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Abstract: Biochar is often used for the removal of phosphorus in wastewater. However, the improper
treatment of adsorbed biochar might cause secondary pollution. In order to promote the recycling
and harmless utilization of biochar with adsorbed phosphorus, a new modified biochar (ABC) was
prepared from cyanobacteria in this study. The maximum adsorption capacity of ABC calculated
from the Langmuir isotherm model was 38.17 mg·g−1. ABC was used to absorb phosphorus in
wastewater, whose product (ABC/P) was used for soil improvement and soybean cultivation. The re-
sults showed that adding the proper amount of ABC/P could significantly increase the pH of the soil
(from 6.52 ± 0.04 to 7.49 ± 0.08), organic matter content (from 34.02 ± 0.41 to 47.05 ± 0.14 g·kg−1),
cation exchange capacity (from 3.01 ± 0.18 to 3.76 ± 0.07 cmol·kg−1), water-holding capacity (from
28.78 ± 0.34 to 35.03 ± 0.31%), effective phosphorus content, and total phosphorus content. Mean-
while, the soil alkaline phosphatase activity was improved. The plant height, root length, and fresh
quality were promoted by planting soybeans in ABC/P-improved soil and were better than those of
the control group. Therefore, ABC/P, as a new type of phosphorus fertilizer, has the potential for soil
amendment for legume crops.

Keywords: cyanobacteria; alkali-activated algae biochar; soil amendment; phosphorus; soybean cultivation

1. Introduction

It is well known that excessive phosphorus in natural water bodies leads to eutroph-
ication [1–3]. At present, the main methods for removing phosphorus in water include
chemical precipitation, bioremediation, and adsorption [4,5]. Among them, the adsorption
method is considered to be a simple and efficient removal technique [6]. However, the
adsorbent after adsorption contains a large amount of phosphorus and organic matter. If it
is treated as solid waste, it will increase the processing cost. Therefore, it is crucial to find a
resource utilization method to deal with the waste material.

Coastal areas and freshwater lakes in many countries are now experiencing severe
eutrophication, accompanied by an overgrowth of algae [7–9]. In order to solve these
problems and uphold the concept of turning global, social, and environmental problems
into opportunities, many researchers have carried out research on the utilization of algae
resources [10,11]. Among them, the conversion of algae biomass into biochar is currently
a popular research direction. Algae biochar has the following advantages: (i) algae grow
fast; (ii) it is a new and promising renewable raw material; (iii) it can be used to fix carbon,
improve soil fertility, and for the bioremediation of wastewater [12]. Among many algae,
cyanobacteria are one of the most widely distributed and common algae in fresh water [13].
The efficient utilization of filamentous green algae and preparing it into biochar provide a
new direction for the utilization of algae resources [14].

The ability of biochar to absorb phosphate anions is limited because it is negatively
charged and lacks metal cations. In recent years, various metal-modified biochar have
been used to remove phosphorus from sewage, and all have shown a good removal
performance [15]. However, there are few reports on the utilization of modified algae
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biochar for soil amendment for resource utilization after adsorbing phosphorus. Therefore,
this research is focused on the preparation of magnesium-modified algae biochar (ABC) and
the phosphorus adsorbed product (ABC/P). ABC/P was used to conduct soil improvement
experiments, including evaluating the effects on soil physical and chemical properties, the
content of different forms of phosphorus, enzyme activity, and soybean planting. This
technology is expected to provide a scientific basis for the harmless utilization of algae
biochar after phosphorus absorption.

2. Materials and Methods
2.1. Experiment Material
2.1.1. Experimental Materials and Instruments

The filamentous green algae used in this experiment were obtained from a lake in Nan-
jing, Jiangsu. The water used in the experiment was distilled water, and all reagents were
of analytical grade, purchased from China Aladdin Company. Experimental instruments
include: electric heating constant temperature blast drying oven (DHG-9240, Zhejiang
Xinfeng Medical Equipment Co., Ltd., Shaoxing, China), desktop high-speed centrifuge
(H/T18MM, Hunan Hexi Instrument Equipment Co., Ltd., Changsha, China), scanning
electron microscope (JSM-6360LV, Japan Electronics Corporation, Tokyo, Japan), and BET
specific surface area tester (TriStar II Plus, McMuritik, Shanghai, China).

