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Abstract: European Union (EU) policy encourages the development of a blue economy (BE) by
unlocking the full economic potential of oceans, seas, lakes, rivers and other water resources, espe-
cially in member countries in which it represents a low contribution to the national economy (under
1%). However, climate change represents a main barrier to fully realizing a BE. Enabling conditions
that will support the sustainable development of a BE and increase its climate resiliency must be
promoted. Romania has high potential to contribute to the development of the EU BE due to its
geographic characteristics, namely the presence of the Danube Delta-Black Sea macrosystem, which
is part of the Romanian Lower Danube Euroregion (RLDE). Aquatic living resources represent a
sector which can significantly contribute to the growth of the BE in the RLDE, a situation which
imposes restrictions for both halting biodiversity loss and maintaining the proper conditions to
maximize the benefits of the existing macrosystem. It is known that climate change causes water
quality problems, accentuates water level fluctuations and loss of biodiversity and induces the
destruction of habitats, which eventually leads to fish stock depletion. This paper aims to develop
an analytical framework based on multiple linear predictive and forecast models that offers cost-
efficient tools for the monitoring and control of water quality, fish stock dynamics and biodiversity
in order to strengthen the resilience and adaptive capacity of the BE of the RLDE in the context of
climate change. The following water-dependent variables were considered: total nitrogen (TN); total
phosphorus (TP); dissolved oxygen (DO); pH; water temperature (wt); and water level, all of which
were measured based on a series of 26 physicochemical indicators associated with 4 sampling areas
within the RLDE (Brăila, Galat, i, Tulcea and Sulina counties). Predictive models based on fish species
catches associated with the Galati County Danube River Basin segment and the “Danube Delta”
Biosphere Reserve Administration territory were included in the analytical framework to establish
an efficient tool for monitoring fish stock dynamics and structures as well as identify methods of
controlling fish biodiversity in the RLDE to enhance the sustainable development and resilience
of the already-existing BE and its expansion (blue growth) in the context of aquatic environment
climate variation. The study area reflects the integrated approach of the emerging BE, focused on the
ocean, seas, lakes and rivers according to the United Nations Agenda. The results emphasized the
vulnerability of the RLDE to climate change, a situation revealed by the water level, air temperature
and water quality parameter trend lines and forecast models. Considering the sampling design
applied within the RLDE, it can be stated that the Tulcea county Danube sector was less affected by
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climate change compared with the Galat, i county sector as confirmed by water TN and TP forecast
analysis, which revealed higher increasing trends in Galat, i compared with Tulcea. The fish stock
biodiversity was proven to be affected by global warming within the RLDE, since peaceful species
had a higher upward trend compared with predatory species. Water level and air temperature
forecasting analysis proved to be an important tool for climate change monitoring in the study
area. The resulting analytical framework confirmed that time series methods could be used together
with machine learning prediction methods to highlight their synergetic abilities for monitoring and
predicting the impact of climate change on the marine living resources of the BE sector within the
RLDE. The forecasting models developed in the present study were meant to be used as methods of
revealing future information, making it possible for decision makers to adopt proper management
solutions to prevent or limit the negative impacts of climate change on the BE. Through the identified
independent variables, prediction models offer a solution for managing the dependent variables and
the possibility of performing less cost-demanding aquatic environment monitoring activities.

Keywords: blue economy; fish stocks; water quality; machine learning; forecast models

1. Introduction
1.1. EU Blue Economy and Blue Growth

In the scientific literature, a blue economy (BE) is most widely associated with actions
related to the governance and management of seas and oceans [1,2]. There is no widely ac-
cepted definition of the term BE [2]. Therefore, according to some authors [3], the definition
of a BE includes aquatic and marine spaces (e.g., seas, coasts, lakes, wetlands, floodplains,
rivers and underground water resources) while also covering a variety of production sec-
tors including fishing, aquaculture, tourism, shipbuilding, underwater mining, transport,
bioprospecting and other related activities. Other research papers [4] pointed out that a BE
encompasses all economic activities related to the oceans, seas and coasts, covering a wide
range of interlinked established and emerging sectors. The BE is considered a consequence
of the growing worldwide interest in the growth of water-based activities [5] seeking to
curb biodiversity loss while stimulating economic development [6]. The EU concept of a
BE includes all economic activities related to the oceans, seas and coasts, which includes a
wide range of interlinked sectors [7] compared with the World Bank BE concept, which
is strictly based on the sustainable use of ocean resources [8]. According to the European
Commission Report on BEs elaborated in 2021 [9], the EU BE includes a series of estab-
lished sectors such as marine living resources, marine extraction of non-living resources,
maritime transport, port activities, shipbuilding and repair as well as coastal tourism, all of
which are considered highly important for the development of the EU economy in addition
to emerging sectors such as marine renewable energy, BE biotechnology, desalination,
marine minerals, marine defense, security and surveillance. The importance of the EU BE
is revealed by the fact that it directly employs over 4 million people (1.8% of the overall
EU economy), with over EUR 600 billion in turnover and almost EUR 200 billion in gross
value added (1.3% of the overall EU economy) [7]. Marine living resources represent the
second most important sector for the EU BE which, according to Eurostat, employs on
average 573,000 persons per year (more than 15% of the total EU BE employment) and
yields an annual average gross value added (GVA) of over EUR 18 billion, which has been
expanding since 2013. This sector is mostly composed of fisheries and aquaculture, as
well as aquatic animal processing and distribution activities. Since both processing and
distribution activities dependent on the fish supply and marine living resources represent
a key sector of the EU BE, the fisheries and aquaculture subsectors can be ranked as the
most important for ensuring blue growth (BG). Recent research [10] has characterized BG
as an emerging concept which aims to achieve economic growth based on the exploitation
of marine resources while avoiding their degradation, excessive use and pollution. The
presence of BG is characterized by the key aspects demanded by a BE to overcome eco-
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nomic, social and environmental challenges [11]. Martínez-Vázquez et al. (2021) revealed
that the relationship between a BE and a circular economy (CE) is mediated by BG and em-
phasizes the link between fisheries as a BE component and water as a CE component [11].
This is valid since fisheries depend on water, as their life cycle depends on this natural
environment and both its conditions (e.g., quality, temperature and salinity) [12] and its
proper management influences the sustainability and conservation of marine species [8].
Fisheries and water are important components linked by EU BG, a situation also confirmed
by the EU Common Fisheries Policy (CFP), which promotes fish consumption and trade,
underlining the value of fish to society from both the social and ecological perspectives [13].
Thus, it is important to maintain the aquatic systems in good health by constant monitoring
and control of the water quality, water level and fish stock status to improve BE resilience
to emerging challenges.

1.2. Impact of Climate Change on Aquatic Ecosystems

Climate change can be considered one of the main challenges which a BE has to
deal with, since it affects both fisheries and aquaculture and, therefore, the marine living
resources subsector. Climate variation influences water quality, food security and the
socio-economies of different regions [14]. It also has a significant effect on stock abundance
dynamics [15] and generally on biological assets [16]. Thus, fish stock assessment highly
depends on the ability to predict the impacts of climate change on the dynamics of aquatic
ecosystems [15,17]. Climate change impacts aquatic ecosystems by altering biodiversity
patterns [18,19], the abundance and distribution of species (15), biological interactions,
phenology and organism physiology [20,21]. Several research studies [22,23] revealed that
the impacts of climate change upon aquatic biodiversity are expected to intensify soon.
Changes in distributions and the community structures of fish species may influence fishing
activities and have socioeconomic impacts on vulnerable coastal communities [24,25]. An
increase in water temperature and water level are both primary indicators of climate
change [26–28]. According to several studies [29–31], water level fluctuations could have a
major impact on communities of fish species within rivers and, therefore, on commercial
fish stocks, in addition to a considerable influence upon the topography of the basin in
time and space [32]. Under climate change, the supply of water resources is unlikely to
remain constant, and regional water availability is no longer assured [33].

Therefore, water level variations directly influence the abundance of periphyton,
aquatic macrophytes and benthos and can indirectly affect phytoplankton and zooplank-
ton [34], which are important nutritional sources for fish stocks. Moreover, according to
previous studies [35], fish stocks can be affected if the water level changes rapidly during
the reproduction period, a situation that applies particularly to substrate spawning fish
species. Additionally, the nitrogen and phosphorus concentrations in water will increase
due to global warming [36,37]. Therefore, a rise in temperature increases the concentra-
tion of soluble phosphate in the water [36] and salter nitrogen cycling processes affecting
terrestrial and aquatic ecosystems, as well as human health [37].

According to several studies [38,39], climate change may alter the discharge regime of
rivers and, therefore, their magnitude, duration, frequency, rate and timing of discharge
events. Dysfunctionalities related to water level dynamics can reduce estuary flushing
rates if river flow decreases, while if the flow rate increases, the N and P upward loading
of aquatic ecosystems will appear by transferring these nutrients from agriculture fields,
as confirmed by other studies. Nutrients, especially phosphorus and nitrogen from var-
ious sources, and increasing temperatures constitute the major causes of degradation of
the aquatic ecosystems, namely in the form of eutrophication [40]. Climate change will
significantly alter nitrogen cycling processes, with a negative impact on aquatic ecosystems
as well as human health [37]. Furthermore, according to recent studies [41–43], the oxy-
gen content of aquatic environments has declined substantially in the past few decades
as a direct consequence of global warming. Therefore, surface water oxygen solubility
decreases with increasing temperatures [41]. The water pH is also affected by global
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warming and, more specifically, by the increase of atmospheric CO2. This increases ocean
acidification [44]. Water is considered a scarce resource in the modern era (given the rapid
growth of populations and enormous water-intensive industries); thus, competition for
water rights among sectors usually results in conflicts of interest [45]. This can gener-
ate serious shortages within a BE [46] and give rise to already-existing climate change
pressure. Thus, according to the authors of [47], water use equilibrium is dependent on
climate-induced impact.

