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Abstract: Wastewater treatment plants (WWTPs) use considerable workforces and resources to
meet the regulatory limits without mistakes. The advancement of information technology allowed
for collecting large amounts of data from various sources using sophisticated sensors. Due to
the lack of specialized tools and knowledge, operators and engineers cannot effectively extract
meaningful and valuable information from large datasets. Unfortunately, the data are often stored
digitally and then underutilized. Various data analytics techniques have been developed in the
past few years. The methods are efficient for analyzing vast datasets. However, there is no wholly
developed study in applying these techniques to assist wastewater treatment operation. Data
analytics processes can immensely transform a large dataset into informative knowledge, such as
hidden information, operational problems, or even a predictive model. The use of big data analytics
will allow operators to have a much clear understanding of the operational status while saving the
operation and maintenance costs and reducing the human resources required. Ultimately, the method
can be applied to enhance the operational performance of the wastewater treatment infrastructure.

Keywords: big data; wastewater treatment plant; data analytics; statistical analysis

1. Introduction

Big data plays an essential role in many fields of our daily life. Data generation has
been tremendously increasing since 2010. Of the world’s data, 90% were created in the past
two years [1]. Water quality sensors in various wastewater treatment operational processes
have generated a large amount of data. However, operators cannot use the digital data
collected from multiple sensors to identify the plant operation status [2]. Accordingly,
most data collected are wasted. Wastewater treatment processes involve many operational
systems. The objective of wastewater treatment is to remove contaminants from sewage to
discharge into natural resources. Treated water must meet effluent discharge permits to
protect public health and the environment [3]. A lack of access to safe water is a risk factor
for infectious diseases such as cholera, diarrhea, dysentery, etc. In addition, 1.2 million
people died prematurely in 2017 due to unsafe water [1].

Most wastewater treatment plants apply the SCADA system, a distributed computer
system to aid wastewater treatment processes through monitoring and automation control.
Wastewater treatment operators are constantly facing the traditional system challenge for
controlling the plant including these three main areas [4]:

• Obtainability and reliability: Including old plant infrastructure, stability of the opera-
tion system, and reliability of the information coming into the system;

• Risk: Compliance concerns, plant security, reporting and errors of the systems, and
experienced operators retiring;

• Cost: Operation and maintenance cost, chemicals cost, training new operators, and
energy consumption costs.
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WWTPs can address challenges in these three important areas in several ways. A
modern big data analytics system supplies information anytime over a disaster recovery
architecture for high availability and reliability [4]. Risk can be reduced by reliable data
management, effective data analysis, consistent monitoring processes, and real-time predic-
tion systems to detect a potential risk beforehand. The biggest challenge in data analytics
from wastewater treatment is the dynamic behavior of the data [5]. The data are usu-
ally complicated and uncertain because of variations from the environmental conditions,
changes in the process variables, and fluctuations in the flow rate and concentration of the
influent composition [6]. Finding insight from historical and real-time data can allow for
the better management of WWTPs and advanced operational decision support systems. In
addition, big data from WWTPs were analyzed using statistical tools to visualize operat-
ing conditions. Efficient operations can reduce cost by thoroughly monitoring the plant,
applying big data analysis, and finally, optimizing wastewater treatment operations.

2. Materials and Methods

The methodology of big data analytics for wastewater treatment operations is de-
scribed below and shown in Figure 1.
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2.1. Data Collection

Data were collected from the Nine Springs WWTP operated by the Madison Metropoli-
tan Sewerage District (MMSD), Madison, WI, USA. The wastewater treatment plant is
separated into four plants, and each plant involves the preliminary treatment, primary
clarification, nitrifying activated sludge treatment incorporating biological phosphorus
removal, ultraviolet disinfection, and effluent pumping [7].