2.1.2. Tested Soil and Plants

The test soil was collected from the topsoil (0–20 cm) of farmland in the suburbs of
Nanjing City, Jiangsu Province. After the soil samples were air-dried and crushed through
a 100-mesh sieve, their basic physical and chemical properties were determined according
to the method in [15]. Potted test plants are selected soybeans that are more sensitive to
phosphorus.

2.2. Experiment Method
2.2.1. Preparation and Characterization of Modified Algae Biochar (ABC)

The cyanobacteria were washed, freeze-dried for 24 h, and then ground and crushed,
and 10.00 g cyanobacteria powder was placed in a shaker at a temperature of 25 ◦C and a
rotation speed of 200 r·min−1, followed by 100 mL of 2.5% KOH solution, and 100 mL of
0.0125 mol·L−1 MgCl2 solution was impregnated and modified for 2 h and then filtered
out and placed in an oven at 60 ◦C for 12 h. Finally, it was transferred to a crucible, placed
in a muffle furnace, heated to 600 ◦C at a rate of 10 ◦C·min−1, and heated at a constant
temperature for 2 h. After cooling, it was ground through an 80-mesh sieve to obtain ABC.
A quantity of 2.0 g ABC was added into a serum bottle (150 mL), and then 100 mL of
simulated phosphorus-containing wastewater (500 mg·L−1) was added and placed in a
constant temperature water bath shaker at a temperature of 25 ◦C and a rotation speed of
200 r·min−1 for 1 h. After the reaction, the filtered material was placed in an oven and dried
at 60 ◦C for 12 h to obtain the final phosphorus-containing algae biochar soil amendment
(ABC/P). The basic properties of ABC and ABC/P are shown in Table 1.

Table 1. The basic properties of the experimental materials.

Test Indicators OM/(g·kg−1) Total N/(g·kg−1) Total P/(g·kg−1) Total K/(g·kg−1)

ABC 82.35 13.79 7.28 25.38
ABC/P 63.47 14.02 27.76 23.77

2.2.2. ABC Adsorption Experiment on P

The phosphorus sorption isotherms of ABC were carried out in batch experiments.
For the sorption isotherms, 0.2 g ABC was added to 50 ml polyethylene centrifuge tubes
with 25 ml of various phosphorus solutions (10, 20, 40, 50, 100, 150, and 150 mg P/L) at
a pH of 7.0. The tubes were placed on a constant temperature shaker (25 ◦C) for 24 h
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at 220 rpm to ensure complete mixing. The solutions were then centrifuged and filtered
through a 0.45 µm membrane. The filtered solutions were kept at 4 ◦C for further analysis.

2.2.3. Soil Improvement Test

Plastic pots with diameters of 20 cm and heights of 20 cm were used. Each pot was
filled with 500 g of soil. Then, ABC and ABC/P were added at a ratio of 10 g·kg−1 and
mixed with the soil thoroughly to keep the soil moisture content at about 20%. Then, the
cultivated soybeans were planted into the soil according to the sowing rate of 5 soybeans
per pot. In order to facilitate the simultaneous study of the effects of ABC/P on soil and
plants after improving soil, a total of 3 test groups were set up, namely the soil group
(control group), soil + ABC group, soil + ABC/P group, with 4 pots in each group. One
sample pot corresponds to one culture time. All potted plants were cultivated in a sunny
greenhouse. The cultivation period was set to 40 days. The soil and plant data of the sample
pots were collected for the corresponding cultivation time every 10 days. All experiments
were set to be repeated 3 times.

