SADRs have
been used successfully in other industries such as hospitals to deliver drugs [6], garbage
collection systems [7], and parcel delivery [8]. While the benefits of using SADRs for
on-demand meal delivery services include cheaper delivery costs, faster delivery times [5]
and reduced energy consumption [9], the drawbacks include limited range [10], and safety
concerns [5]. SADRs are problematic given that they can be an obstacle for pedestrians,
and they can become a deadly projectile when they are hit by a car [5]. SADRs don’t fit into
existing vehicle categories and therefore cause legislative gaps [11]. There is generally a lack
of regulations for SADRs in the U.S. [5]. Most regulations ensure that SADRs must yield to
pedestrians. Whether SADRs have to yield to cyclists, have insurance, braking systems or
lights varies [5]. Additionally, weight limits, maximum speed, allowed technology, and
co-existing common rules (i.e., traffic rules, carrying of hazardous materials, etc.) change
depending on the regulation [11].

Regulating parking of mobility services (e.g., ride hailing, micromobility) and delivery
services (e.g., on-demand meal delivery) has been a major challenge in cities due to the
difference in parking behavior compared with private motor vehicles [12]. The inconsider-
ate parking of shared dockless bicycles and scooters is one of the biggest problems caused
by micromobility [13] in cities. They impede pedestrian and wheelchair travel [12], are
a tripping hazard [12], block bus stops [14], and park on tactile guidance systems [15]
and footpaths [15]. Cities were suddenly faced with the challenge of removing illegally
parked or abandoned shared bicycles and scooters, which caused additional costs [15].
Ride-hailing services and commercial vehicles are found to disproportionally double park
or block driveways and bike lanes [12] causing not only congestion but also safety haz-
ards [12]. One of the main concerns raised by the deployment of autonomous vehicles is
that parking pricing has an opposite effect on autonomous vehicles than on traditional
vehicles: While parking pricing is seen as a key option to disincentivize private car usage,
parking charges could incentivize autonomous vehicles to drive around without passen-
gers [16]. Autonomous vehicles can avoid parking charges by driving to a remote but
free parking spot after the customer has been dropped off. Even worse, they could keep
moving as fuel costs are usually only a fraction of parking charges [16].

In recent years, policymakers have started to regulate these new forms of mobility. For
example, some cities banned dockless bike-sharing systems [14,17], some cities started reg-
ulating free-floating bike sharing [15] (e.g., Vienna, Singapore, Tianjin, China, Melbourne,
Amsterdam, and Seattle) and implemented parking infrastructures such as geo-fences,
electric fences, and corrals [13]. Early research shows that parking violations are rare
in streets with these types of parking facilities [12]. Also, loading bays [12] and other
forms of delivery bay management have been suggested to organize curb site demand [18].
However, regulations for the parking of autonomous delivery vehicles such as SADRs are
still limited but required to ensure that cities can accommodate these new mobility and
delivery services.

Most measures evaluating the environmental performance of urban freight focus on
emissions [19]. However, reducing land consumption [20] as well as increasing land use
efficiency [21] is increasingly a key objective for policymakers. With increasing congestion,
parking pressure, housing shortages, and increasing urbanization, it is crucial to use space
effectively in cities. Given that every square meter devoted to streets and parking locations
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is lost for other purposes such as housing and parks, it is important to optimize transport
activities so that they require the least amount of space.

Overall, increasing the efficiency of land usage in cities is beneficial from a sustain-
ability viewpoint. This could be achieved by optimizing the parking policies of mobility
services or by new delivery methods. Parking, and especially off-street parking, is seen as
hostile to pedestrians and reduces available land for more useful investment [22]. Hence, it
is crucial to optimize both the moving and parking of vehicles to maximize the sustainabil-
ity of a city.

Most papers evaluating autonomous vehicles compare the parking requirements and
the VKT of autonomous vehicles separately. This is problematic for the evaluation of au-
tonomous vehicles as they can avoid parking by continuing to drive. This paper overcomes
this problem by applying the land consumption evaluation methodology developed by
Schnieder et al. [23] which combines the legally required area for parking and moving of a
transport unit into a single metric. Traditional measures used to evaluate traffic such as
VKT, traffic volume or the number of parking spaces cannot be used to assess the land
consumption fairly given that, for example, traveling by car requires more space than by
bicycle at any given time. However, travel by car can sometimes be quicker. Thus, the
area is occupied for a shorter time [23]. The time-area concept addresses this problem, by
measuring the “ground area consumed for movement and storage of vehicles, as well as
the amount of time for which the area is consumed” Bruun et al. [24]. In simple terms, the
required area is multiplied by the duration for which it is occupied. The reader is referred
to Schnieder et al. [23] for a more detailed overview of the time-area concept. The concept
of combining time and area is easy to understand when comparing parking requirements:
3 cars parked for one hour requires the same time-area as 1 car parked for 3 h [23].

The contribution of this paper is to adapt the evaluation method developed by
Schnieder et al. [23] to assess the land use of on-demand meal delivery services. Therefore,
operating strategies (i.e., shared fleets vs. fleets operated by a restaurant), parking policies
(i.e., parking at restaurants, parking at customers, no parking), and scheduling options
(i.e., direct delivery vs. tour-based delivery) are simulated and evaluated based on their
time-area requirements. The method has been applied to a case study of on-demand meal
delivery in New York City (NYC). Additionally, the time-area requirements of on-demand
meal delivery trips in the UK are calculated using GPS traces instead of a simulation.

The paper is structured as follows: At first, the relevant literature is reviewed with a
focus on external effects, the time-area concept and on-demand meal delivery simulations.
Then the methodology for the first study, which uses GPS traces of on-demand meal
delivery trips in Loughborough and Liverpool (UK), is explained. Afterwards, the methods
of the second and the third study are explained. Both are simulations of on-demand meal
delivery services in NYC. The second study simulates various operating strategies (i.e.,
shared fleets and fleets operated by restaurants) and parking policies (i.e., parking at the
restaurant, parking at the customer or no parking) and the third study simulates scheduling
options (i.e., one meal per vehicle, multiple meals per vehicle). Next, the calculation of the
time-area is explained. Finally, the results are presented and discussed.

2. Background
2.1. The Relationship between Sustainability and Urban Space Distribution for Mobility

Urbanization has been a common theme in the 20th and 21st centuries. With the
world’s population constantly increasing and expected to continue to increase [25], the
need for cities to accommodate larger numbers of people is a pressing issue. The resulting
expansion of the size of cities as well as the demand for resources causes traffic jams,
pollution, ecological deterioration [25] as well as insufficient public infrastructure, housing
affordability, inadequate service levels, and severe water shortages [26], ultimately making
cities unsustainable and reducing the quality of life of citizens.