1.3. Romania BE in Relation to Climate Change

Although the EU targets the development of a BE, there are still member countries
that register low contributions of BEs to their national economies (under 1%), such as
Romania, Slovenia and Belgium. Despite these results, Romania has significant potential
for sustaining the European Union BG strategy, especially due to its geographical charac-
teristics [48]. This potential is based on the presence of the Danube River (1075 km out of
a total of 2857 km are in Romanian territory) connected to the Black Sea and its marginal
ecosystems, with the vast surface of the Danube Delta (3446 km2 of a total of 4152 km2

is in Romania territory) and many natural lakes, canals and ponds present within the
Romanian Lower Danube Euroregion (Brăila, Galat,i and Tulcea county). According to
Eurostat data, the Romanian marine living resources sector implies that there is an average
of 7000 employed persons and an annual GVA of approximately EUR 64 million. The
Romanian Lower Danube Euroregion (RLDE) represents the most significant contribution
to the marine living resources sector. This is due to both high fishery and aquaculture
activities. The country’s national BE is mostly based on the Danube–Danube Delta–Black
Sea macrosystem. This presupposes strict aquatic environment monitoring and control
activity, which are essential for the proper functionality of a BE. This activity can be per-
formed by using prediction and forecasting methodologies facilitating the control and
identifying in advance the effects of possible threats, such as climate change, on the water’s
physicochemical parameters and the fish stocks status. According to different scenarios,
the projected extinction rates of aquatic biodiversity are higher compared with those of
terrestrial biodiversity [49] due to climate change, which is increasingly threatening fish,
resulting in an uncertain future for both wild fish diversity and global fisheries [50,51].
What is more, climate warming-induced environmental changes can negatively affect
several migratory fish species which are characterized by a high degree of synchronization
between their reproductive cycles and seasonal river flow dynamics [24]. Most fish species
respond to climate change through biological adaptation [52], aquatic area shifting [53]
and even extinction [54]. Fish growth alteration is considered a main direct and common
consequence of climate change [55] and can have long-term influences on stock dynamics
and characteristics [56]. Predicting the impacts of climate change on aquatic ecosystems
based on fish stocks response can represent a monitoring solution for improving the re-
silience management plan, a fact confirmed by other studies [57,58]. However, climate
change affects aquatic environments from different climate zones in various manners [59],
and its effect is specifically attributed to each fish species. Therefore, the impact prediction
models must be unique for each aquatic ecosystem. Studies [60,61] which analyzed the
climate change effect on the Danube–Danube Delta–Black Sea macrosystem reported an
upward trend for eutrophication within the Danube River Basin, with urban settlement
and agriculture contributing majorly to amplifying the nitrogen and phosphorus emissions,
respectively [61]. The monitoring of aquatic macrosystem water quality is essential for
developing a BE and indicates trends over time, which offers the possibility of identifying
the sustainability of a BE and selecting the most appropriate direct remedial actions. Addi-
tionally, an evaluation of water quality parameters is necessary to plan and develop better
water resource management [62,63].

Several papers approached the subject of water quality in the Danube River. For
instance, Mănoiu and Crăciun (2021) realized a thorough review of the water quality trends
in the Danube River [64], focusing on Serbia, Romania, Slovakia, Hungary, Germany and
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Austria. They observed reductions in the nutrient loads in the water of the Danube River;
however, the river is still at risk of degradation due to organic pollution. Other studies
calculated the Water Quality Index (WQI), which integrates different physicochemical
parameters into the formula and synthetizes the data into a single number to highlight
the ecological status of the water body in Chiciu, Romania [65] near Galat, i, Romania [66],
between the sector of Brăila and Tulcea within Romania [67]. All authors highlighted
in their studies a general good water quality status in the Danube River. Frîncu (2021)
developed a complex methodology for assessing the water quality of the Lower Danube [68]
using the WQI and Principal Component Analysis (PCA) between the years 1996 of 2017. In
their study, Krtolica et al. (2021) predicted the Danube water quality by using macrophyte
binary data through neural network modeling [69]. However, none of the mentioned
studies approached the interlinked impact involving the water quality and fish stocks
status within the Danube-Danube Delta-Black Sea macrosystem.

1.4. Deep Learning Approach in Aquatic Ecosystems

Traditional methods for synthetically evaluating the water quality of aquatic ecosys-
tems have been replaced by new modeling approaches, multivariate statistical techniques,
artificial neural networks, artificial intelligence, ARIMA, SARIMA or ETS models. For
example, artificial neural network models were used to predict the dissolved oxygen and
biochemical oxygen demand by other nutrients or basic physicochemical parameters such
as explanatory variables [70,71], while others aimed to explore the relationship between
nutrients and biological quality elements [72].

The water quality variables are changing continuously through time. This dynamic
process containing random error components with stochastic variations in space and time
is difficult to model or explain with normal analytical procedures. Still, the analysis of time
series datasets containing water quality parameters using ARIMA-type models provided
relevant results [73]. Long-term trends in water quality can reveal information about
chemical, biological and physical changes and variations due to manmade and seasonal
interventions. For example, in [74], the authors developed an ARIMA model to forecast
several water quality variables like the pH, color (TCU), turbidity (ppm), Al3+ (ppm), Fe2+

(ppm), NH4+ (ppm) and Mn2+ (ppm) through the respective hydrological variables, namely
rainfall and river discharge, for the Johor River in Malaysia. In [75], it is also emphasized
that weather parameters such as humidity, wind speed, rainfall or air temperature are non-
linear and complex phenomena involving mathematical simulation and proper modeling
for correct forecasting. Aside from ARIMA, the authors also used Exponential Smoothing
(ETS) models to forecast the exemplified parameters. The seasonal variation (seasonal
autoregressive integrated moving average (SARIMA)) model was also used in different
water-related studies. For example, in [76], the authors used a SARIMA model to forecast
the water level of the Sungai Bedup River in Malaysia. Aside from water quality forecasting,
the analysis of the relationship between some physicochemical parameters is also of great
interest, as it could help to determine the concentrations of certain water parameters with
the use of minimal equipment. This is important because developing countries lack the
standard water analysis equipment—specifically, the adequately trained personnel—and
many researchers are discouraged from executing water quality research [77]. A study
of the specific scientific literature revealed a series of empirical research which had been
performed to investigate the relationship between economic growth and environment
quality [78,79]. Thus, in [77], by using multiple linear regression, the authors identified
the mathematical relationship among several physicochemical parameters (e.g., turbidity,
electrical conductivity (EC), pH, alkalinity, chloride ion (Cl−), dissolved oxygen (DO) and
total hardness) that could help to perform future determinations with the use of minimal
equipment. Therefore, prediction models such as MLR can represent a suitable cost-
effective method which can partially substitute the standard, routine laboratory analysis,
offering accessible monitoring of aquatic environments. Another example can be found
in [80], where monthly water quality datasets from 10 stations on the Tigris River within
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Baghdad for the year 2016 were studied. The Water Quality Index (WQI) and a Water
Quality Model (WQM) were calculated by using 11 important parameters (Al3+, F1−,
NO2

1−, NO3
1−, NH3, temperature, total alkalinity, turbidity, total hardness, Ca2+, Cl1−,

Mg2+, pH, electrical conductivity, SO4
2−, TDS, Fe2+, SiO2, PO4

3−, DO, BOD5, COD and
Na1+) and multiple linear regression analysis.

In [81], the authors elaborated on the widely applicable water economics models
which incorporate economic and environmental components, identifying the response of
the agricultural production sector to climate change as part of the BE. Other studies [82]
developed water models widely applicable in the BE by considering all major water
use sectors.

1.5. Aim and Uniqueness of This Study

The current study aims to use the autoregressive integrated moving average (ARIMA),
seasonal autoregressive integrated moving average (SARIMA), error, trend and seasonality
(ETS) and multiple linear regression (MLR) models to develop an analytical framework
which aims to strengthen the resilience and adaptive capacity of a BE within the context
of climate change in the Romanian Lower Danube Euroregion (RLDE). If the ARIMA,
SARIMA and ETS methods are used for time series forecasting, the multiple linear re-
gression technique should be the preferred choice if the relation between the predictors
and the dependent variable displays a linear pattern. Therefore, this study led to the
development of several predictive forecasting models that are suitably used for determin-
ing the following water-dependent variables: total nitrogen (TN), total phosphorus (TN),
dissolved oxygen (DO), pH, water temperature (wt) and water level, based on a series
of 26 indicators (independent variables). Additionally, the research targets to elaborate
several fish species structure predictive models that can be used to assure a better aquatic
environment resilience framework related to climate variation, guaranteeing BG within
the RLDE.

The study’s uniqueness is underlined first; no other similar research was conducted
within the RLDE. Additionally, we offer a holistic approach to the Danube–Danube Delta–
Black Sea macrosystem, since we consider the water quality parameters, water level
variation and fish species interactions. The targeted framework of this research is meant
to be used for monitoring the water quality, water level and fish stock status but also for
identifying methods of controlling the ecological balance of fish species. The specificity
of the research area was considered while designing the experimental data collection,
revealing an original approach in the aquatic macrosystem-developed methodology for
monitoring, evaluation and control.