2.3. Analytical Method

Phosphorus concentrations in the solution and extract were determined spectropho-
tometrically at 700 nm (UV-2550), according to the molybdenum blue method. The de-
termination of basic physical and chemical properties of soil refers to padronized meth-
ods [15]. P fractions were determined in this study according to the method of Hieltjes
and Lijklema [16].

2.4. Data Processing and Analysis

Microsoft Excel 2010 was used for data processing, Origin 9.0 was used for drawing,
and SPSS 11.5 was used to test the significance of differences (p > 0.05).

3. Results and Discussion
3.1. Morphological Characterization of ABC

ABC was prepared by the hydrothermal carbonization of cyanobacteria biomass. As
shown in Figure 1a,b, there are many folds and sintered holes on the surface of ABC,
which indicates that ABC has a large surface. The BET specific surface area (Figure 1c,d)
showed that the specific surface area of ABC was as high as 25.95 m2·g−1, which was 3.41
times higher than cyanobacteria. This can be explained by the change in the number and
diameters of holes after hydrothermal carbonization at a high temperature. The higher
specific surface area indicated that ABC has a potentially strong phosphorus adsorption
capacity [17,18].

3.2. Adsorption Isotherm of ABC for P

The P adsorption of ABC was evaluated at various phosphorus solutions (10, 20,
40, 50, 100, 150, and 200 mg P/L) at 25 ◦C (298 K) with an initial pH of 7.0. The results
show that ABC has an excellent adsorption capacity for phosphorus. The Langmuir and
Freundlich isotherm equations are commonly used to describe the process in sorption
experiments. The linear form of the isotherm equations can be given as follows (Equation
(1) for Langmuir isotherm and Equation (2) for Freundlich isotherm):

Ce

qe
=

Ce

qmax
+

1
KL·qmax

(1)

lnqe = lnKf + lnCe/n (2)

where Ce is the equilibrium phosphate concentration in the solution (mg·L−1); qe is the
P concentration on the sorbent (mg·L−1); qm represents the maximum sorption of the
sorbent at given concentrations (mg·g−1); KL, KF, and n are constant parameters of the
above models. The isotherm parameters are shown in Figure 2 and Table 2. The appli-
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cability of the isotherm equation was compared by the correlation coefficient R2. The
results showed that the Langmuir isotherm equation showed a more satisfactory result
(R2 = 0.9698). The maximum adsorption capacity calculated from the Langmuir isotherm
model was 38.17 mg·g−1.
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Table 2. Parameters of Langmuir isotherm and Freundlich isotherm for the phosphorus adsorption
by using ABC.

T (K)
Langmuir Isotherms Freundlich Isotherms

qmax
(mg·g−1)

KL
(L·mg−1) R2 n Kf

(mg·g−1) R2

298 38.17 0.0721 0.9698 0.33 7.1446 0.8560
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Figure 2. Adsorption isotherms for ABC on P at 298 K fitted with Langmuir and Freundlich model.