The dataset contains 1,000,363 wastewater treatment historical data from 1996 to 2019.
The dataset consists of a tremendous amount of data with a file size of about 311.6 MB. The
data contain 13 columns, such as ‘ResultDate’, ‘Result’, ‘MeasureCode’, ‘LocationCode’,
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etc. There are many parameters from many treatment processes, as shown in Figure 2a,
which are from ‘MeasureCode’ column. The data were collected from several points in the
wastewater treatment plant, which is shown in Figure 2b.
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2.2. Data Understanding

The collected data need to be studied and understood. The Madison Metropolitan
Sewerage District 50-Year Master Plan was reviewed to research the background, goals,
and WWTP processes.

2.2.1. Background and Goals

Madison Metropolitan Sewerage District (MMSD) is a municipal corporation created
to collect and treat wastewater from the Madison metropolitan area. MMSD provides
service to 43 municipal customers. The service area covers 177 square miles (458 km2) and
serves a current population of nearly 330,000 people. MMSD owns and operates the Nine
Springs WWTP [7]. The Nine Springs WWTP averagely treats 41 million gallons of wastew-
ater per day (155,000 m3/day). The main objective of the plant is to provide exceptional
service at a reasonable cost to customers while considering an appropriate balance between
environmental, social, and economic impacts. This study analyzes data generated in the
Nine Springs WWTP and finds insights and patterns to optimize WWTP operation.

2.2.2. The Liquid Treatment Processes

The liquid treatment processes at the Nine Springs WWTP include preliminary treat-
ment, primary clarification, nitrifying activated sludge treatment incorporating biological
phosphorus removal, ultraviolet disinfection, excess flow storage, and effluent pumping.
Wastewater enters the plant through the influent meter vault, in which influent data were
chosen, and the treated water is sent to the effluent building where that effluent data
was selected.

2.3. Data Preparation

In this stage, the influent and effluent data were selected, and important parameters
were determined. Data cleaning, visualizing, transforming, and obtaining feature selection
and extraction are part of this stage. The data are now available in a form that is compatible
with a modeling technique, which will be introduced in the next study.
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Data Preprocessing

Data preprocessing is how the data are transformed or encoded to a state that a
computer can easily parse. Data preprocessing helps the computer to understand data.
Han et al. (2012) summarized the following steps involved in data preprocessing [8]:

1. Data cleaning

Data cleaning includes many tasks such as filling in missing values, smoothing noisy
data, identifying or removing outliers, and correcting inconsistencies [9]. Unclean data can
cause uncertainty for the mining process, resulting in inaccurate output. Thus, the data
cleaning routine is one of the most important techniques of data preprocessing.

2. Data integration

The integration of multiple databases or data integration is often required in data
mining processes. Data integration is the combining of data from various data stores.
Thorough integration helps to reduce and avoid redundancies and inconsistencies in the
dataset. Data integration can help increase the precision and speed of the mining process.
The challenge of data integration is how we can match schema and objects from different
sources. It is the essence of the entity identification problem. The techniques involve
correlation tests, duplication recognition, and detection of data value conflicts.

3. Data transformation

The data are transformed or consolidated, so the result after the analytics process will
be more efficient, and the patterns may be simpler and easier to understand. Strategies for
data transformation include smoothing, aggregation, normalization, feature construction,
and so on.

4. Data reduction

Data reduction reduces the size of the dataset that is much smaller in volume and still
carefully maintains the integrity of the original data. Therefore, the valid data reduction
will produce the same or almost the same analytical consequences.

2.4. Data Mining

Various statistical methods were employed to extract knowledge from the prepro-
cessed data. Visualization and statistical analysis, such as Pearson’s correlation coefficient,
normal distribution, boxplot, and hypothesis testing, were implemented. Data pattern
identification, statistical analytics, and normalization are performed in this step.

2.4.1. Correlation Coefficient for Numeric Data

For numeric attributes, the correlation between two attributes, A and B, can be evalu-
ated by computing the correlation coefficient as in Equation (1) shown below [8]:

rA,B =
∑n

i=1(ai − A)
(
bi − B

)
nσAσB

=
∑n

i=1(aibi)− nAB
nσAσB

(1)

where n is the number of tuples, ai and bi are the respective values of A and B in tu-
ple I, A and B are the respective mean values of A and B, σA and σB are the respec-
tive standard deviations of A and B, and Σ(aibi) is the sum of the A.B. cross-product.
Note that −1 ≤ rA,B ≤ +1.