The rapidly growing number of people living in cities does not only increase the
demand and competition of the housing market but also increases the number of people
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competing for limited urban road infrastructure [27]. Therefore, the importance of manag-
ing road space effectively is a key objective to ensure that all people have adequate access
to space on the roads to fulfill their mobility needs [27]. Therefore, researchers devote their
time to develop methodologies to model and optimize road space usage for various modes
of transport as well as improve the allocation of space to specific modes of transport.

To solve this problem, researchers conducted research into the ‘anti-risk capacity of a
city’ or the ‘carrying capacity’ of a city which refers to the maximum level of human activ-
ity which can be sustained without considerable degradation or irreversible damage [28].
Researchers aim to find a balance between the resource environment and (i) factors pres-
suring the city system such as urban demands (e.g., scale expansion, population growths),
(ii) consumption requirements resulting in resource shortages and environmental pollution,
and (iii) restricting factors such as imperfect social systems [25]. Roads and transport
systems are one of the carrying capacity assessment factors [28].

Other researchers focus on ‘transport injustice’ which is usually measured based
on three dimensions: exposure to traffic risks (e.g., accidents, pollution), distribution of
space, and value of time [29]. For example, Guzman et al. [30] concluded that in Bogotá a
disproportionate amount of space is devoted to cars compared to the mode share of cars.
In low-income areas even more space is devoted to cars relative to the number of trips for
people living in that area compared to high-income areas.

Other authors have proposed optimization frameworks to improve the allocation of
urban road space in multi modal transport networks. For example, Zheng et al. [27] applied
a macroscopic approach to optimize the allocation of road space between cars and busses.

In short, various angles and methodologies have been explored in the literature to
improve the sustainability of cities by allocating the limited space in cities more effectively.

2.2. External Effects and Land Consumption

Externalities are a cause of market failure [31]. They prevent price mechanisms from
allocating resources in a socially optimal way (i.e., Pareto efficiency), which is a deviation
from the neoclassical world [31]. In simple words, external costs are the costs that a user
imposes on society but does not pay a monetary compensation for [32].

To highlight the lack of consideration of land consumption in the estimation of external
effects of last-mile delivery, a systematic literature review has been performed, which has
been conducted following the PRISMA guidelines [33]. The search was conducted in
September 2021 using the keyword “external” AND “Last mile delivery” on ScienceDirect.
The keyword “external*” AND “Last mile delivery” was used on Scopus. The Wildcards
‘*’ could not be used on ScienceDirect as they are not supported. The search was limited
to title, abstract, and keywords. The term “external” has been used as abstracts using the
terms ‘negative externalities’, external costs’, and ‘external effects’ were selected using
this keyword.

Figure 1 illustrates the paper selection process in the form of a PRISMA flow diagram.
38 records have been identified through Scopus and 14 through ScienceDirect. Thirteen
papers were duplicates and have been removed. The full text of the remaining 39 papers
have been retrieved and screened for the following inclusion criteria:

• The paper evaluates ground-based last-mile delivery services (i.e., no drones)
• The evaluation method includes at least three external effects

We limited the review to studies that consider at least 3 external effects to ensure
that the review is limited to studies that were intended to give a holistic overview of the
external effects and not just consider the emissions.
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Figure 1. PRISMA flow diagram (based on [33]).

The number of excluded papers is relatively high given that most excluded papers
mentioned external effects in the first few sentences of the abstract as an introduction or
in the last few sentences to suggest future work. Other excluded papers only evaluated
emissions and therefore most likely did not intend to evaluate all external effects. As can
be seen in Table 1, only 6 papers considered three or more external effects when evaluating
last-mile delivery services. It should be noted that Starczewski [34] listed many external
effects but only provided an overall external cost without specifying the share of each
external effect on the total external costs.

Table 1. Studies evaluating last-mile delivery services based on three or more external effects.
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Mommens et al. [35] x x x x x x
Verlinden et al. [36] x x x
Veličković et al. [37] x x x x x x x

Villa [38] x x x x
Leyerer et al. [39] x x x
Starczewski [34] x x x x x x x x x x

Land consumption is generally disregarded in these evaluations. While almost all
papers consider the external effects caused by congestion, they either don’t specify which
costs caused by congestion are considered (i.e., [35,36]) or only consider the cost of lost time
due to congestion (i.e., [37–39]) but not the land consumption. However, in a review of last-
mile logistics innovations aimed at reducing external costs, Ranieri et al. [40] mentioned
land use as one of the externalities caused by last-mile delivery.

In short, land consumption is generally ignored in the external cost estimation of last- mile
delivery. It is not always considered in the external cost calculation of road transport (i.e., passenger
and freight) either: three of the most cited European reports about the estimation of external
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costs disregard land consumption in the main part of the report (Table 2). Van Essen et al. [41]
and Maibach et al. [42] mentioned the separation costs in urban areas caused by separation
effects and time losses for pedestrians. Van Essen et al. [41] did not quantify these costs and
stated that these are only partially covered in the literature. Maibach et al. [42] presented a
methodology to estimate both.

Van Essen et al. [41] only mentioned the land use of the upstream process (e.g.,
electricity production, mineral oil products exploration), but did not consider the land use
of transport activities. In all three publications, the congestion costs are mainly estimated
based on the travel-time increase due to congestion. In Table 2, X refers to external costs
evaluated in the main part of the publication and (X) refers to external costs that are only
mentioned under others with limited evaluation if any.

Table 2. European reports estimating the external costs of transport.

Author Van Essen et al.
[41]

Korzhenevych et al.
[43]

Maibach et al.
[42]

Accidents X X X
Air pollution/emissions X X X
Climate change X X X
Noise X X X
Congestion X X X
Costs of well-to-tank emissions X
Habitat damage X (X)
Costs of soil and water pollution (X) (X)
Costs of up- and downstream emissions of vehicles and infrastructure (X) X (X)
External costs in sensitive areas (e.g., mountainous regions) (X) (X)
Separation costs in urban areas (X)
Land use and ecosystem damage for upstream processes: (X)
Cost of nuclear risks (X)
Marginal infrastructure costs X
Costs for infrastructure and vehicle production, maintenance and disposal (X)
Additional costs in urban areas (X)
Costs of energy dependency (X)

The value of land is generally not taken into account in economic feasibility studies of
transport projects either or are considered as sunk cost [44]. Examples are Ireland, other
EU countries, United States, Canada, and New Zealand [44]. The value of land is only
considered in Denmark if it has to be purchased [44]. Disregarding or underpricing the
value of land falsifies the results of the economic evaluation of transport projects and may
lead to an over usage and inefficient usage of land [44]. Lavee [44] argued that the land’s
opportunity cost should also be considered to account for the economic loss caused by
preventing an alternative use of the land.