2. Materials and Methods
2.1. Study Area

The present paper studies water level, water quality and fish catch data from the RLDE.
The Brăila, Galat,i, Tulcea and Sulina hydrometric stations (Figure 1) were considered for
characterizing the RLDE in terms of water level, water temperature and air temperature,
since these are considered key monitoring points due to high anthropogenic pressure
from heavy industry, agriculture, aquaculture and navigation activities. Additionally, the
highest air temperatures in Romania are attributed to this region, with a record of an
absolute maximum air temperature of 44.5 ◦C recorded in Brăila county. The desertification
process within this region is the most intense [83] in Romania and could lead to unfavorable
conditions for assuring BG.
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Figure 1. The RLDE sampling areas from which data were collected for developing the present
study’s analytical framework.

The Danube water quality data was collected from the Galat,i and Tulcea sampling
points, since Galat,i and Tulcea have the most intense naval industry and port activity,
therefore being exposed to water pollution.

Data relating to fish catches were recorded from the Galati county Danube River Basin
segment (L1) and from the “Danube Delta” Biosphere Reserve Administration territory
(L2) (Figure 1). The data on fish catches are monitored within these two sectors because of
administrative division of the RLDE territory.

2.2. Dataset Description

The present research is based on a dataset which is divided in two groups, specifically
26 physicochemical parameters (Table 1) and 27 fish catch parameters (Table 2). The first
group (Table 1) consisted of 7668 samples, of which 2340 belonged to Tulcea county, 2448
belonged to Galat, i county and 1440 belonged to both Brăila and Sulina. Data surrounding
the Danube River water level, water temperature and air temperature parameters, pre-
sented in Table 1, were collected daily between 2017 and 2020. Furthermore, the rest of
the data related to Danube water quality (presented in Table 1) was collected monthly
from Galat,i county between 2017 and 2020 and once every 2 months from Tulcea county
between 2015 and 2020. The dataset’s standard method of determination is presented for
each of the first group’s parameters in Table 1.

The second group (Table 2) consisted of 340 samples, of which 90 were for L1
and 250 were for L2. All reported catches associated with the main RLDE fish species
were considered.
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Table 1. Dataset of physicochemical parameters.

Parameter Measurement Unit Standard Method of
Determination Sampling Area

Water level (wt) (cm) SOP 2043 Brăila, Galat, i, Tulcea, Sulina

Water temperature (wt) (◦C) Sensor’s methods Galat, i, Tulcea

Air temperature (aw) (◦C) Sensor’s method Galat, i, Tulcea

Total suspended solids (TSS) (mg/L) SE EN 875:2005 Galat, i, Tulcea

Turbidity (tb) (NTU) SR EN ISO 7027:2001 Galat, i

Dissolved oxygen (DO) (mg/L) SR EN ISO 5814:2013 Galat, i, Tulcea

Dissolved oxygen saturation (DO sat.) (%) - Galat, i, Tulcea

Biochemical oxygen demand (BOD5) (mg/L) SR EN 1899:2:2002 Galat, i, Tulcea

Chemical oxygen demand (COD) (mg/L) SR EN 1484:2001 Galat, i

Total organic carbon (TOC) (mg/L) SR EN 1484:2001 Galat, i

Electrical conductivity (EC) (µS/cm) SE EN 27888:1997 Galat, i, Tulcea

Fixed solids (FS) (mg/L) STAS 9187:1984 Galat, i, Tulcea

Calcium (Ca) (mg/L) SE ISO 6058:2008 Galat, i, Tulcea

Magnesium (Mg) (mg/L) SE ISO 6059:2008 Galat, i, Tulcea

Total hardness (TH) (◦G) SR ISO 6059:2008 Galat, i

Chloride (Cl) (mg/L) SE ISO 9297:2001 Galat, i, Tulcea

Sulfate (SO4) (mg/L) EPA 9038:1986 Galat, i, Tulcea

pH (upH) SR ISO 10523:2012 Galat, i, Tulcea

Alkalinity (Alk) (mmol/L) SR ISO 9963-1/A99:2002 Galat, i, Tulcea

Bicarbonates (Bi) (mg/L) SR ISO 9963-1/A99:2002 Galat, i, Tulcea

Ammonium-nitrogen (N-NH4) (mg/L) SR ISO 7150-1:2001 Galat, i, Tulcea

Nitrite-nitrogen (N-NO2) (mg/L) SR ISO 26777/C91:2006 Galat, i, Tulcea

Nitrate-nitrogen (N-NO3) (mg/L) SR ISO 7890-3:2000 Galat, i, Tulcea

Total nitrogen (TN) (mg/L) SR EN 12260:2004 Galat, i, Tulcea

Orthophosphate as phosphorus (P-PO4) (mg/L) SR EN ISO6878:2005 Galat, i, Tulcea

Total phosphorus (TP) (mg/L) SR EN ISO 6878:2005 Galat, i, Tulcea

Table 2. Dataset of fish catches.

Fish Species Abbreviation Study Area

Abramis brama danubii (freshwater bream) Fbr L1, L2

Alburnus alburnus (common bleak) Cbl L1

Alosa caspia (Caspian shad) Csh L2

Alosa immaculata (Pontic shad) Psh L1, L2

Aspius aspius (asp) Asp L1, L2

Barbus barbus (common barbel) Cbb L1, L2

Blicca bjoerkna (white bream) Wbr L1, L2

Carassius gibelio (Prusian carp) Pcp L1, L2

Other cyprinids Ocp L1, L2

Cyprinus carpio carpio (common carp) Ccp L1, L2
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Table 2. Cont.

Fish Species Abbreviation Study Area

Esox lucius (pike) Pk L1, L2

Liza aurata (golden grey mullet) Ggm L2

Mullus barbatus ponticus (red mullet) Rmt L2

Neogobius kessleri (bighead goby) Bgb L2

Pelecus cultratus (sabre carp) Scp L2

Perca fluviatilis fluviatilis (perch) Prc L2

Psetta maxima maeotica (turbot) Tbt L2

Raja clavata (thornback ray) Tr L2

Rutilus rutilus carpathorosicus (roach) Rch L1, L2

Sander lucioperca (pikeperch) PkPrc L1, L2

Scardinius erytrophthalmus (common rudd) Crd L1, L2

Silurus glanis(catfish) Ctf L1, L2

Sprattus sprattus (European sprat) Esp L2

Tinca tinca (tench) Tnch L2

Trachurus ponticus (horse mackerel) Hmk L2

Vimba vimba carinata (vimba) Vmb L1, L2

2.3. The Analytical Framework Forecasting and Prediction Methodology
2.3.1. Multiple Linear Regression (MLR) Method

The linear approach used in this research was performed by identifying and testing
multiple linear regression models (Equation (1)) by using the stepwise selection methods
(with the inclusion criteria set at p < 0.05) for choosing the most relevant predictors:

Y = α1 × X1 + α2 × X2 + . . . + αp × Xp + β + e (1)

where X1, X2 . . . Xp are the predictor variables; β is the intercept; α1, α2 . . . αp are the inde-
pendent variable coefficients describing the contribution of each predictor in determining
the dependent variable; e is the residual term indicating the difference between the actual
and the fitted response value; and Y is the dependent variable.

The overfitting situation was avoided by using dimensionality reduction and cross-
validation. When the number of features was high, choosing the optimal features could
improve the model reliability; therefore, all MLR models considered the stepwise regression
method to reduce the model complexity, leading to an easier interpretation. For the
validation of the MLR models, we used the adjusted R-sq statistical indicator that penalized
the model when there were many parameters that were not contributing to explaining the
variance of the dependent variable.

The multiple linear regressions presented in the current research also took into consid-
eration the Variance Inflation Factor (VIF), which measured the effect of multicollinearity
among the predictors. The VIF measures how much the variance of an estimated regression
coefficient increases if the predictors are correlated. The reference VIF value was 10, but
the developed models presented VIF values far less than 10.

The multiple linear models were validated using previously unseen data, comparing
the real values with the predicted ones. The overall dataset was split in two: a training
dataset and a test dataset. The training dataset contained 80% of the data, while the
remaining 20% of the data contained previously unseen samples.
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2.3.2. Time Series Analysis

For validating the future trends of the interest parameters, the current research imple-
mented three types of time series analysis: (1) error, trend and seasonality (ETS) exponential
smoothing, (2) ARIMA and (3) SARIMA.

The exponential smoothing method, described in [84] and [85], represents a successful
forecasting method based on weighted averages of past observations, with the weights
being exponentially reduced as the observations get older (Equation (2)):

ŷT+h|T = yT , h = 1, 2, . . . , n (2)

According to this method, the most recent observation is the important one. Thus, all
future forecasts should be equal to an average of the observed data (Equation (3)):

ŷT+h|T =
1
T

T

∑
t=1

yt h = 1, 2 . . . , n (3)

This time series model can be transformed by considering larger weights for more
recent observations, with the forecasts being calculated by using weighted averages and
the weights decreasing exponentially as the observations come from further in the past
(Equation (4)):

ŷT+h|T = αyT + α(1− α)yT−1 + α(1− α2)yT−2 + . . . (4)

where 0 ≤ α ≤ 1 is the smoothing parameter. As an example, the forecast for time T
+ 1 represents a weighted average of the observations in the series y1 . . . yT, with the
parameter α controlling the rate at which the weights decrease.