If rA,B is greater than 0, then A and B are positively correlated, meaning that the values
of A increase as the values of B increase. The higher the value, the stronger the correlation.
Therefore, a higher value may indicate that A (or B) may be removed as a redundancy. If
the resulting value equals 0, then A and B are independent, and there is no correlation
between them. If the resulting value is less than 0, then A and B are negatively correlated,
where the values of one attribute increase as the values of the other attribute decrease. This
means that each attribute discourages the other.
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2.4.2. Normalization

In statistical analysis, D’Agostino’s K2 test measures a goodness-of-fit measure of
departure from normality [10]. This test aims to determine whether the data sample comes
from a normal distribution. The test is from the transformations of the example kurtosis
and skewness and has power against the alternatives that the distribution is skewed
or kurtic [11].

In the below equation, xi denotes a sample of n observations, g1 and g2 are the sample
skewness and kurtosis, respectively, the mj

’s are the jth sample central moments, and x is
the sample mean.

The sample skewness and kurtosis are defined as follows [11]:

g1 =
m3

m3/2
2

=
1
n ∑n

i=1(xi − x)3

( 1
n ∑n

i=1(xi − x)2)
3/2 (2)

g2 =
m4

m2
2
− 3 =

1
n ∑n

i=1(xi − x)4

( 1
n ∑n

i=1(xi − x)2)
2 − 3 (3)

These quantities consistently estimate the theoretical skewness and kurtosis of the
distribution, respectively.

2.4.3. Box Plot

In statistical analysis, a box plot or boxplot is an approach for graphically representing
groups of numerical data through the quartiles [12]. Box plots can have lines ranging from
the boxes or whiskers, which demonstrate the variability of the upper and lower quartiles.
Outliers may be plotted as individual points. In other words, box plots show variation in
the dataset.

2.5. Evaluation

The results from the previous step were interpreted. The impact of new knowledge
was evaluated to determine whether the goals have been met. Hypothesis testing was used
for the evaluation part. Hypothesis testing in statistics is a method of testing the results
to see if there is a meaning in a dataset. Statisticians have developed a way of drawing
inferences from samples or finding through hypothesis testing. It can help interpret data,
make decisions, and find errors in results. Hypothesis testing aims to determine the
likelihood that a population parameter is likely to be true. Below are the four steps of
hypothesis testing [13]:

1. Determine a null hypothesis;
2. State the null hypothesis;
3. Select an appropriate test;
4. Show to either support or reject the null hypothesis.

3. Results

Nine Springs WWTP’s historical data were collected from 1996 to 2019 in SQL database.
Python Jupyter Notebook, which is an open-source software containing live code, equations,
and visualization, was used in this study. The program applications include data cleaning,
data visualization, statistical modeling, machine learning, etc. The program was used to
analyze, select, preprocess, visualize, and transform the large-size data into the appropriate
dataset to develop a prediction model. After processing the first dataset, the influent
parameters were selected from ‘MTR VLT1’, the influent meter vault where the wastewater
has entered the plant. The effluent parameters were chosen from ‘EFF BLDG,’ which is the
effluent building where the treated water is sent.
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After selecting the locations, the data are separated into influent and effluent data.
Table 1 shows the combination of the influent and effluent dataset, which is easier to
understand and ready for the following process.

Table 1. Clean dataset from the Nine Springs WWTP big data.