While land consumption seems to be rather disregarded in practice, the importance of
reducing land consumption is generally acknowledged in the literature.

Already in 1994, Verhoef [31] had considered land use while a vehicle is in motion
(i.e., congestion) and while a vehicle is not in motion (i.e., parking, use of public space and
congestion on parking places) as part of the external effects. Additionally, the barrier effects
of streets in communities, the severance effects in ecosystems (i.e., splitting of habitats), and
the visual annoyance are considered as part of the external effects. However, calculation
of the external effects is limited to noise, emissions, and accidents in that paper. More
recently, Euchi et al. [32] did not consider land consumption in the evaluation methodology
either but acknowledged the importance of a consideration for the scarcity of surfaces, as
devoting land to transport activities reduces the available land for green areas, displaces
people, and increases the cost of land.

In short, land consumption is frequently disregarded in the evaluation of the external
effects of transport activities, especially last-mile delivery. However, the importance of
considering land consumption is frequently highlighted.
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2.3. Time-Area Requirements

The time-area concept combines the space requirements of storage (i.e., parking) and
movement (e.g., driving) of a transport unit into one metric and allows multiple ground-
based modes of transport to be compared even if they have a different velocity or size [23].
For an extensive review of the research about the time-area concept, the reader is referred
to Schnieder et al. [23].

As illustrated in Figure 2, a pedestrian could travel for 1 h and require a space of
2 m2 during this time. A cyclist might require 6 m2 of road space but can travel the same
distance in a quarter of the time. Thus, the time-area requirement of the cyclist is 1.5 m2·h.
But the cyclist must store the bicycle somewhere after the trip. A 1 h storage of the bicycle
adds 1.5 m2·h to the time-area requirements and hence the bicycle would require more
time-area allocation than a pedestrian.

Figure 2. Time-area requirements of bicycle (blue) and pedestrian (green) (source: [23]).

The time-area concept is most useful for macro-economic decision making to allow
policymakers to allocate a limited resource (i.e., road space) in a way that maximizes
welfare and sustainability. It can also be used to calculate the opportunity cost of modes of
transport that compete for space on streets in cities, as per Bruun [24].

In the last decade, the time-area concept has become popular in anecdotal books
about traffic in cities such as those of Milosavljevic et al. [45] and Montgomery [46]. While
explaining the concept in detail, these publications only present examples for specific cases
of velocity and occupancy rate and have many assumptions that limit their impact on
policymaking and macro-economic decision making due to a lack of sensitivity analysis
of the results and concerns about their generalizability. Scientific studies developing
equations for the time-area concept are still limited. For example, Litman [47] does not
specify the methods used to estimate the time-area requirements. Shin et al. [48] used
assumed occupancy, velocity, and operational conditions but published the equations they
used. Schnieder et al. [49] used average values published in the literature. Bruun [24]
and Bruun et al. [50] used assumed values but in contrast to Shin et al. [48] explained
how they derived their equations. Only Brunner et al. [51], stated the methods used to
calculate the instantaneous space requirements and the equations. They estimated the
values based on scientific literature and test drives around Graz, Austria. All authors except
Bruun [24] calculated the time-area requirements per trip whereas Bruun [24] focused
on time-area requirements on a street segment or per passenger-kilometer. Apart from
Schnieder et al. [49], all previously mentioned papers calculate the time-area requirements
or instantaneous-area requirements only for a few example trips. Only Schnieder et al. [49]
compared the time-area requirements of home delivery and delivery to parcel lockers based
on a simulation of hundreds of parcel delivery trips in NYC considering, for example,
various operating area sizes and number of parcels per m2.
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The time-area concept generally considers all land equally (i.e., has the same value). It
can be argued that this is not appropriate given that consuming land in the city center might
be more concerning than consuming land on a rural motorway. However, the consideration
given to the financial value of land in the time-area concept is problematic since land in
rich neighborhoods would be considered to be worth protecting more than land in poor
neighborhoods. Hence, traffic would be diverted into poorer neighborhoods even if that
would be a detour [23]. In other words, a time-area metric that considers the financial value
of land would divert traffic into a poorer neighborhood where land is e.g., half of the value
of a richer neighborhood even if the detour duplicates the travel duration/distance. Hence,
more streets would be required to accommodate the increased traffic. The financial value
of land may also be inappropriate metric given that the external cost of land consumption,
especially in rural areas, might exceed the financial value due to fragmentation of habitats
and ecosystems [23]. Finally, the goal of the time-area concept is to allocate land effectively
given that all land used for streets and parking spots is lost for other purposes. Therefore,
all land is considered equally in this study. A more detailed explanation can be found in
Schnieder et al. [23].

2.4. On-Demand Meal Delivery Simulations

On-demand meal delivery studies generally either focus on new routing options or
operational planning of on-demand meal delivery services. On-demand meal delivery
routing is not the main focus in this study and an overview of studies focusing on on-
demand meal delivery routing can be found in Steever et al. [52]. All papers reviewed
in Steever et al. [52] assume that customers order a meal from exactly one restaurant.
In contrast to this, this paper considers that customers can order meals from a variety
of restaurants.

Alvarez-Palau et al. [53] built a Monte Carlo simulation of an on-demand meal de-
livery service to determine the minimum number of orders required for the service to be
profitable. They simulated different income settings and compared employed couriers with
freelance couriers. Using random variables and parameters gathered from on-demand
meal delivery platforms, they concluded, for example, that having full-time employees
instead of freelance couriers decreases profitability by 30%. The model is also very sensitive
to changes in restaurant fees.

Yildiz et al. [4] analyzed on-demand meal deliveries from a single restaurant using
crowdsourced and company-employed delivery couriers. They focused on the relationship
between e.g., service area, delivery prices, and compensation for couriers. In contrast
to this study, they assume a random demand and Euclidean distances (i.e., crow fly,
direct distance) and fixed speeds instead of real demand and travel times based on the
road network. They concluded that combining crowed sourced and company employed
couriers (i.e., hybrid delivery capacity) maximizes profits.