The Holt [86] exponential time series model allows the forecasting of data presenting
a trend by using both a forecast equation and smoothing equations (Equations (5)–(7)):

Forecast equation : ŷt+h|t = lt + hbt (5)

Trend equation : bt = β∗(lt − lt−1) + (1− β∗)bt−1 (6)

evel equation : lt = αyt + (1− α)(lt−1 + bt−1) (7)

where `t is the estimate of the level of the series at time t, bt is the estimate of the trend
(slope) of the series at time t, α is the smoothing parameter for the level, 0 ≤ α ≤ 1, β* is the
smoothing parameter for the trend, and 0 ≤ β* ≤ 1.

The ARIMA forecasting model is constructed as follows, with y denoting the dth
difference of Y (Equations (8)–(11)):

d = 0 → yt = Yt (8)

d = 1 → yt = Yt −Yt−1 (9)

d = 2 → yt = (Yt −Yt−1)− (Yt−1 −Yt−2) (10)

d = 2 → yt = (Yt −Yt−1)− (Yt−1 −Yt−2) (11)

The moving average parameters (θs) were considered with a negative sign in the
equation, according to the convention introduced by Box and Jenkins. To determine the
optimal values for the p, d and q hyperparameters, the order of differencing (d value,
the minimum differencing required to get a near-stationary series) was determined by
using the autocorrelation function (ACF). For testing the stationarity of the time series, the
augmented Dickey–Fuller test was used. For determining the p value (if the model needed
any AR terms), the partial autocorrelation (PACF) plot was used. Lastly, the q value—the
order of the MA term—was also determined by using an ACF plot, in which the number of
lags above the significance line determined the q value. An extension of the ARIMA model
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that was used in the current research is SARIMA, a model that is used when there is the
phenomenon of seasonality at the level of the variable for which the forecast is desired.
The acronym SARIMA comes from Seasonal Autoregressive Integrated Moving Average
and is a method of predicting univariate time series that contain trends and seasonality.
The seasonal part of the model refers to terms that are very similar to the non-seasonal
components of the model but involve changes in the seasonal period. SARIMA models
consist of two parts: a trend component containing three elements (autoregressive trend,
trend integration and moving order trend) and a seasonal component containing four
elements (autoregressive seasonality, seasonal difference order, moving average order of
seasonality and the number of steps of a single seasonal period). A seasonal ARIMA model
uses differentiation at a lag equal to the number of periods to eliminate seasonal effects,
just as gap differentiation eliminates the trend and that of forecast delays introduces a
moving term [87]. Thus, a seasonal ARIMA model will be written in the following form
(Equation (12)):

SARIMA(p, d, q)(P, D, Q)m (12)

where p represents the autoregressive order of the trend, d represents the integration order
at which the trend was stationary, q is the moving average order of the trend, P is the
autoregressive order of seasonality, D is the order of integrating seasonality, Q is the order
of the moving average of the seasonality, and m is the number of periods in which the
seasonality is observed.

For example, an ARIMA model (1,1,1) (1,1,1) m can be written as follows (Equation (13)):

(1− φ1B)(1−Φ1Bm)(1− B)(1− Bm)yt = (1 + θ1B)(1 + Θ1Bm)εt (13)

3. Results and Discussion
3.1. Water Level Forecast Analysis

The water level is an important indicator of the impact of climate change on water
ecosystems. According to other studies [88], an average increase in temperature by 0.74 ◦C
has been recorded in the previous 100 years. The fluctuation of sea water temperature
may affect water quality parameters and therefore the biodiversity of aquatic ecosystems.
Water level fluctuations affect not only the marine living resources sector but also other
sectors of a BE, such as maritime transport, port activities and coastal tourism. Therefore,
an analytical framework based on water level time series analysis proves to be useful
to improving BG’s resilience to climate change. The RLDE peculiarity is represented by
the presence of the Danube River–Danube Delta–Black Sea macrosystem. Thus, data
from four sampling points, placed in different sectors of this macrosystem, were collected,
as presented in Figure 1. The analysis of forecast models requires the time series to be
stationary. Therefore, the augmented Dickey–Fuller (ADF) test was applied. To achieve
this, two scenarios will be formulated: the first scenario considers the series as stationary,
and the second scenario considers the series as non-stationary. The results of the ADF test
indicate the following values: −2.859 for Brăila, −3.622 for Galat,i, −3.14 for Tulcea and
−3.630 for Sulina. All values were under the ADF critical value (−2.863), and therefore, all
four data series were stationary. For the time series afferent to the Brăila, Galat, i and Tulcea
sampling points, a second-order autoregressive type model (AR 2) was considered, since
the correlograms emphasized that at time t = 2, the partial autocorrelation coefficient (PAC)
manifested a sudden decrease. The statistical analysis of the proposed autoregressive
models revealed that homoscedasticity was not fulfilled in any of the models, a fact which
concludes that the errors did not have a constant dispersion. If this situation was ignored,
the estimators of the model parameters would not be efficient and would not have a
maximum likelihood. To eliminate this phenomenon, the models were transformed into
Autoregressive Conditional Heteroscedasticity (ARCH) models that aimed to include the
repetitive manifestations of the occurrence of forecast errors in several time sequences.
Therefore, at the Brăila sampling point, the following forecast model for the Danube River
water level was elaborated (Equation (14)). The model emphasized that if the water level
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increased by 1 m the day before, the current level was bound to increase by 1.857 m.
Moreover, if it is 2 days before the water level increases by 1 m, then the current level will
decrease by 0.861 m. All estimator parameters are significant, and the model is plausible
(R-squared coefficient of determination is 99.90%) and can be used in the forecast:

waterlevelt = 0.716 + 1.857× waterlevelt−1 − 0.861× waterlevelt−2 (14)

The forecast model elaborated based on the water level dataset for the Danube River
sampling point in Galat,i (Equation (15)) revealed that if the water level increased 1 m
the day before, the current level would increase by 1.820 m. Additionally, if the water
level increased by 1 m 2 days before, then the current level would decrease by 0.823 m.
All estimator parameters were significant, and the model was plausible (R-squared co-
efficient of determination was 99.90%) and could be used in the forecast. Both models
(Equations (14) and (15)) were similar, which could be explained by the low geographical
distance between the sampling points of both Brăila and Galat, i:

waterlevelt = 0.769 + 1.820× waterlevelt−1 − 0.823× waterlevelt−2 (15)

The forecast model for the water level of the Danube River at the Tulcea sampling
point (Equation (16)) revealed that water level depended on the moments of both one and
two antecedent days such that a 1-m increase in the water level the day before would
generate a present-day level increase of 1.735 m. At the same time, if the water level
increased by 1 m 2 days before, then the current level would decrease by 0.738 m. All
estimator parameters were significant, and the model is plausible and can be used in
the forecast:

waterlevelt = 0.384 + 1.735× waterlevelt−1 − 0.738× waterlevelt−2 (16)

To generate the Danube River water level forecast model for the Sulina sampling point,
the data series must be stabilized, since it has an oscillating evolution. Therefore, the data
series was placed into a logarithm previously. The model also started with a third-order
autoregressive model. Considering that the errors were heteroscedastic, the model was
transformed into an ARCH type. The Sulina forecast model (Equation (17)) revealed that
the current water level of the Danube River depended on moments 1 day, 2 days and 3 days
prior such that if a 1-m increase was registered the day before, the current level would
decrease by 0.100 m. At the same time, if the water level would increase by 1 m 2 days
before, then the current level would decrease by 0.188 m. An increase by 1 m 3 days before
would lead to a decrease by 0.116 m for the current level. All estimator parameters were
significant, although the model was not plausible:

dlwaterlevelt = −0.100× dlwaterlevelt−1 − 0.188× dlwaterlevelt−2 − 0.116× dlwaterlevelt−3 (17)

All four time series models (Equations (14)–(17)) can be used to forecast the water level
of the Danube River in Brăila, Galat, i, Tulcea and Sulina. This can be useful in elaborating
RLDE BG management plans, thereby targeting the optimization of all BE activities and
assuring a positive synergy between all blue sectors.