Result Date Influent_
TSS

Effluent_
TSS

Influent_
TP

Effluent_
TP

Influent_
TKN

Effluent_
TKN

Influent_
NH3N

Effluent_
NH3N

Influent_
BOD5

Effluent_
BOD5

1997-01-02 242 7 6.42 2.21 31.4 1.45 19.9 0.18 196 4

1997-01-02 242 7 6.42 2.21 31.4 1.45 19.9 0.18 196 4

1997-01-02 242 7 6.42 2.21 31.4 1.45 19.9 0.18 196 4

1997-01-02 242 7 6.42 2.21 31.4 1.45 19.9 0.18 196 4

1997-01-02 242 7 6.42 2.21 31.4 1.45 19.9 0.18 196 4

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2019-01-02 320 4.7 5 0.26 41.8 2.08 27.7 0.11 257 6.3

2019-01-02 178 4.7 5 0.26 41.8 2.08 27.7 0.11 257 6.3

2019-01-02 210 4.7 5 0.26 41.8 2.08 27.7 0.11 257 6.3

2019-01-02 197 4.7 5 0.26 41.8 2.08 27.7 0.11 257 6.3

2019-01-02 252 4.7 5 0.26 41.8 2.08 27.7 0.11 257 6.3

3.1. Data Visualization

Data visualization means the graphic representation of data [14]. The relationships
between the influent and effluent in each parameter are shown in Figures 3–7. The selected
parameters include Total Suspended Solids (TSS), Total Phosphorus (TP), Total Kjeldahl
Nitrogen (TKN), Ammonia-Nitrogen (NH3-N), and the Biochemical Oxygen Demand
(BOD5), which are the essential parameters affecting wastewater treatment quality.
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3.2. Statistical Analysis

In the Python Jupyter notebook, a STAT module can help summarize data using the
‘describe a function’, describe (). The describe () function is used to generate descriptive
statistics that summarize the central tendency and dispersion of the numerical values in
the dataset. The values of parameters—mean, standard deviation, percentile, and the
interquartile range—of the data are shown in Table 2.
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Table 2. Summary of descriptive statistics.

Count Mean Std Min 25% 50% 75% Max

Influent_TSS 3,713,349.00 231.84244 52.45347 43.00 200.00 225.00 258.00 1170.00

Effluent_TSS 3,713,349.00 4.81817 1.62729 0.00 3.90 4.60 5.50 46.00

Influent_TP 3,713,349.00 5.95551 1.04525 1.22 5.25 5.91 6.58 17.00

Effluent_TP 3,713,349.00 0.56240 0.85971 0.00 0.23 0.31 0.43 5.78

Influent_TKN 3,713,349.00 35.92247 6.94565 4.43 31.20 35.40 40.10 95.30

Effluent_TKN 3,713,349.00 1.47726 0.41980 0.00 1.25 1.41 1.64 19.30

Influent_NH3N 3,713,349.00 22.50772 4.05514 0.00 19.90 22.10 24.90 40.10

Effluent_NH3N 3,713,349.00 0.16773 0.28697 0.00 0.05 0.08 0.18 16.90

Influent_BOD5 3,713,349.00 230.06485 37.16475 72.00 207.00 230.00 252.00 436.00

Effluent_BOD5 3,713,349.00 3.65499 1.70947 0.00 2.80 3.60 4.40 27.00

3.3. Correlation Coefficient

The relationship between factors can be analyzed by using the correlation coefficient
calculation. It can be used to determine the strength of the relationship of each parameter
and select the input and output parameters for our developing model in the next chapter.

When the correlation coefficient between the two parameters is greater than 0, they
are positively correlated. This means that when one value increases, another value also
increases. The higher the correlation coefficient value, the stronger the correlation. Figure 8
shows the heatmap colors of correlation. The lighter color means that they have a stronger
relationship. However, if the color turns black, it shows a negative value, indicating that
each attribute discourages another. Effluent BOD5 has all positive values with higher
correlations than other parameters. Therefore, the effluent BOD5 was used as an out-
put parameter for the first model. After that, other parameters will be used as inputs.
Figure 9 shows the correlations of effluent BOD5 to other parameters such as flow rate, pH,
temperature, and other effluent parameters.
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3.4. Removal of Missing Value and Merging of Date and Time Data

The data preprocessing steps are the following [15]: (1) merge date and time into
one column and change to DateTime type, (2) convert all data to numeric, (3) remove
missing values, and (4) create year, quarter, month, and day features. After removing
the missing values, the data contain 3,713,349 measurements collected between January
1996 and January 2019. The initial data include several variables. However, the statistical
analysis will focus on a single value: Historical Effluent BOD5 data.