The research on food delivery robots includes, for example, a discrete event simulation of a
small-scale home delivery service of a bakery with autonomous robots by Vleeshouwer et al. [54].
They concluded that while the cost per order decreases by 40% due to reduced labor costs,
the utilization rate is below 10%, which reduces the financial viability of the service due
to the high investment cost. They suggest that multiple companies should collaborate to
increase the utilization rate given that their simulation assumes that deliveries only occur
one day per week.

3. Methods

This paper covers three studies: one real-world case study and two simulations. The
first study (i.e., the real-world case study) uses GPS traces of on-demand meal delivery
trips by UberEats and Deliveroo riders in Loughborough and Liverpool (UK). The second
study compares the time-area requirement of on-demand meal delivery of bicycle couriers
with SADRs in NYC applying various parking policies and operating strategy changes.
The simulation is applied to various operating area sizes and various waiting times (i.e.,
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utilization). The third study simulates only one operating area size and compares schedul-
ing options (i.e., direct vs. tour-based delivery) in NYC. In the second study, the customers
can order a meal from any of the 150 restaurants, while in the third study, the customer
orders the meal from a specific restaurant. The simulations can be divided into 3 steps:
(1) demand/ order list creation, (2) routing/scheduling, (3) time-area calculation.

3.1. Study 1: GPS Traces (Loughborough/Liverpool)

GPS traces of twelve delivery tours with a total length of 25 h and 328 km have been
recorded by a Deliveroo and UberEats courier. Three recordings took place in Loughbor-
ough, UK between Sunday the 13th of June and Tuesday the 15th of June 2021 during lunch
time or dinner time. Sometimes only half of the shift has been recorded due to the battery
running low. Nine recordings of full delivery shifts took place in Liverpool, UK between
Tuesday the 20th of July and Saturday the 24 July 2021. In most cases, two recordings have
been conducted each day (i.e., lunch time approximately at 12.00–14.30, dinner time at
approximately 18.00–20.00, and until 21.30 on Friday and Saturday). A survey has been
conducted of two delivery couriers who each work around 30 h per week. The couriers
stated that the way they deliver meals varies. They sometimes pick up a meal at one
restaurant and deliver it to the customer before picking up another meal. Other times they
pick up multiple meals from a restaurant at the same time and deliver them to multiple
customers afterward. Recently, it has become possible to pick up meals from multiple
restaurants and deliver them to multiple customers.

3.2. Study 2: Policy and Operating Strategies (Simulation, NYC)

A list of orders has been created by a binomial random number generator, based on a
dataset of on-demand meal delivery statistics in New York City [55], a list of all addresses
in NYC [56], and the population density [57]. Survey data has been chosen given that
on-demand meal delivery companies are generally reluctant to share trip data [53]. The
simulation is performed in python using libraries including seaborn [58] and matplotlib [59]
for the graphics. QGIS has been used to compile the raw datasets [60]. The location of
Citi bike sharing stations has been used as the location of restaurants [61]. Bike sharing
stations have been chosen as they are strategically placed in the city and offer easy access
by foot and by bike. The density of bike sharing stations is higher in the city center and
reduces further outside, which is the same for restaurants. For example, the density of bike
sharing station is on average twice as high in Manhattan Core than in Inner Brooklyn. The
study includes ten operating areas around the center point of 40.764940, −73.977080. Each
operating area covers 0.00457 degrees (~0.55 km) further to the east and west and 0.00455
(~0.7 km) to the north and south than the next smaller one (Table 3).

Table 3. Operating areas size.

Operating Area 1 2 3 4 5 6 7 8 9 10

Size (km2) 0.8 5.3 12.3 19.5 31.5 44.2 54.6 68.2 83.0 96.1

A dataset with 150 addresses of customers receiving on-demand meal deliveries
and 150 restaurants for each of the 100 simulations for every operating area have been
randomly selected. The closest restaurant for each customer has been determined as a
possible parking spot to wait for the next order. One hundred and fifty trips per simulation
have been chosen as this is representative of 1.3 to 24 days’ worth of orders depending on
the operating area, vehicle, and average waiting time. One transport unit is able to fulfill
only one order at a time. Figure 3 shows the trips involved in the completion of orders for
all 4 scenarios. In (a) it is assumed that the SADRs and bicycle couriers are not allowed to
wait at the customer’s home for the next order as this would block the footpath or parking
spots and couriers should be allowed to wait indoors protected from the weather. SADRs
and bicycle couriers travel to and wait at the nearest restaurant after completing an order.
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This rule increases the VKT and policymakers might decide to forbid additional travel
and rather have SADRs wait at the last customer’s address for the next order, which is
simulated in (b). In (c) the SADRs and couriers are dedicated to a restaurant and return to
the restaurant after an order. In (d) SADRs and bicycle couriers have to pay a parking fee
whenever they are standing and therefore keep moving to avoid these charges.

Figure 3. Individual trips in the on-demand meal delivery process (one color per order) (a) shared
vehicles waiting at a restaurant for the next order, (b) shared vehicles waiting at the customer for the
next order, (c) not shared vehicles, (d) shared vehicles cruising around instead of parking.

A locally hosted open-source routing machine (OSRM) [62] and the street network
from Open Street Map (OSM) [63] have been used to calculate the trip distance and duration
of the shortest route. The OSRM pedestrian routing profile has been used for SADRs as they
are able to travel on footpaths. The OSRM bicycle profile has been used for bicycle couriers.