3.2. Physicochemical Parameter Trend Lines

The physicochemical parameters were monitored monthly during a 4-year period
in Galat,i county and once every 2 months during a 6-year period at the Tulcea county
sampling point, as presented in Figure 1. The registered results were analyzed to determine
the trend lines and used to establish multi-linear regression (MLR) models and forecast
analysis. Therefore, in the case of the Galat,i county sampling point, the recorded data
for the air temperature was divided into two groups: maximum air temperature and
minimum air temperature. The trend lines of both groups revealed a clear upward dynamic
(Figures A1 and A2) from 2017 until 2020. Thus, the data revealed that the maximum air
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temperature increased by 7.06% during the hot season and by 23.28% during the cold
season within the analyzed period. Additionally, the minimum air temperature recorded
a higher increase, being 8.11% during the hot season and 109.5% during the cold season.
The upward trend line in the air temperature caused the increase in the water temperature,
something also revealed in the Danube River Galat, i sampling point (Figure A3). Thus, in
the hot season, the water temperature registered a 0.79% increase, while in the cold season,
a 30.95% increase was recorded during the analyzed period. Additionally, the water DO
and DO saturation presented a decreasing trend line (Figures A4 and A5), a situation which
was correlated with the upward trend lines associated with the air and water temperatures
(Figures A1–A3). Other authors revealed that an increase in the surface temperature
leads to an outgassing of oxygen from the ocean and a reduction in the surface water
oxygen concentration [89]. The pH trend line (Figure A6) registered a decreasing trend
line of 0.27% during the analyzed period, thus confirming the findings reported by other
authors [90] related to an inverse pH response to temperature variations. The pH dynamics
were sustained by both the water alkalinity and bicarbonate concentration trend lines,
which revealed a decreasing trend (Figures A7 and A8). The nitrite-nitrogen, ammonium-
nitrogen and total nitrogen registered an upward trend (Figures A10–A12), while nitrate
registered a decrease (Figure A9). However, there are studies which predicted an increase
in the nitrate concertation as well as an increase in the rate of mineralization linked to the
increase in temperature [91]. This scenario was confirmed by the significant upward trend
lines registered for TP, Mg and Ca (Figures A13–A15). However, the turbidity and TSS
(Figures A16 and A17) trend lines revealed a decreasing tendency, while the TOC trend line
presented a small increase (Figure A18). In addition, the BOD5 and fixed solids trend lines
indicated a relatively stable dynamic for these parameters (Figures A19 and A20). This
may have been due to the high water flow of Danube River and, therefore, its capacity to
transport solids and organic matter, revealing the river’s auto-epuration capacity. At the
Tulcea county sampling point, the trend lines for both the maximum and minimum air
temperature revealed a clear upward dynamic (Figures A21 and A22) from 2017 to 2020.
Thus, the data revealed that the maximum air temperature increased by 9.27% during the
hot season and by 19.07% during the cold season in the analyzed period. Additionally,
the minimum air temperature recorded a higher increase, being 7.45% during the hot
season and 44.65% during the cold season. Therefore, the Galati sampling point was
exposed to a more aggressive climate change impact when considering the air temperature
trend lines (Figures A1, A2, A21 and A22). In addition, the water temperature revealed
an upward trend line (Figure A23) with a 30.11% increase during the cold season, while
the DO presented a decreasing trend line (Figure A24). The pH trend line (Figure A25)
revealed a decreasing trend line, being 1.30% during the analyzed period. This can be
due to sediments and therefore organic matter deposits, which accumulate more in Tulcea
compared with the Galat,i sampling area due to the geographic position of this sampling
point (i.e., closer to Danube Delta). Both the water alkalinity and bicarbonate concentration
trend lines revealed a decreasing trend (Figures A26 and A27) of 12.29% and 12.33%,
respectively, during the analyzed period.

The total water nitrogen and nitrate-nitrogen at the Tulcea sampling point revealed
a decreasing trend line, whereas the nitrite-nitrogen recorded a relatively constant trend
(Figures A28, A29 and A31), and the ammonium-nitrogen (Figure A30) registered the
only upward trend among the nitrogen compounds analyzed in present study. This could
indicate a relatively better ecological status in the Tulcea sampling area, mostly due to lower
climate change impact revealed by the air temperature trend line compared with the Galat, i
sampling point. This can be confirmed by the decreasing trend lines registered for TP and
Ca (Figures A32 and A34) and the small increasing trend of Mg compared with the Galat, i
sampling station. The TSS and BOD5 revealed upward trend lines (Figures A35 and A36),
the evolution of which supports the scenarios of a superior solids accumulation rate in
Tulcea compared with the Galat, i sampling point.
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3.3. Physicochemical Parameter Forecast Analysis

To perform the forecast analysis for both the Galat,i and Tulcea sampling points,
five physicochemical parameters were analyzed: the TN, TP, water temperature, pH and
dissolved oxygen concentration. The parameters were considered as the most suggestive to
characterize the analyzed area status in relation to climate change, a fact confirmed by their
trend line evolutions (Figures A3, A4, A12, A13, A24, A25, A31 and A32). Therefore, the TP
forecast in the Galat, i sampling area was performed by applying the ETS (M, N, A) model
(Figure 2a), which was selected by considering the Akaike coefficient. EST Smoothing
is a multiplicative error model without trends and with additive seasonality. The model
keeps its oscillating trend for the forecasted period, obtaining values close to those that
were used in determining the model (Figure 2a). The forecasted average concentration of
the TP in water for the year 2021 was 2.41% higher compared with the 2020 average and
6.47% higher than the 2017–2020 period’s average. For the DO forecast, an ETS (M, N, M)
multiplicative errors model (Figure 2b) was selected without trends and with multiplicative
seasonality. The model (Figure 2b) revealed that the dynamics of DO would register the
same oscillation for the forecasted period, but with a slightly significant decrease compared
with the current values for July and August. The forecasted average concentration of the
DO in water for 2021 was 6.56% lower compared with the 2020 average and 9.78 % lower
than the 2017–2020 period’s average. For the water temperature forecast, an ETS (A, N,
A) additive model without trends and with additive seasonality was applied (Figure 2c).
The time series maintained its oscillating trend during the year due to the seasons that
demanded seasonality on the series. For the summer months, higher forecasted values
were obtained compared with the actual values (Figure 2c), emphasizing the future global
warming effect on the water DO at the Galat, i sampling point. The forecasted average value
of the water temperature for 2021 was 28.71% higher compared with the year 2020 average
and 37.92% higher than the 2017–2020 period’s average. The TN and pH forecast analysis
were performed by using a Seasonal Autoregressive Integrated Moving Average (SARIMA)
model (Figure 2d,e), since the seasonality characteristic of the forecasted variable existed.
SARIMA is considered a method of predicting univariate time series that contain trends
and seasonality. The forecasted average value of pH in the water for 2021 was 0.12%
higher compared with the average pertaining to the year 2020 and 0.007% lower than
the 2017–2020 time period’s average. Additionally, the forecasted average concentration
of the TN in the water for the year 2021 was 30.72% higher compared with the 2020
average and 57.99% higher than the 2017–2020 time period’s average. The TP forecast in
the Tulcea sampling area was performed by applying the ARIMA seasonal model (1,0,1)
(0,0,1) (Figure 2f). This model considers the first gap as well as the first delay of the trend
side. The estimated series continued its oscillating evolution, having actual values like the
previous ones. The forecasted average concentration of the TP in the water for 2021 was
0.09% higher compared with the 2020 average and 0.03% higher than the 2017–2020 time
period’s average.

For the DO forecast, an ETS (M, N, A) multiplicative error model (Figure 2f) without
trends and with additive seasonality was selected. Noticeably (Figure 2g), the predicted
values had the same tendency as those used for training. The series would keep its
oscillating trend for the next period. The average concentration of the DO in the water
forecasted for 2021 was 2.70% lower than that for the 2020 average and 0.01% lower than
the 2017–2020 time period’s average. For the water temperature forecast (Figure 2h), an
ARIMA (2,0,0) (1,0,0) seasonal model was applied. The forecasted average value of the
water temperature for the year 2021 was 2.62% higher compared with the 2020 average
and 9.39% higher than the 2017–2020 time period’s average. The TN forecast analysis
was performed by using an ARIMA seasonal model (2,0,0) (1,0,0) (Figure 2i) which was
autoregressive for both the trend and the season. The estimated data revealed that the
variable would keep its oscillations given by the seasons. Furthermore, the forecasted
average concentration of the TN in the water for 2021 was 3.44% lower compared with the
2020 average and 4.68% lower than the 2017–2020 time period’s average. The pH forecast
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analysis was performed by using a second-order autoregressive model; thus, the current
value of the water pH depended on two previous moments (lags). From the analysis of the
forecasted data (Figure 2j), very small oscillations could be observed for the next period.
The forecasted average value of the pH in the water for 2021 was 0.57% higher compared
with the 2020 average and 0.04% higher than the 2017–2020 time period’s average.

Figure 2. The physicochemical parameter forecast analysis of both the Galat, i and Tulcea sam-
pling points.



Sustainability 2021, 13, 11563 16 of 36

3.4. Physicochemical Parameter Multiple Linear Regression (MLR) Models

Ten MLR models were identified after processing the physicochemical parameter
dataset. Therefore, for each of the sampling areas (Tulcea and Galat,i), five MLR models
for determining the P-PO4, N-NO3, N-NO2, N-NH4 and SO4 dependent variables were
elaborated (Table 3). All variables used within the models had p-values < 0.05.

Table 3. Physicochemical parameters of the Multiple Linear Regression (MLR) models recorded for the Galat, i and Tulcea
study sectors.

Sampling Point MLR Prediction Model Model No.

Galati

P-PO4 = −2.918 − 0.276 SO4 + 1.162 Bicarbonates + 0.457 N-NO3 + 0.8701 TP + 0.095 water level M1

N-NO3 = -3.818 + 0.514 EC + 1.051 Mg + 0.401 SO4 − 0.166 N-NO2 + 1.047 NT M2

N-NO2 = −5.285 − 0.378 DO + 1.618 Mg + 0.497 SO4 − 0.775 N-NO3 + 1.277 NT + 0.313 water level M3

N-NH4 = -6.077 + 0.557 TSS + 0.667 Mg + 0.772 Chloride + 1.004 Bicarbonates M4

SO4 = 3.523 + 0.701 COD − 0.987 Ca − 0.614 Mg + 0.588 N-NO3 − 0.386 NT M5

Tulcea

P-PO4 = 3.010 + 3.344 DO − 0.671 BOD5 + 0.275 N-NH4 + 0.605 N-NO2 − 0.776 N-NO3 + 0.472 TP −
0.402 TSS − 0.426 FS + 0.819 Mg − 1.975 TH − 1.254 Cl − 0.860 SO4

M6

N-NO3 = −0.178 + 0.940 TN M7

N-NO2 = 1.340 − 6.920 pH + 0.992 EC − 2.787 DO − 0.240 COD + 0.5887 BOD5 − 0.237 N-NH4 + 0.650
N-NO3 + 0.227 P-PO4 + 0.2435 TSS + 0.3081 FS − 0.694 Mg + 1.391 TH + 0.648 Chloride + 0.669 SO4