3.3. Effects of ABC/P on Soil Physical and Chemical Properties

The addition of ABC and ABC/P significantly increased soil pH, organic matter
content, cation exchange capacity, water-holding capacity, available phosphorus content,
and total phosphorus content (Table 3). The cation exchange capacity, available phosphorus,
and total phosphorus in the experiment group showed a decreasing trend with the increase
in incubation time, which might be due to the continuous consumption of soil nutrients by
the soybean plants without the supplementation of external ions. The pH value is generally
considered to be the main variable of soil [19]. As shown in Table 3, the addition of ABC
and ABC/P could improve the soil pH and regulate the soil pH from weakly acidic to
neutral and weakly alkaline, which was similar to the results reported by Z. Yuan et al [20].
ABC and ABC/P are relatively alkaline and can also increase soil pH by increasing soil
base saturation, reducing exchangeable aluminum levels, and consuming soil protons. On
the other hand, the soil cation exchange capacity (CEC) is an important basis for evaluating
soil fertility retention, soil improvement and rational fertilization [21]. The addition of ABC
and ABC/P improved the soil variable charge status and increased the soil cation exchange
capacity, mainly due to the biochar itself having a negatively charged surface and a certain
anionic functional group [22]. Moreover, ABC/P contains a large amount of phosphate,
which releases a large quantity of phosphorus-containing anions in the soil, making the
soil colloid adsorb various cations. Phosphorus in the soil is an indispensable nutrient for
plant growth. It can be seen from Table 3 that the amount of effective phosphorus and total
phosphorus of the soil increased slightly, by 19.59% and 14.08%, respectively, after adding
ABC compared to the soil group. The main reason was that ABC has a large amount of
soluble phosphate residues and stable physical and chemical properties and the ability
of strong anti-decomposition and antioxidation, which ensured a long-lasting supply of
phosphorus. Therefore, the addition of ABC to soil will inevitably lead to the accumulation
of phosphorus and improve the release capacity of soil phosphorus. After adding ABC/P,
the contents of total phosphorus and available phosphorus in the soil increased by 242.18%
and 729.99%, respectively, compared to the soil without added substances. This is mainly
because ABC/P not only has the characteristics of ABC, but also absorbs a large amount of
phosphate in wastewater. The accumulation and promotion of soil phosphorus were more
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significant than ABC when ABC/P applied to soil. The addition of ABC and ABC/P to the
soil effectively improved the soil organic matter content and water-holding capacity since
they contained a certain amount of organic matter and have abundant pores, which was
consistent with the results of Shin H et al. [23].

Table 3. Effects of different treatments on soil physical and chemical properties.

Experimental
Groups

Culture
Time/d pH OM

/(g·kg−1)
CEC

/(cmol·kg−1)
Water-

Holding
Capacity/%

Effective
P/(mg·kg−1) Total P/(mg·kg−1)

Soil

0 6.23 ± 0.03 29.76 ± 0.25 4.26 ± 0.17 28.78 ± 0.34 38.25 ± 1.23 736.78 ± 15.73
10 6.37 ± 0.05 — 4.13 ± 0.09 — 42.28 ± 1.05 684.38 ± 23.75
20 6.41 ± 0.07 — 3.72 ± 0.15 — 45.12 ± 0.49 635.71 ± 16.93
30 6.42 ± 0.09 — 3.32 ± 0.21 — 46.81 ± 0.56 584.78 ± 9.35
40 6.52 ± 0.04 34.02 ± 0.41 3.01 ± 0.18 — 42.01 ± 0.34 544.85 ± 22.61

Soil + ABC

0 6.79 ± 0.04 34.84 ± 0.21 4.52 ± 0.08 36.35 ± 0.24 45.12 ± 0.33 784.93 ± 24.34
10 7.05 ± 0.11 — 4.25 ± 0.21 — 42.23 ± 1.05 728.45 ± 12.46
20 7.12 ± 0.08 — 3.94 ± 0.23 — 47.92 ± 1.31 696.36 ± 16.88
30 7.21 ± 0.04 — 3.72 ± 0.15 — 43.81 ± 0.69 648.21 ± 23.45
40 7.18 ± 0.07 43.04 ± 0.13 3.25 ± 0.08 — 50.24 ± 0.39 621.55 ± 19.04

Soil +
ABC/P

0 6.92 ± 0.03 35.02 ± 0.08 4.82 ± 0.13 35.03 ± 0.31 843.92 ± 14.82 2845.28 ± 23.45
10 7.43 ± 0.09 — 4.54 ± 0.11 — 736.23 ± 18.75 2473.23 ± 28.93
20 7.62 ± 0.01 — 4.34 ± 0.16 — 543.98 ± 21.35 2234.48 ± 27.35
30 7.54 ± 0.12 — 4.06 ± 0.04 — 431.37 ± 33.45 2082 ± 18.94
40 7.49 ± 0.08 47.05 ± 0.14 3.76 ± 0.07 — 348.65 ± 27.34 1864.38 ± 22.54