To account for the waiting time between two orders, eight average waiting times
between two trips have been simulated using eight truncated normal distributions with
a mean of i minutes, a lower limit of zero minutes, and an upper limit of i*2 min. The
integer i = 1, 2, 4, 8, 16, 32, 64, and 128. All 80 scenarios (10 operating areas by eight average
waiting times and 150 orders each) are simulated 100 times each. It is assumed the delivery
service runs 24/7.
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The handover time has been determined based on the survey and GPS traces of on-
demand meal delivery services in the UK. It is defined as the time between arrival at the
customer’s address and leaving again including the time required for finding a parking
spot and walking to the customer. One responder stated that it usually takes less than 30 s
or between 30 s to 1 min to hand over a meal. According to the second responder, it takes
in most cases 60–90 s to hand over a meal, but handover times of 0–2 min are common as
well. Based on the GPS data of twelve delivery tours (Tour 1: 1:04 h, 16 km; Tour 2: 2:35 h,
22 km; Tour 3: 1:19 h, 21 km; Tour 4: 2:32 h, 30 km; Tour 5: 2:29 h, 34 km; Tour 6: 2:18 h,
31 km; Tour 7: 1:37 h, 24 km; Tour 8: 2:14 h, 33 km; Tour 9: 1:55 h, 27 km; Tour 10: 2:20 h,
27 km; Tour 11: 1:49 h, 20 km, Tour 12: 3:00 h, 43 km) the handover time is on average
73 s (median: 68 s, std: 40 s). These observations are similar to the data from the survey.
The time required to pick up a meal from a restaurant varies (mean: 3:14 min, median:
1:05 min, std: 224 s). Approximately 30 % of the meal pickups are longer than 5 min. A
reason for this is that it is unknown whether the bicycle courier really picked up a meal at
that restaurant or maybe just makes a toilet break or waits in the restaurant for the next
order request. Hence, the handover time at the customer’s home has been used as the
handover time at restaurants as well. Note: the handover time observed during a study of
parcel delivery trips with vans in London [64] is much larger compared with the handover
time for on-demand meal delivery observed in this study (mean: 4.1 min, min: 1.6 min,
max: 6.8 min, std: 1.2 min). A possible reason could be that customers are expecting a meal
delivery, while a parcel might be delivered at a time when the customer is not expecting
it. Also, the study in London uses vans, whereas the GPS traces used in this study are
from bicycle couriers, who may be able to find a parking spot closer to the customer. It
might be debatable whether the handover time of on-demand meal delivery services in
UK cities is similar to the handover time observed in NYC. However, the handover time is
only affected by the time it takes the customer to answer the door and the time required for
the courier to walk from their bicycle to the door and back. Hence, it is not affected by the
urban structure, type of streets, traffic and pedestrian volume, etc., and therefore should be
relatively similar.

3.3. Study 3: Scheduling: Tour-Based vs. Direct Delivery (Simulation, NYC)

The first simulation assumes that each meal is delivered as a direct delivery tour and
each courier serves various restaurants. While this is a common delivery option according
to the responders in the previously mentioned survey, both responders state that it is also
common for couriers to pick up multiple orders at one restaurant and deliver them in a
single tour. According to one of the responders, it is nowadays also possible to first pick up
meals from multiple restaurants and then deliver them to multiple customers as a tour.

The third study, which compares different scheduling options (i.e., tour-based vs.
direct delivery) (Figure 4), uses the same demand for on-demand meal deliveries as the
second study. Due to the low speed of SADRs only the smallest operating area is used as
it would otherwise be impossible to combine multiple deliveries into one tour and still
obey the maximum 30 min delivery time. It is assumed that all vehicles are owned by the
restaurant and park at this restaurant after a delivery tour. The closest restaurant to the
center of the operating area has been selected. The vehicles are a small van, SADRs, and
a bicycle courier. Each mode has been simulated with two different scheduling options;
(1) delivering one meal at a time on a first come first serve basis, without any waiting time
in between deliveries (SADR-1, Bicycle-1, Small Van-1); and (2) delivering 30 meals during
each of the 5 timeslots by a SADR-X, Bicycle-X, or Small Van-X. The roundtrip delivery
duration needs to be less than 31.2 min (30 min delivery plus 1.2 min handover time). If a
vehicle is not required during a timeslot, it is parked at the restaurant and counts towards
the time-area requirements. To ensure an efficient utilization, the vehicles will start with
the next tour once the previous tour is finished even if this time is slightly before or after
the beginning of the next timeslot.
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Figure 4. Individual trips in the on-demand meal delivery process (a) direct delivery, (b) tour-based
delivery. (Each line represents one delivery tour).

The following tour scheduling algorithm (1) applies a similar method to the routing
algorithm named farthest insertion algorithm:

Input: travel time matrix for all 30 customers and the restaurant
Output: List of customers ordered into tours

1. Select the furthest customer from the restaurant and name it customer A
2. While travel time is <31.2 min and not all customers are served
3. If ‘new customer’ exists delete it from the travel time matrix
4. Add the customer closest to customer A to the list and name it ‘new customer’
5. Calculate the traveling salesman problem for all customers on the list and customer A

and the restaurant (roundtrip)
6. If travel time is >31.2 min
7. Delete the ‘new customer’ from the list and place it back into the travel time matrix
8. Calculate the traveling salesman problem for all customers on the list and customer A

and the restaurant (roundtrip)
9. Else
10. Calculate the traveling salesman problem for all customers on the list and customer A

and the restaurant (roundtrip)

The algorithm selects the furthest customer away first and its neighboring customers,
to ensure that the last tour only covers customers close to the restaurant. Like most Travel-
ing salesman solvers, this algorithm will not necessarily find the best tour allocation [65].

3.4. Time-Area Requirements

As illustrated in Schnieder et al. [23], the time-area concept can consider either the
area legally required for safe operation or the share of the provided infrastructure. Using
the area legally required for safe operation is more appropriate to the scenarios evaluated
in this paper given that bicycles and SADRs do not have a dedicated right-of-way. This
means that ground space not used by bicycle couriers or SADRs can be used by other
modes of transport (i.e., cars, pedestrians). The equation does not consider the value of
land given that considering the value would unfairly impact poorer neighborhoods as
stated earlier Schnieder et al. [23]. The time-area requirements have been estimated based
on the following equation described in Schnieder et al. [23] (Figure 5):

TAi =

(
li + si +

(
ts ∗ di

ti

))
∗ wi ∗ ti, i = 1, 2, . . . nMT (1)
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Transformed into:

TAi = ((li + si) ∗ ti + (ts ∗ di)) ∗ wi (2)

where,

TAi: Time-area required for trip
li: Length of vehicle
si: Safety distance kept when vehicles are standing
ts: Following rule (e.g., 2 s rule)
di: Trip distance
ti: Trip duration
wi: Width of the lane/right-of-way

Figure 5. Specifications of the simulation (source: Schnieder et al. [23]).

For a derivation of the formula, the reader is referred to Schnieder et al. [23]. The
safety distance si is the distance that is maintained between two standing vehicles at a
traffic light or while parking parallel to the curb. Without si the distance kept between
vehicles when the velocity is close to 0 would be just a few centimeters. However, the
safety distance to the front for bicycles is set to 0 to accommodate the overestimation of the
width of the bicycle while standing still (i.e., the dynamic width of a bicycle while cycling is
much larger than the width while standing). An explanation of the specifications adopted
and comparison with other published research can be found in Schnieder et al. [23]. The
size of a typical SADR is based on the Starship delivery robot [66]. The parameter ts is the
safe separation distance that is kept between two following vehicles. Given that time-area
Equation (2) applies to standing and moving transport units, the order duration is taken as
the length of the entire order plus the waiting time until the next order. Table 4 shows the
specifications of the time-area requirements for simulations of last-mile delivery vehicles
estimated by Schnieder et al. [23] and the resulting instantaneous area requirements. The
speed profile refers to the profiles in open-source routing machine (OSRM). Tables 5–7
show the resulting instantaneous area requirements.