M8

N-NH4 = 2.080 − 17.370 pH + 4.430 EC − 7.310 DO − 0.780 COD + 1.492 BOD5 − 1.785 N-NO2 + 1.520
N-NO3 + 0.541 P-PO4 + 0.548 TSS + 0.906 FS − 1.658 Mg + 3.168 TH + 1.608 SO4

M9

SO4 = −1.430 + 4.690 pH + 2.667 DO − 0.511 BOD5 + 0.213 N-NH4 + 0.643 N-NO2 − 0.644 N-NO3 −
0.318 P-PO4 − 0.275 TSS − 0.324 FS + 0.723 Mg − 1.389 TH − 0.891 Cl M10

The first MLR model (M1) (Table 3) determined the concentration of P-PO4 in the
Danube River’s water at the Galat,i sampling area based on the bicarbonates, water level,
TP, SO4 and N-NO3 recorded values. The model explained 81.40% of the variance of P-PO4
in the water. Additionally, the value of the predicted R-sq was close to the R-sq value,
indicating good model performance. Additionally, the S-value was low, indicating that the
model achieved the best degree of precision. The coded coefficients permitted us to identify
the variable with the largest impact on the model response. Thus, for M1, the bicarbonate
value had the strongest influence on the resulting concentration of P-PO4 in the water,
followed by TP and N-NO3. The second MLR model (M2) determined the concentration of
N-NO3 in the Danube River’s water at the Galat, i sampling area based on the EC, Mg, SO4,
N-NO2 and NT recorded values (Table 3). The model explained 85.79% of the variance of
N-NO3 in the water. The model had good performance, and the S-value was low, indicating
the best performance and degree of precision. Therefore, for M2, the values of Mg and NT
had the strongest influence on the resulting concentration of N-NO3 in the water, followed
by EC and SO4. The third model (M3) determined the concentration of N-NO2 in the
Danube River’s water at the Galat,i sampling area based on the DO, Mg, SO4, NT, water
level and N-NO3 concentrations (Table 3). The model explained 73.25% of the variance of
N-NO2 in the water. The model indicated good performance (the predicted R-sq value was
close to R-sq), a situation also revealed by the low S-value, which indicated a high degree
of precision. By analyzing the coded coefficients of the third model, it can be stated that the
values of Mg, NT and N-NO3 had the strongest influence on the resulting concentration of
N-NO2 in the Danube River’s water at the Galat,i sampling area. The fourth model (M4)
determined the concentration of N-NH4 within the Danube River’s water at the Galat,i
sampling area based on the TSS, Mg, chloride and bicarbonate concentrations (Table 3). The
model explained 69.52% of the variance of N-NH4 in the water. The low S-value indicated a
high degree of precision. By analyzing the coded coefficients of M4, it can be stated that the
values of the bicarbonate and chloride concentrations had the most significant impact over
the dependent variable. The fifth model (M5) determined the concentration of SO4 in the
Danube River’s water at the Galat, i sampling area based on the concentrations of Ca, COD,
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Mg, N-NO3 and NT (Table 3). The model explained 71.55% of the variance of SO4 in the
water. The model indicated good performance (the predicted R-sq value was close to R-sq),
and the situation also revealed through a relatively low S-value that it had good precision.
By analyzing the coded coefficients of the fifth model, it can be stated that Ca had the most
significant impact over the dependent variable, followed by COD, Mg and N-NO3. The
sixth model (M6) determined the concentration of P-PO4 within the Danube River’s water
at the Tulcea sampling area based on the DO, BOD5, N-NH4, N-NO2, N-NO3, TP, TSS,
FS, Mg, TH, chloride and SO4 concentrations (Table 3). The model explained 61.80% of
the variance of P-PO4 in the water. The model indicated good performance (the predicted
R-sq value was close to R-sq), and the situation also revealed through a low S-value that it
had a high degree of precision. By analyzing the coded coefficients of the sixth model, it
can be stated that the DO, TH, chloride, SO4 and N-NO3 had the most significant impact
on the dependent variable. The seventh MLR model (M7) determined the concentration
of N-NO3 within the Danube River’s water at the Tulcea sampling area based on the TN
concentration (Table 3). The model explained 71.52% of the variance of N-NO3 in the
water. The model indicated very good performance (the predicted R-sq value was close
to R-sq), and the situation also revealed through a low S-value that it had a considerably
high degree of precision. The values of the coded coefficients presented for the seventh
model indicated a significant impact from the TN variation over the dependent variable.
The eighth MLR model (M8) determined the concentration of N-NO2 within the Danube
River’s water at the Tulcea sampling area based on the pH, EC, DO, COD, BOD5, N-NH4,
N-NO3, P-PO4, TSS, FS, Mg, TH, chloride and SO4 concentrations (Table 3). The model
explained 81.83% of the variance of N-NO2 in the water. When considering the predicted
R-sq value, the R-sq and the S-value, it can be stated that M8 had a high degree of precision.
The coded coefficients revealed that the pH, DO and TH had the most significant impact
on the dependent variable.

The ninth model (M9) determined the concentration of N-NH4 in the Danube River’s
water at the Tulcea sampling area based on the pH, EC, DO, COD, BOD5, N-NO2, N-NO3,
P-PO4, TSS, FS, Mg, TH and SO4 concentrations (Table 3). The model explained 75.12%
of the variance of N-NH4 in the water. Additionally, the value of the predicted R-sq was
close to the R-sq value, indicating good model performance. However, the S-value was
high, indicating that the model did not achieve the best degree of precision. The coded
coefficients permitted us to identify the variable with the largest impact on the model’s
response. By analyzing the coded coefficients of the ninth model, it can be stated that the
values of the pH, DO, EC, TH, N-NO3, N-NO2, Mg and SO4 concentrations had the most
significant impact over the dependent variable. The last MLR model (M10) determined
the concentration of SO4 in the Danube River’s water at the Tulcea sampling area based
on the pH, DO, BOD5, N-NH4, N-NO2, N-NO3, N-NH4, TSS, FS, Mg, TH and chloride
concentrations. The model explained 75.36% of the variance of SO4 in the water. The
model indicated good performance (the predicted R-sq value was close to the R-sq value),
a situation also revealed by the low S-value that indicated a high degree of precision.
By analyzing the coded coefficients of M10 (Table 3), it can be stated that the values of
the pH, DO, TH and chloride concentrations had the strongest influence on the resulting
concentration of SO4 in the Danube River’s water at the Tulcea sampling area.

Positive correlation (Pearson and Spearman coefficients) was highlighted in the study
of Kovač et al. (2016) in an aquifer from Zagreb between the nitrate concentrations and the
levels of DO due to the high nitrate mobility in aerobic conditions [92]. Furthermore, water
EC values are associated with high nitrate concentrations due to low precipitation [93].
Other authors [94] conducted a study where they performed linear regression analysis
between the EC values and nitrate concentrations in soil samples from Tsukuba, Japan, and
they highlighted the positive correlation between the two variables.

It is well known that under the conditions of low DO values, the maximum conversion
of ammonia to nitrite is achieved [95,96].
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The positive correlation between ammonium and suspended solids has been previ-
ously elucidated in the estuary waters of the Gulf of Mexico [97].

The presence of PO4 in water systems indirectly influences the concentration of DO by
stimulating the rapid development of microalgae (through algal blooms) which consume
the DO [98].

According to other authors [99], increased DO levels in water inhibit NO2
− oxidation

rates. Additionally, it has been pointed out that species of nitrite are stable at a pH of 7
and 10.6 (NO2

−), while unstable species (HNO2) are formed at lower pH values (2.5) [100].
Furthermore, pH is one of the key factors for controlling the NH4

+ content in surface
waters, and low pH values can increase the ammonium content [101].

3.5. Multiple Linear Regression (MLR) Models Based on the Fish Catch Dataset for the L1 and L2
Study Area

To develop an efficient toll for BE resilience, based on the evaluation of fish stocks
from the L1 and L2 study regions, presented in Figure 1, MLR predicting methods were
used based on the existing fish catch dataset. Therefore, 23 models were elaborated, with
13 of them having applicability in the L1 while the other 10 in were in the L2 study region
(Table 4).

Table 4. Multiple Linear Regression (MLR) models based on the fish catch dataset for the L1 and L2 study areas.

Study Area MLR Prediction Model Model No.