3.4. Effects on Soil Phosphorus Forms

It can be seen from Table 4 that the addition of ABC did not significantly increase the
contents of various forms of inorganic phosphorus in the soil during the 40-day cultivation
period. The conversion of different forms of inorganic phosphorus had no obvious promo-
tion effect, which might be due to the small amount of biochar added and short culture
time. After adding ABC/P to the soil and culturing for 40 days, the contents of Al-P, Fe-P,
Ca2-P, and Ca8-P in the soil were significantly increased. Compared to the natural soil,
it increased by 4.45, 3.51, 7.51, and 9.03 times, respectively, and was 1.08, 1.42, 1.18, and
1.16 times that of the soil added with ABC. This was mainly due to the adsorption of a large
amount of phosphorus in ABC/P, and phosphorus is released into the soil and quickly
converted into Ca2-P, Ca8-P, Al-P, and Fe-P in a short time after mixing with the soil, thus
significantly increasing the high-efficiency phosphorus source (Ca2-P) and slow-acting
phosphorus source (Ca8-P, Al-P, and Fe-P) in the soil. After 40 days of culture with ABC/P,
there was no significant change in soil Ca10-P compared with to the other two groups,
which might be due to the rapid absorption of various active phosphorus by plants and
the shorter culture time [24]. The contents of highly active Ca2-P in the soil with added
ABC/P tended to decrease gradually during the 0–40-day cultivation process, while the
contents of Ca8-P, Fe-P, and Al-P all tended to increase gradually. This is because the highly
active Ca2-P was gradually being transformed into the relatively stable Ca8-P, Fe-P, and
Al-P during the culture process [25].

3.5. Effects on the Soil Alkaline Phosphatase Activity

The activity of soil alkaline phosphatase reflects the status of soil phosphorus to a
certain extent. As shown in Figure 3, the addition of ABC/P could effectively increase soil
alkaline phosphatase activity.
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Table 4. Variation of inorganic phosphorus content in different treatments (mg·kg−1).

Experimental
Groups Culture Time/d Al-P Fe-P Ca2-P Ca8-P Ca10-P

Soil

0 57.37 ± 4.25 97.63 ± 3.89 42.34 ± 1.87 38.78 ± 1.34 76.25 ± 1.23
10 44.47 ± 3.12 86.73 ± 3.71 45.28 ± 2.45 33.45 ± 2.01 80.24 ± 1.32
20 36.41 ± 1.91 82.01 ± 2.45 40.06 ± 1.86 40.38 ± 1.04 86.12 ± 2.49
30 38.21 ± 2.17 74.83 ± 1.96 43.32 ± 1.21 43.73 ± 2.05 86.81 ± 0.96
40 39.45 ± 1.83 79.02 ± 4.92 43.05 ± 0.98 36.23 ± 1.06 94.05 ± 2.16

Soil + ABC

0 59.79 ± 1.04 114.89 ± 2.89 44.42 ± 1.28 36.35 ± 1.25 83.23 ± 5.21
10 52.05 ± 2.11 103.81 ± 6.27 44.25 ± 1.41 34.94 ± 2.03 85.38 ± 1.05
20 47.62 ± 3.08 100.25 ± 4.13 49.94 ± 1.23 41.38 ± 1.38 87.34 ± 1.38
30 40.25 ± 1.04 118.45 ± 6.37 53.72 ± 1.45 45.07 ± 2.41 93.81 ± 1.69
40 42.72 ± 1.27 112.95 ± 3.29 45.34 ± 2.08 39.47 ± 3.05 104.25 ± 3.39