Table 4. Specifications for the simulation of the time-area requirements (source: Schnieder et al. [23]).

Mode OSRM Speed
Profile li (m) Length si (m) Safety Distance wi (m) Width ts (s) Following Rule

Bicycle Bicycle 1.8 0 1.5 2
Small van Car 4.4 1 2.75 2

SADR Pedestrian 0.678 0.197 0.875 1

Table 5. Instantaneous area requirements for bicycles (source: Schnieder et al. [23]).

km/h 0.0 3.6 7.2 11 14 18 22 25 29 32

m2 2.7 5.7 8.7 12 15 18 21 24 27 30
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Table 6. Instantaneous area requirements for SADRs (source: Schnieder et al. [23]).

Speed (km/h) 0.0 1.8 3.6 5.4 7.2

m2 0.8 1.2 1.6 2.1 2.5

Table 7. Instantaneous area requirements for small vans in m2 (source: Schnieder et al. [23]).

Speed (km/h) 0 7.2 14 22 29 36 50 65

m2 15 26 37 48 59 70 92 114

3.5. Limitations

For simplicity, it is also assumed that the time-area requirements of the bicycle courier
when walking the last meters to the customer are included in the time-area requirements
of the bicycle.

The utilization is assumed to be the same for shared vehicles and restaurant-owned
vehicles. In reality, it is possible that the average utilization is higher for shared vehicles as
they serve multiple restaurants which ideally might have their peak demands at different
times of the day (e.g., bakeries at breakfast and pizzerias evening/night). Vehicles operated
by a single restaurant will have a lower utilization during times outside of the peak demand
of the restaurant’s products. By assuming the same utilization for all, the simulation
compares the worst case for shared vehicles with the normal case for dedicated vehicles.
Otherwise, it could be argued that shared vehicles perform better in simulations due to
the assumption that restaurants have their peak demand at different times of the day,
which might not be the case in reality. For the same reason, the order of the trips has
not been optimized in the simulation and instead a random order of the meal orders has
been adopted.

4. Results
4.1. Study 1: GPS Traces (Loughborough/Liverpool)

Table 8 shows the average values for selected key performance parameters. The
average shift length is the total duration including any breaks. It is assumed that the
bicycle courier is waiting whenever the speed is less than 1.6 km/h. Hence, the waiting
time includes the handover time (i.e., time required to hand over meals to the customer
including parking the bicycle, walking to the customer and walking back to the bicycle),
time to pick up a meal from restaurants, toilet/snack breaks by the courier, brief stops to
accept delivery requests, stops to find the correct address if the courier is unable to locate
the customer’s address, and stops at traffic lights. The travel duration is the time when the
bicycle travels 1.6 km/h or quicker. The share of the waiting time shows the percentage of
time when the bicycle courier is stationary. The distance is the distance traveled during
the shift. Average speed with and without breaks is calculated by dividing the shift length
or the travel duration by the distance traveled. Ascent and descent are the sums of the
elevation climbed or descended during the shift. The number of orders is the number of
meal deliveries made during a shift.

As can be seen in Table 8, the average of the shift length for the delivery trips in
Loughborough during lunch is much smaller given that only half of the delivery tour could
be recorded due to battery problems. Most of the shifts were between 2 h and 2.5 h long.
The waiting time accounts for around 1/3 of the delivery duration. This result is interesting
given that the handover time alone is 62 % of the delivery duration for parcel deliveries
in London [64]. Only the average share of the waiting time for Loughborough-Dinner is
relatively large (i.e., 51 %). The data from Loughborough should be interpreted carefully
given that it is based on 1 or 2 trips and only part of the shift has been recorded due to
battery problems. The data from Liverpool are full shifts and based on 4 or 5 trips. The
average travel duration per meal delivery is 15–17 min and the average delivery duration
per meal delivery including waiting time is 22–30 min. The average distance per shift is
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around 30 km in Liverpool and around 5 km per order. The courier ascends by a total of
around 95 m in Loughborough and around 240 m in Liverpool. The average speed with
waiting time is less than 15 km/h and close to 20 km without waiting time. The average
number of orders per shift is 6 in Liverpool.

Table 8. Selected key-performance indicators for GPS traces.

Loughborough-
Lunch

Loughborough-
Dinner

Liverpool-
Lunch

Liverpool-
Dinner

Number of GPS traces 2 1 4 5

Average shift length (min) 72 155 133 136

Average waiting time (min) 21 78 39 43

Average travel time (min) 51 77 94 93

Average shift length per delivery (min) 23 30 24 22

Average travel duration per delivery (min) 17 15 17 15

Average share of waiting time 29% 51% 29% 31%

Average distance (km) 19 22 29 31

Average distance per delivery (km) 6.0 4.2 5.1 5.0

Ascent (m) 93 97 239 241

Descent (m) 72 95 240 244

Average speed with waiting time (km/h) 15 9 13 14

Average speed without waiting time (km/h) 21 17 18 20

Number of orders per tour 3 5 6 6

The time-area requirements per order for every shift are shown in Figure 6. The
median of the time-area requirements for Liverpool is 322 m2·min per order for lunch and
292 m2·min per order for dinner. Based on the limited data available for Loughborough,
the average time-area requirements per order is 361 m2·min for lunch time.

Figure 6. Time-area requirements per order (GPS traces; data availability for Loughborough is limited).

4.2. Study 2: Policy and Operating Strategies (Simulation, NYC)
4.2.1. Key Performance Indicators

The travel duration from the restaurant to the customer including the handover time
is shown in Figure 7. Given that SADRs typically travel at walking speed [66], they can
only operate in a small operating area if they are required to deliver hot food. In the UK it
is advised to deliver hot food within 30 min (i.e., [67,68]). This rule would be broken by a
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few delivery trips in operating area 3 (Figure 7) and larger. Under the 30-min constraint
bicycles travel quickly enough to be able to deliver hot food as far as operating area 5
(Figure 7). The larger operating areas are included in the study given that the delivery time
of chilled food is longer or heated storage could keep food hot for longer.

Figure 7. Travel duration per trip between the restaurant and the customer’s home excluding
handover time.