L1

Ccp = −0.413 + 0.350 Pcp + 0.2316 Wbr + 0.607 Ctf L1M1

Pcp = −0.182 + 1.0377 Fbr L1M2

Fbr = 0.289 + 0.6836 Pcp + 0.2827 PkPrc L1M3

Vmb = 0.256 + 0.780 Psh L1M4

Cbb = 0.688 + 0.783 PkPrc L1M5

Rch = −0.198 + 0.4816 Pcp + 0.452 Wbr L1M6

Wbr = 0.202 + 0.375 Vmb + 0.926 Rch − 0.447 Asp L1M7

Asp = −0.010 + 0.9502 PkPrc L1M8

Ctf = 0.385 + 0.6213 Ccp + 0.748 PkPrc − 0.3336 Pk − 0.2185 Psh L1M9

PhPrc = −0.003 + 0.370 Asp + 0.475 Ctf + 0.2058 Pk L1M10

Pk = 1.007 + 0.754 Rch + 1.037 PkPrc − 1.159 Ocp L1M11

Ocp = 0.346 + 0.335 Rch + 0.365 Ctf − 0.3086 Pk + 0.449 Psh L1M12

Psh= 0.243 + 0.3145 Vmb + 0.7288 Ocp L1M13

L2

Fbr = −3745 − 1.258 Pk + 1.906 Rch + 2.188 PkPrc L2M1

Pcp = 10049 + 7.092 Rch − 1.970 PkPrc L2M2

Ocp = −2419 + 0.1091 Fbr + 0.700 Ccp L2M3

Ccp = 231 + 0.364 Ocp + 0.798 Ctf − 0.1683 PkPrc L2M4

Pk = −2032 − 0.1722 Fbr + 0.0290 Pcp + 0.725 Rch + 1.503 Tnch L2M5

Rch = 1391 + 0.1286 Fbr + 0.0752 Pcp + 0.2934 Pk L2M6

Ctf = 3003 + 0.6943 Ccp + 0.2869 Pk − 1.215 Tnch L2M7

Tnch = 2746 + 0.0794 Ocp + 0.1264 Pk − 0.1522 Ctf L2M8

Prc = 1259 + 0.1830 Rch L2M9

PkPrc = −643 + 0.2382 Fbr L2M10

Thus, the first model (L1M1) helped to predict common carp fish stocks based on
Prussian carp, catfish and white bream stocks. The model explained 94.94% of the variance
of the common carp stocks within the L1 study area. The model indicated good perfor-
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mance (the predicted R-sq value was close to the R-sq value) and revealed that the catfish
and Prussian carp statuses had the strongest influence on the common carp stocks in the
L1 study area (Table 4). The second model (L1M2) predicted Prussian carp stocks based
on the freshwater bream stocks within the L1 study area. The model explained 95.51% of
the variance of Prussian carp stocks in L1. The model indicated good performance (the
predicted R-sq value (94.82%) was close to the R-sq value) and revealed that the situation
of Prussian carp stocks was strongly influenced by the freshwater bream in L2 (Table 4).
The third model (L1M3) confirmed the interspecies fish relationship presented in previ-
ous models and predicted the freshwater bream stocks in L1 based on Prussian carp and
pikeperch stocks. The model explained 97.37% of the variance of freshwater bream stocks
in L1. The model indicated good performance (the predicted R-sq value (96.61%) was
close to the R-sq value) and confirmed the strong relation between the freshwater bream
stocks and Prussian carp as the main independent variable of L1M3 (Table 4). The fourth
model (L1M4) predicted the vimba stocks based on the Pontic shad stocks in L1. The model
explained 58.81% of the variance of vimba stocks in L1. Additionally, the value of the
predicted R-sq was further from the R-sq value, and the S-value was high, indicating that
the model did not achieve the best degree of prediction and precision. However, the coded
coefficient revealed the significant contribution of the Pontic shad independent variable in
the prediction of the vimba dependent variable (Table 4). The fifth model (L1M5) predicted
the common barbel stocks based on the pikeperch in L1. The model explained 42.56% of the
variance of common barbel stocks in L1. Additionally, the value of the predicted R-sq was
close to the R-sq value, and the S-value was relatively low, a situation that indicated that
L1M5 did achieve an acceptable degree of prediction and precision. The coded coefficient
analysis revealed the significant contribution of the pikeperch independent variable in the
prediction of the common barbel dependent variable (Table 4). The sixth model (L1M6)
predicted the roach stocks in L1 based on the Prussian carp and white bream stocks. The
model explained 86.13% of the variance of roach stocks in L1. The model indicated good
performance (the predicted R-sq value (79.81%) was close to the R-sq value) and revealed
that the situation of the roach stocks was strongly influenced by both the Prussian carp
and white bream stocks in an almost equal manner (Table 4). The seventh model (L1M7)
predicted the white bream stocks in L1 based on the vimba, roach and asp stocks. The
model explained 79.99% of the variance of white bream in L1. The model indicated good
performance (the predicted R-sq value (69.28%) was relatively close to the R-sq value) and
revealed that the status of the white bream stocks was mostly influenced by the roach
stock followed by the asp stock, as revealed by the coded coefficient analysis (Table 4). The
eighth model (L1M8) predicted the asp stocks in L1 based on the pikeperch stocks. The
model explained 88.99% of the variance of asp stocks in L1. Additionally, the value of the
predicted R-sq (86.90%) was close to the R-sq value, indicating that M18 did achieve a good
degree of prediction and precision. The coded coefficient analysis revealed the significant
contribution of the pikeperch independent variable in the prediction of the asp dependent
variable (Table 4). The ninth model (L1M9) predicted the catfish stocks in L1 based on the
common carp, pikeperch, pike and Pontic shad stocks. The model explained 97.15% of the
variance of catfish stocks in L1. The model indicated good performance (the predicted R-sq
value (92.50%) was close to the R-sq value), and the coded coefficient analysis revealed the
significant contribution of the common carp and pikeperch independent variables in the
prediction of the catfish dependent variable (Table 4). The tenth model (L1M10) predicted
the pikeperch stocks in L1 based on the asp, catfish and pike stocks. The model explained
95.05% of the variance of pikeperch stocks in L1. However, the model indicated relatively
good performance (the predicted R-sq value (88.29%) was close to the R-sq value), and
the coded coefficient analysis revealed that catfish and asp contributed the most to the
pikeperch prediction model (Table 4). The eleventh model (L1M11) predicted the pike
stocks in L1 based on the roach and pike stocks and other cyprinid species, which were
recorded as a different category in the reported catches. The model explained 78.24%
of the variance of pike stocks in L1. Additionally, the value of the predicted R-sq was
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close to the R-sq value, and the S-value was relatively low, a situation indicating that
L1M11 did achieve an acceptable degree of prediction and precision. The coded coefficient
analysis revealed the significant contribution of pikeperch and the other cyprinid category
in the prediction of the pike dependent variable (Table 4). The category of other cyprinids
was composed of all cyprinid species recorded as catches, except for the cyprinid species
considered a separate group in the present analytical framework. Therefore, the twelfth
model (L1M12) predicted the other cyprinid stocks in L1 based on the roach, catfish, pike
and Pontic shad stocks. The model explained 92.74% of the variance of the other cyprinids
group in L1. Additionally, the value of the predicted R-sq was close to the R-sq value, and
the S-value was relatively low, a situation indicating that L1M12 did achieve an acceptable
degree of prediction and precision. The coded coefficient analysis revealed an almost equal
contribution by the roach, catfish, pike and Pontic shad stocks in the prediction of the other
cyprinids dependent variable. The last MLR model (L1M13) for fish stock prediction in L1
targeted the prediction of the Pontic shad stocks based on vimba and also other members
of the cyprinids group. The model explained 90.00% of the variance of the Pontic shad
stocks in L1. The model indicated good performance (the predicted R-sq value (88.25%)
was close to the R-sq value), and the coded coefficient analysis revealed the significant
contribution of the other cyprinids group in the prediction of the Pontic shad dependent
variable (Table 4).

The analysis of the fish stock dataset from the L2 sampling area revealed 10 MLR
prediction models (Table 4). Therefore, the first model (L2M1) generated predictions for the
freshwater bream stocks within the L2 study area based on the pike, roach and pikeperch
stocks. The model explained 88.88% of the variance of freshwater bream stocks in L2.
Additionally, the predicted R-sq value was relatively far from the R-sq value, and the
S-value was high. This indicates that L2M1 did not achieve the best degree of prediction
and precision. However, the coded coefficient analysis revealed the significant contribution
of all other pikeperch, roach and pike to the prediction of the freshwater bream dependent
variable (Table 4). The second MLR model (L2M2) predicted the Prussian carp stocks
within the L2 study area based on the roach and pikeperch stocks. The model explained
84.83% of the variance of the Prussian carp stocks in L2 and indicated good performance
(the predicted R-sq value (81.66%) was close to the R-sq value). The coded coefficient
analysis revealed that the roach stocks contributed significantly as an independent variable
to the prediction of the Prussian carp dependent variable (Table 4). The third MLR model
(L2M3) predicted the other cyprinids group. The L2 study area of the other cyprinids group
consisted (as also described also for L1) of all cyprinid species recorded as catches, except
for the cyprinid species considered a separate group in the present analytical framework.
The model explained 77.29% of the variance for the stocks of the other cyprinids group and
indicated an acceptable degree of prediction and precision, considering the high S-value.
The coded coefficient analysis indicated that common carp was the main independent
variable for the dependent variable of the L2M3 model (Table 4). The fourth MLR model
(L2M4) targeted the prediction of common carp stocks in the L2 study area based on
the other cyprinids group, catfish and pikeperch stocks. The model explained 88.82%
of the variance for common carp stocks and indicated relatively good performance (the
predicted R-sq value (72.78%) was close to the R-sq value). However, the S-value was high,
indicating that the model did not achieve the best degree of precision. The coded coefficient
analysis indicated that the stocks of the catfish and other cyprinids group were the main
independent variables in predicting the common carp stocks (Table 4). The fifth MLR
model (L2M5) generated, based on the L2 study area’s fish stock database, predictions for
the pike stocks based on the freshwater bream, Prussian carp, roach and tench stocks. The
model explained 75.03% of the variance for the pike stocks within the L2 area and indicated
relatively good performance. The coded coefficient analysis indicated that the stocks of
roach and Prussian carp were the main independent variables in predicting the pike stocks
(Table 4). The sixth MLR model (L2M6) targeted the prediction of the roach stocks within
the L2 area based on the freshwater bream, Prussian carp and pike stocks. The model
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explained 92.99% of the variance for the roach stocks in the L2 area and indicated good
performance (the predicted R-sq value (88.27%) was close to the R-sq value), and the coded
coefficient analysis revealed that the pike stocks had the most significant contribution in
predicting the roach stock dependent variable (Table 4). The seventh MLR model (L2M7)
predicted the catfish stocks within the L2 area based on the tench, common carp and
pike stocks. The model explained 91.17% of the variance for the catfish stocks in the L2
area and indicated relatively acceptable performance (the predicted R-sq value (83.00%)
was relatively close to the R-sq value), and the coded coefficient analysis revealed that
the tench and common carp stocks had the most significant contribution in predicting
the catfish stocks dependent variable in L2 study area (Table 4). The eighth MLR model
(L2M8) predicted the tench stocks in the L2 area based on the catfish, pike and other
cyprinids group stocks. The model explained only 55.77% of the variance for the tench
stocks within the L2 area. Additionally, the predicted R-sq value was not as close to the
R-sq value, and the S-value was high, a situation which indicates that the model did
not achieve the best degree of prediction and precision. However, the coded coefficient
revealed a relatively significant contribution from the catfish and pike stock independent
variables in the prediction of the tench dependent variable (Table 4). The ninth MRL model
(L2M9) predicted the perch stocks within the L2 area based on the roach stocks. The model
explained only 66.43% of the variance for the perch stocks within the L2 area and indicated
acceptable performance (the predicted R-sq value (61.02%) was close to the R-sq value),
although the S-values were high. The coded coefficient analysis revealed that the roach
stocks contributed to the prediction of the perch stocks dependent variable (Table 4). The
last MLR model (L2M10) for fish stock prediction in L2 aimed to predict the pikeperch
stocks based on the freshwater bream stocks. The model explained 82.42% of the variance
of the pikeperch stocks within L2. However, the predicted R-sq value was further away
from the R-sq value, and the S-value was high, indicating that the model did not achieve
the best degree of prediction and precision. The coded coefficient analysis revealed a
relatively significant contribution from the freshwater bream stocks to the prediction of the
pikeperch stocks as a dependent variable (Table 4).