Soil + ABC/P

0 186.32 ± 10.03 221.34 ± 6.53 634.98 ± 11.14 335.53 ± 6.31 114.53 ± 2.38
10 162.43 ± 9.34 242.27 ± 4.43 484.54 ± 0.71 312.39 ± 3.94 124.25 ± 1.75
20 183.62 ± 12.01 263.26 ± 11.22 396.37 ± 3.16 331.02 ± 5.21 137.98 ± 2.38
30 167.33 ± 6.12 272.47 ± 7.04 340.56 ± 6.43 320.35 ± 10.25 139.33 ± 3.02
40 175.45 ± 12.02 277.05 ± 10.14 323.56 ± 5.07 327.48 ± 9.27 148.65 ± 2.31
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Figure 3. Effects of different treatments on the soil alkaline phosphatase activity (p > 0.05).

The alkaline phosphatase activity in the three test groups increased continuously with
the culture time, which was primarily due to the continuous growth of soil microorganisms
and soybean roots and the production of a large amount of alkaline phosphatase. The
application of ABC and ABC/P in soil could further improve the living environment of
soil microorganisms and increase the number of soil microorganisms, thus increasing the
alkaline activity of phosphatase [26]. Therefore, the alkaline phosphatase activity in the
ABC/P group and ABC group was significantly higher than that in soil group (Figure 3).

3.6. Effects on Soybean Growth

It can be seen from Table 5 that the plant height, root length, and fresh weight of
soybeans in the three test groups increased with the increase in cultivation time. The
growth status of soybeans in the ABC/P treatment group was the best after 40 days of
cultivation. Compared to the soil group, plant height, root length, and fresh weight were
increased by 35.56%, 48.92%, and 119.56%, respectively. The addition of ABC/P could
effectively promote the growth of soybeans, which is mainly due to the adsorption of a
large amount of phosphorus in wastewater on ABC/P, and the application of ABC/P to
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soil could significantly increase Ca2-P and Ca8-P in the soil. Inorganic phosphorus with
strong activity, such as Fe-P and Al-P, increased the content of nutrient elements that could
be directly used by crops in the soil. In addition, ABC/P also has a large internal surface
area, which provides a large space for nutrient adsorption, water retention, and microbial
community survival, thereby improving environmental conditions, such as soil physical
and chemical properties and soil enzyme activity, and promoting crop growth [23].

Table 5. Effects of different treatments on soybean growth.

Experimental
Groups Culture Time/d Plant

Height/cm Root Length/cm Fresh Weight/g

Soil

10 14.15 ± 5.65 7.15 ± 4.16 —
20 25.83 ± 6.23 7.48 ± 3.92 —
30 31.48 ± 10.06 8.73 ± 5.01 —
40 45.05 ± 7.82 9.57 ± 4.16 21.57 ± 5.38

Soil + ABC

10 20.72 ± 4.78 9.25 ± 1.38 —
20 31.08 ± 7.36 10.28 ± 4.02 —
30 38.03 ± 8.03 10.83 ± 3.42 —
40 54.27 ± 4.27 11.05 ± 2.74 30.61 ± 2.49

Soil + ABC/P

10 26.83 ± 6.66 10.03 ± 3.58 —
20 37.46 ± 5.48 11.88 ± 2.59 —
30 43.12 ± 9.66 12.98 ± 3.12 —
40 61.64 ± 8.25 14.25 ± 3.36 47.36 ± 3.42

4. Conclusions

(1) The modified ABC prepared from cyanobacteria has a porous surface and a large
specific surface area of 25.92 m2·g−1, whose maximum adsorption capacity calculated from
the Langmuir isotherm model was 38.17 mg·g−1.

(2) Compared to the control group, adding the proper amount of ABC/P could
significantly increase the soil pH, organic matter content, cation exchange capacity, water-
holding capacity, effective phosphorus, and total phosphorus content. Meanwhile, the soil
alkaline phosphatase activity was improved.

(3) In the pot experiment, planting soybeans with ABC/P-improved soil could signifi-
cantly promote the growth of soybeans. Therefore, ABC/P is a promising soil amendment
for legume crops.
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