Figure 8 shows the distance travelled to fulfill a single order. Overall, the distance per
order is similar for the six delivery options. The distance covered by bicycles is slightly
larger (16 % operating area 1, reduced to 3 % in operating area 10) given that SADRs travel
on the footpath and are not affected by one-way streets and other routing constraints.
The maximum battery range of SADRs (e.g., [66]) is too short for most trips in operating
area 3 or larger. This problem would be amplified were it is not possible to recharge
the delivery robots at every restaurant. The difference between restaurant owned (i.e.,
dedicated) vehicles and shared (a) and shared (b) is around 10 % in operating area 1 and
reduces quickly to less than 1 % for operating area 7 or larger.

The time required to fulfill one order is longer for SADRs than for bicycle couriers
(70 % in operating area 1, increasing to 2.5-fold in operating area 10) due to the slower
speed (Figure 9). The difference in the travel duration between shared and dedicated
vehicles is rather small, which is similar to the travel distance.

Figure 8. Distance traveled by delivery vehicle per order.
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Figure 9. Duration per order including driving and handover time.

Figure 10 shows the increase in order duration and distance assuming that shared
bicycles parking at the customer is 100 % (i.e., Bicycle Shared (b)). The average delivery
duration of SADR Shared (b) is 1.7 (operating area 1) to 2.5 times (operating area 10) longer
than for Bicycle Shared (b). The difference in the duration between shared vehicles parking
at restaurants (a) and restaurant owned vehicles (i.e., dedicated vehicles (c)) is less than
1 % for both modes of transport.

The travel distance of SADR Shared (b) is between 15 % smaller in operating area 1
(19 % for SADRs) and 3 % smaller in operating area 10 (2 % for SADRs) than Bicycle Shared
(b). The absolute increase in travel distance is less than 500 m in all cases. The trip distance
for SADRs is only 85 % (operating area 1) of the trip distance of bicycle couriers given that
SADRs are not affected by one-way streets etc. The effect reduces when the trip distance
is increasing.

Figure 10. Increase in (a) delivery duration and (b) distance (Bicycle Shared (b) is 100 %).

4.2.2. Time-Area Requirements

The time-area requirements are illustrated in Figure 11. Restaurant-owned SADRs
have a less than 1 % higher time-area requirement compared with SADRs parking at
customers. Requiring SADRs to park at a restaurant (a) increases the time-area requirements
by 1 % to 19 %. The percentage increases with the operating area size and decreases with
the waiting time between trips. This is due to the waiting time requiring the same time-
area regardless of the parking location. The time-area requirement of bicycles is around
2.7 to 3.6 times larger compared to SADRs. The difference reduces when the operating
area size increases, or the waiting time reduces. While keeping moving to avoid parking
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charges might be unrealistic for bicycle couriers, it is an attractive option for autonomous
vehicles as driving is usually cheaper than parking charges [16]. The time-area requirement
of SADRs traveling at walking speed is twice as high as the time-area requirements of
standing SADRs. If parking policy (d: shared vehicles cruising around instead of parking)
is implemented, the time-area requirements of SADRs increases by up to 82 % (wait 128 min,
Operating Area 1) compared to SADR Shared (b).

Figure 11. Time-area requirements in m2·min (logarithmic scale).

4.2.3. Sensitivity Analysis

Figure 12 shows the sensitivity analysis. On the left side in Figure 12, the average
waiting time between trips is increased while the operating area is always operating area 5.
On the right side in Figure 12, the operating area size is increased while the waiting time is
constant at 32 min. The length li, safety distance si, width wi, following rule ts, travel time
ti (i.e., handover time + driving time), and travel distance di have been increased by 20 %
and the increase in the time-area requirements has been calculated. In all cases, an increase
in the width of a vehicle increases the time-area requirement correspondingly. The graphs
for bicycles and SADRs are similar apart from the effect of an increased travel distance
being lower for SADRs and the effect of an increase in the safety distance and travel time
being larger for SADRs. As can be seen in Equation (1), an increase in the travel time
and following rule has the same effect as both factors are multiplied by each other. The
difference in the sensitivity between operating strategies and parking policies is negligible.
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Figure 12. Sensitivity analysis (Factors increased by 20 %). (Note: Increasing the following rule ts or travel time di has the
same results as both are multiplied).

4.3. Study 3: Scheduling: Tour-Based vs. Direct Delivery (Simulation, NYC)

The number of vehicles required for each of the 500 delivery slots (five slots per day
over 100 days) is relatively constant for the tour-based delivery simulation: Either two
small vans (maximum three) or three bicycles (maximum four) are required for almost all
of the 500 delivery slots. In most cases, four or five SADRs are required for each delivery
slot due to the low speed. Only three delivery slots require three SADRs. The simulation
always assumes that either five SADRs, four bicycle couriers, or three small vans are used
to deliver the meals given that this is the maximum number of vehicles required. Vehicles
are parked at the restaurant during the slots they are not required and count towards the
time-area requirement.

Figure 13 compares the time-area requirements for all three modes of transport and
tour scheduling options. Combining multiple deliveries into one tour reduces the time-area
requirement by 60%–65%. Even if SADRs would only be able to deliver one meal per tour
(17 m2·min), the required time-area would still be 23% smaller than that of a bicycle courier
which delivers multiple meals in one tour. Policymakers should discourage the use of cars
to deliver meals in cities given that even a small van requires three times as much time-area
compared to a bicycle.

Figure 13. Time-area requirements per order (logarithmic scale).

Figure 14 shows the sensitivity analysis. Each factor listed on the right in the figure is
increased by 20%. The sensitivity is relatively similar across all delivery options and modes
of transport.
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Figure 14. Sensitivity analysis.

As in study 2, an increase in the safety distance si has the smallest effect (i.e., <2.4%)
and an increase in the width wi has the largest effect on the time-area requirements (i.e.,
20%). Increasing the length li of the vehicle or travel time ti by 20% increases the time-area
requirements by 5.2–9.4% and 5.8–11.5%, respectively. Increasing the following rule ts or
travel distance di increases the time-area requirements by 8.5–14.2%.

5. Discussion

Regulating delivery services using autonomous vehicles is a challenge that will soon
be faced by policymakers. The environmental performance of urban freight is in most
cases focused on emissions [19], which neglects the importance of allocating land effec-
tively. Given that every square meter devoted to streets is lost for other purposes such as
housing or parks [23], reducing land consumption [20] as well as increasing the land use
efficiency [21] is increasingly a key objective for policymakers.