Fish stock forecasting models contribute to a better quantification of the climate change
impact on fish biodiversity, improving the precision of the proposed analytical framework
by offering the possibility of correlating the fish stock dynamics and diversity with the
water’s physicochemical parameters. Additionally, by dividing the fish species database
into two major groups according to their feeding behavior (predatory and peaceful species),
it was observed that peaceful species had a higher upward trend in contrast with the
predatory species (Figure 3) in both of the studied areas (L1 and L2).

Figure 3. The evolution of peaceful and predatory species for both L1 and L2 during the 2017–2019
time period.

These findings were confirmed by other authors, who emphasized that a high water
temperature is associated with low fish diversity, and fish species from the ichthyophagous
group suffered a decline in biodiversity [102].
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Due to morphological differences in the feeding habits of different fish species, the
interaction between them is established as predator and prey species, a fact that can
negatively influence the density of prey populations [103].

The feeding diet of the common carp, Prussian carp and white bream is planktivorous,
being based on phytoplankton and zooplankton [104,105]. Thus, it is expected that either
all the species thrive when food resources are abundant, or they compete with one another
if the resources are scarce. The catfish is known as an opportunistic feeder and its diet
is predominantly based on animals living in the benthic area, such as crustaceans (in
lentic ecosystems) and fish (in lotic ecosystems) [106]. In rivers, catfish prefer to prey on
migratory fish species such as Alosa sp., potentially leading to a decline in the Alosa sp.
stocks [103,106]. Another important characteristic in the feeding process of the catfish is
the specimen size. It has been observed that individuals with a biomass below 5 kg prey on
roach and perch, while bigger individuals prey on sander, bream and common carp [107].
In the case of the feeding habits of the pike, it prefers cyprinids such as rudd and roach
and Percidae sp. such as the European perch [108,109].

4. Conclusions

Here, we confirm the vulnerability of the Romanian Lower Danube Euroregion (RLDE)
to climate change based on the trend lines of the most suggestive water physicochemical
parameter dataset recorded in the last 4 years. Thus, the water temperature, ammonium,
nitrite and TOC revealed an upward dynamic, while the pH and DO were associated
with a decreasing trend. These are signs of the impact of climate change. However, there
are sectors among the RLDE, such as the Galat,i study area, which can be considered
more vulnerable to the evergrowing impact of climate change. This was revealed by
the present analytical framework’s TN and TP forecast analysis, which indicated a more
accentuated increasing trend compared with the studied Tulcea sector. The fish catch
structure within the RLDE was proven to be affected by global warming, since the stocks of
ichthyophagous fish species were less predominant compared with the stocks of peaceful
fish species. Furthermore, this phenomenon was more obvious within the Galati County
Danube River Basin than in the “Danube Delta” Biosphere Reserve Administration territory,
confirming the more vulnerable character of the Galati study area compared with that of
the Tulcea area.

The water level and air temperature forecasting analysis proved to be an important
tool for climate change monitoring and can efficiently assist in the real-time management
decisions related to water distributions among BE sectors, preventing possible conflicts
which can induce shortages within the BG process.

The forecast and prediction methodology we presented here confirms that time series
methods can be used together with machine learning prediction methods to highlight their
synergetic abilities to monitor and predict the impact of climate change on the marine
living resources BE sector within the RLDE.

The developed forecasting models are meant to be used as methods for elucidating
future information, rendering the decision makers capable of adopting proper management
solutions to prevent or limit the negative impacts of climate change on a BE. Through the
identified independent variables, fish stock prediction models offer a solution for managing
the dependent variables, which is mostly possible through restocking programs or by
fishing policy adaptation. Moreover, water quality prediction models can be characterized
as suitable solutions for less cost-demanding aquatic environment monitoring activities.

Forecasting methods like ETS, ARIMA, SARIMA were considered the most efficient
for predicting water’s physicochemical parameters, while multiple linear regression has
been proven to offer consistent results both for water’s quality parameters and for fish
stock biodiversity monitoring purposes.

The volume of the available data was enough to develop both the forecasting and
prediction procedures, with sufficient data for the training and testing phases. However,
like other studies which apply forecasting and prediction methodologies, this can be subject
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to limitations. Indeed, most algorithms will positively benefit from a larger dataset when
extra data are available. Therefore, the analytical framework applicability is mostly limited
to the RLDE. However, not all the dataset parameters were collected from the entire RLDE
surface. Therefore, more geographically widespread studies within the RLDE are to be
performed to improve the performance of the established analytical framework.

Future studies should be performed to develop the analytical framework elaborated
within the research at hand by integrating other important parameters into the dataset
(such as the water’s heavy metal concentration and atmospheric parameters such as
carbon dioxide and other greenhouse gases, in addition to heavy industry and agriculture
sustainability indicators) to assure more accurate monitoring and control of the climate
change impact on a BE from the RLDE. Moreover, future studies should aim to include data
related to invasive and declining species into both the forecast analysis and the prediction
models in order to identify possible impacts in terms of biodiversity loss and establish
methods for managing the biodiversity.
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Appendix A

Figure A1. Minimum air temperature trend line at the Galat, i sampling point.
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Figure A2. Maximum air temperature trend line at the Galat, i sampling point.

Figure A3. Water temperature trend line in the Danube River at the Galat, i sampling point.

Figure A4. The DO trend line in the Danube River at the Galat, i sampling point.

Figure A5. The DO saturation trend line in the Danube River at Galat, i.
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Figure A6. The water pH trend line in the Danube River at Galat, i.

Figure A7. The water alkalinity trend line in the Danube River at Galat, i.

Figure A8. The water bicarbonates trend line in the Danube River at Galat, i.

Figure A9. The water nitrate-nitrogen trend line in the Danube River at Galat, i.
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Figure A10. The water nitrite-nitrogen trend line in the Danube River at Galat, i.

Figure A11. The water ammonium-nitrogen trend line in the Danube River at Galat, i.

Figure A12. The water total nitrogen trend line in the Danube River at Galat, i.

Figure A13. The water total phosphorus trend line in the Danube River at Galat, i.
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Figure A14. The water magnesium trend line in the Danube River at Galat, i.

Figure A15. The water calcium trend line in the Danube River at Galat, i.

Figure A16. The water turbidity trend line in the Danube River at Galat, i.

Figure A17. The water TSS trend line in the Danube River at Galat, i.
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Figure A18. The water TOC trend line in the Danube River at Galat, i.

Figure A19. The water BOD5 trend line in the Danube River at Galat, i.

Figure A20. The water fixed solids trend line in the Danube River at Galat, i.

Figure A21. Minimum air temperature trend line in the Tulcea sampling point.
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Figure A22. Maximum air temperature trend line in the Tulcea sampling point.

Figure A23. Maximum water temperature trend line in the Tulcea sampling point.

Figure A24. Maximum water DO trend line in the Tulcea sampling point.

Figure A25. The water pH trend line in the Tulcea sampling point.
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Figure A26. The water alkalinity trend line in the Tulcea sampling point.

Figure A27. The water bicarbonate trend line in the Tulcea sampling point.

Figure A28. The water nitrate-nitrogen trend line in the Tulcea sampling point.

Figure A29. The water nitrite nitrogen trend line in the Tulcea sampling point.
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Figure A30. The water ammonium-nitrogen trend line in the Tulcea sampling point.

Figure A31. The water total nitrogen trend line in the Tulcea sampling point.

Figure A32. The water total phosphorus trend line in the Tulcea sampling point.

Figure A33. The water magnesium trend line in the Tulcea sampling point.
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Figure A34. The water calcium trend line in the Tulcea sampling point.

Figure A35. The water TSS trend line in the Tulcea sampling point.

Figure A36. The water BOD5 trend line in the Tulcea sampling point.
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