3.5. Normalization
3.5.1. Statistical Normality Test

Several statistical tests can be applied to quantify whether the data were drawn from
a Gaussian distribution. D’Agostino’s K2 statistical test will be implemented in Python
Jupyter [16]. The p-value is interpreted as follows:

p ≤ alpha: reject H0, not normal;
p > alpha: fail to reject H0, normal.

The result of the statistical analysis shows that effluent BOD5 data reject H0, which
means that the data are not a Gaussian distribution (not normal).

The kurtosis and skewness can also determine if the data distribution departs from
the normal distribution [15]. Kurtosis describes the heaviness of the tails of a distribution.
If the kurtosis is more than 3, the dataset has heavier tails than a normal distribution. In
other words, there are more data in the tails on either side. If kurtosis is less than 3, the
dataset has lighter on tails or less in the tails [17]. Figure 10 shows that our kurtosis is
5.205, meaning the heaviness of the tails of a distribution. It means that the dataset has
large outliers.

Skewness measures the asymmetry of the distribution. If the skewness is between
−0.5 and 0.5, the data are relatively symmetrical. If the skewness is between −1 and −0.5
or between 0.5 and 1, the data are moderately skewed. If the skewness is less than −1 or
greater than 1, the data are highly skewed. Figure 10 shows that the skewness of normal
distribution is 0.779, implying the data are moderately skewed.



Sustainability 2021, 13, 12383 10 of 16Sustainability 2021, 13, x FOR PEER REVIEW 10 of 16 
 

 

Figure 10. Kurtosis and skewness of the normal distribution. 

3.5.2. Box Plot 

A box plot is another tool for visualizing data. Figure 11 shows the yearly box plot, 

noticing that the median effluent BOD5 in 2014 is higher than the other years. The median 

effluent BOD5 values were higher in the first and fourth quarters (winter) and the lowest 

in the third quarter (summer). 

 

Figure 11. Box plots of yearly and quarterly effluent BOD5. 

3.5.3. Normal Probability Distribution 

The normal probability plot, Figure 12, also shows that the effluent BOD5 data are far 

from normally distributed. 

Figure 10. Kurtosis and skewness of the normal distribution.

3.5.2. Box Plot

A box plot is another tool for visualizing data. Figure 11 shows the yearly box plot,
noticing that the median effluent BOD5 in 2014 is higher than the other years. The median
effluent BOD5 values were higher in the first and fourth quarters (winter) and the lowest
in the third quarter (summer).
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3.5.3. Normal Probability Distribution

The normal probability plot, Figure 12, also shows that the effluent BOD5 data are far
from normally distributed.
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Figure 12. Normal probability distribution.

Figure 13 represents the means of effluent BOD5 over days, weeks, months, quarters,
and years. The highest year of effluent BOD5 is in 2014, where data are missing in a certain
period. Further into the investigation, the plant was modified in 2014. Therefore, the big
data analytics results can show when the data are not normal.
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Figure 14 confirms the previous analysis shown in Figure 12. The highest yearly
effluent BOD5 was in 2014. The lowest quarterly average effluent BOD5 was in the third
quarter. The lowest monthly effluent BOD5 was in August. The lowest daily average
effluent BOD5 was around the 30th of the month. This analysis can assist the plant in
closely monitoring the plant and managing the operations before a system failure happens,
such as by visualizing the historical peak load by quarter, month, and day. In addition, big
data analysis can reduce the operation and maintenance cost and find hidden information
inside the dataset.
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Figure 15 shows the patterns of the effluent BOD5 for each year. As a result, the
2004 and 2019 data were removed because the data were missing, and the 2014 data were
removed because the values were too high.
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Therefore, the data of 2005–2013 or 2015–2018 were selected for a more accurate
prediction model. In the next section, the data of 2015–2018 were evaluated for their
accuracy and trend.