The time-area concept is especially useful for this aim as it can be used to compare
modes of transport that have different sizes and velocities, and it combines the requirements
of moving and standing transport units in one metric. The latter makes the time-area
concept especially useful for autonomous vehicles, which can avoid parking charges by
continuing to drive.

This paper has applied the time-area concept to simulations of on-demand meal
delivery services in NYC as well as to GPS traces of real on-demand meal delivery tours in
the UK. Different vehicles (i.e., SADRs and bicycle couriers, small delivery vans), using
different operating strategies (i.e., shared vs. dedicated fleets), following various parking
policies (i.e., parking at restaurants, parking at the customer’s home, and no parking
policies), and two scheduling options (i.e., direct vs. tour-based delivery) are simulated
and evaluated.

The GPS traces (Loughborough and Liverpool) show that the on-demand meal deliv-
ery bicycle is only stationery for around 30% of the time. This result is interesting given that
parcel delivery vans are stationary for 62% of the delivery time in London [64]. It would be
worth investigating the reasons for this. Doing so enables companies to identify options to
increase the efficiency of last-mile delivery by reducing handover time. Possible reasons
include (i) bicycle couriers may be able to park closer to the customer than delivery vans,
(ii) high-rise buildings in London may make deliveries more difficult, (iii) parcel delivery
locations may be closer together than the on-demand meal delivery location, or (iv) a meal
delivery customer might be more aware of the delivery time point than a customer waiting
for a parcel.

When comparing the simulation of study 2 for NYC with the results from the GPS
traces from Loughborough and Liverpool, it can be seen that the key-performance indi-
cators based on GPS traces and operating area 5 (simulation) with less than 16 min wait
between orders are similar (e.g., distance per order is around 5 km). Also, the time-area
requirements are similar.
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The results of the second study show that SADRs can only operate in very small
operating areas due to their current safe operating speeds being too slow to deliver hot
meals within the recommended time frame in large operating areas. The area-time require-
ments of SADRs are around half of the time-area requirements for cycling couriers. This
result is another argument in favor of the ‘15-min city’. The ’15-min city’ refers to a city
structure where all residents can walk or ride a bike to reach daily errands (i.e., work,
school, shopping) within 15 min [69]. The ‘15-min city’ not only enables people to meet
their mobility needs, it also allows for the implementation and use of innovative forms of
last-mile delivery. Completely segregated cities or residential suburbs, that don’t have any
restaurants, are not a good fit for SADRs.

Operating strategy changes (i.e., shared vs. restaurant owned), and two of the parking
policies (parking at restaurant vs. parking at customer), have only small effects on the
time-area requirements.

Under no circumstances should policymakers disincentivize parking for autonomous
delivery vehicles (e.g., implementing parking charges) as this would incentivize au-
tonomous vehicles to drive around instead of parking. Doing so increases the time-area
requirements by 2–5 times assuming average speeds in cities. Thus, parking charges are as
counterproductive for SADRs as they are for autonomous passenger vehicles [16]. A better
strategy would be to use a time-area based road pricing method. When cars are the main
mode of transport, charging fees per trip is reasonable (i.e., parking charges). However,
the shape, size, and average speed can vary between autonomous vehicles, micromobility,
and cycling. Consequently, a per vehicle charge would not be fair. The time-area concept
would allow policymakers to define a fair charge for each transport activity exactly based
on the ground area and time they occupy. By doing so policymakers would incentivize
modes of transport that use land more effectively, which maximizes sustainability.

Increasing the travel time (i.e., reducing the travel speed) increases the time-area
requirements only by a fraction of this increase, as seen in the sensitivity analysis. The same
applies to increasing the vehicle length. If the vehicle width is increased, the time-area
requirements increase by the same percentage.

Combining multiple deliveries into one tour reduces the time-area requirement by
60 %-65 %, when using SADRs, bicycles or small vans (study 3). This highlights the benefits
of aggregator platforms and sharing resources (i.e., delivery vehicles). Instead of having
multiple providers who own, run and optimize their own fleet of vehicles, it would be
better for them to collaborate to take advantage of economies of scale by increasing the
likelihood that multiple customers live close together.

As previously stated, utilization is the same for shared vehicles and restaurant-owned
vehicles in the simulation, even though shared vehicles could achieve a higher utilization if
they serve restaurants which have their peak demands at different times of the day. A bak-
ery might have their peak demand at breakfast and pizzerias in the evening. Nevertheless,
it has been assumed that the utilization is the same to ensure that shared vehicles are not
only performing better due to the assumed higher utilization, which might not be the case
in reality. The order of the trips has not been optimized for the same reason. Nevertheless,
a follow up study could investigate whether a utilization increase could realistically be
achieved (using real data), and the effect of this increase on the time-area requirements.

The differences between the time-area requirements of each mode of transport are
clearly visible in study 3: A SADR delivering only one meal at a time has a 23% smaller
time-area requirement than a bicycle courier delivering multiple meals per tour. This again
highlights the importance of the economics of scale, given that bicycle couriers can achieve
similar time-area requirements to a SADR if they deliver multiple meals per tour.

A small van requires 3 times as much time-area compared to a bicycle assuming that
both deliver multiple meals per tour. Therefore, policymakers should discourage the use of
cars to deliver meals in cities as well as build the city so that delivery by bicycle or SADR is
easily possible.
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6. Conclusions

The paper evaluates the land consumption of on-demand meal delivery services such
as UberEATS and Deliveroo based on the time-area concept. The time-area concept mea-
sures the area required for a transport activity and the duration for which it is occupied. The
contribution of the paper is twofold: First, the paper calculates the time-area requirements
of GPS traces of on-demand meal delivery tours in Liverpool and Loughborough (UK).
Second, on-demand meal delivery trips using bicycle couriers and SADRs are simulated
for NYC. Various operating strategies (i.e., shared fleets and fleets operated by restaurants),
parking policies (i.e., parking at the restaurant, parking at the customer or no parking), and
scheduling (i.e., one meal per vehicle, multiple meals per vehicle) are simulated.

The dataset of GPS traces includes 25 h and 327 km worth of data for two cities in
the UK. Most of the data has been recorded in Liverpool. The Loughborough dataset is,
with 5 h and 59 km, relatively small and does not, in contrast to the Liverpool data, include
full delivery trips. The results show that the time-area requirement is around 300 m2·min
per order.

The simulations show that SADRs are only an option for small operating areas, but
their time-area requirements are only around half of that of bicycle couriers. If bicycle
couriers deliver multiple meals per tour while SADRs deliver one meal at a time, SADRs
still require 23% less time-area. Delivering meals by small vans can never be recommended.
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