4. Discussion

The data of 2015–2018 are further evaluated. In Figure 16, the data are plotted to
determine the pattern. The box plot in Figure 17 displays how close the data are in each
year and quarter.
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Finally, the Dickey-Fuller test with hypothesis testing was performed to determine
if the data were stationary. When the data are stationary, it will make a model easier
and faster to learn and predict. The null hypothesis is that a unit root is present in
an autoregressive model. The alternative hypothesis is usually stationarity or trend-
stationarity. The stationary series has a constant mean and variance over time. The rolling
average and rolling standard deviation of time series do not change over time:

• Null Hypothesis (H0): It suggests that the time series has a unit root, meaning it is
non-stationary. It has some time-dependent structure;

• Alternate Hypothesis (H1): It suggests that the time series does not have a unit root,
meaning it is stationary. It does not have a time-dependent structure.

• p-value > 0.05: Accept the null hypothesis (H0); the data have a unit root and are
non-stationary;

• p-value ≤ 0.05: Reject the null hypothesis (H0); the data do not have a unit root and
are stationary.



Sustainability 2021, 13, 12383 14 of 16

Figure 18 shows that p-value is less than 0.05. After running the data, the test statistics
value was −12.1262. The more negative the test statistics means are, the more the null
hypothesis is rejected. Therefore, the data reject the null hypothesis H0 with a significance
level of less than 1%, which means the data are a stationary dataset and do not have a
unit root.
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5. Conclusions

Big data analytics was performed to analyze data collected in the Nine Springs Wastew-
ater Treatment Plant from 1996 to 2019. The methods include data collection, data under-
standing, data preparation, data mining, and evaluation. The following conclusions can
be drawn:

The background, goals, and unit processes of a WWTP must be studied to understand
the dataset clearly.

In data preparation, the first step was to select the data collection locations. The
selected datasets should be the influent and effluent data. The second step is to clean
datasets by filling or deleting missing values. In the Nine Springs WWTP, the significant
parameters were TSS, TP, TKN, NH3N, and BOD5, which are the essential parameters
affecting wastewater treatment quality. Data visualization helped assess the relationship
between influent and effluent.

In the data preprocessing or data mining stage, the descriptive statistics function was
applied to measure the average and distribution of the numerical values in the dataset. The
correlation coefficient helped calculate the relationship among parameters. The effluent
BOD5 closely correlated to other parameters. The correlation values show that TSS, NH3N,
and TKN highly correlate to effluent BOD5, which are 0.443, 0.428, and 0.342, respectively.
TP has less correlation, which is 0.095. However, TP is one of the critical regulatory
parameters, so it recommends applying as an input for model development.

The normality test showed that effluent BOD5 data rejected the null hypothesis, which
means that the data are not a Gaussian distribution nor a normal distribution. In addition,
kurtosis and skewness testing can help determine normal distribution. The result showed
that the kurtosis is 5.205, implying the heaviness of the tails of the distribution, and the
skewness is 0.779, meaning the data are moderately skewed.

Visualizing the data using a box plot and graphical representation showed that the
median effluent BOD5 in 2014 was higher than the other years, which is not normal.
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Therefore, the data in 2014 should be removed as well as the data in 2004 and 2019 because
of the missing data.

Finally, the Dickey-Fuller test was performed in the evaluation step to assess the
data from 2015 to 2018. The result showed that the data rejected the null hypothesis H0,
implying that the data are stationary. Therefore, it can be used for a predictive model when
the data have a clear trend and seasonality.

In conclusion, data analytics with statistical analysis is essential for analyzing and
interpreting data, especially big data. This method will help find insights, remove unnec-
essary information, obtain a suitable dataset, and develop a precise predictive model. In
addition, this step is vital for applying artificial intelligence (AI) to wastewater treatment
plant operations and diagnoses of probable upset leading to violation of effluent limits. The
data analytics method developed in this study was the first step in developing a predictable
AI model for wastewater treatment plant operation.
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