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Abstract: Drought is a severe environmental disaster that results in significant social and economic
damage. As such, efficient mitigation plans must rely on precise modeling and forecasting of the
phenomenon. This study was designed to enhance drought forecasting through developing and
evaluating the applicability of three hybrid models—the hidden Markov model–genetic algorithm
(HMM–GA), the auto-regressive integrated moving average–genetic algorithm (ARIMA–GA), and a
novel auto-regressive integrated moving average–genetic algorithm–ANN (ARIMA–GA–ANN)—to
forecast the standard precipitation index (SPI) in the Bisha Valley, Saudi Arabia. The accuracy of
the models was investigated and compared with that of classical HMM and ARIMA based on a
performance evaluation and visual inspection. Furthermore, the multi-class Receiver Operating
Characteristic-based Area under the Curve (ROC–AUC) was applied to evaluate the ability of the
hybrid model to forecast drought events. We used data from 1968 to 2008 to train the models and
data from 2009 to 2019 for validation. The performance evaluation results confirmed that the hybrid
models provided superior results in forecasting the SPI one month in advance. Furthermore, the
results demonstrated that the GA-induced improvement in the HMM forecasts was matched by an
approximate 16.40% and 23.46% decrease in the RMSE in the training and testing results, respectively,
compared to the classical HMM model. Consequently, the RMSE values of the ARIMA–GA model
were reduced by an average of 10.06% and 9.36% for the training and testing processes, respectively.
Finally, the ARIMA–GA–ANN, which combined the strengths of the linear stochastic model ARIMA
and a non-linear ANN, achieved a greater reduction values in RMSE by an average of 32.82% and
27.47% in comparison with ARIMA in the training and testing phases, respectively. The ROC–AUC
results confirmed the capability of the developed models to distinguish between events and non-
events with reasonable accuracy, implying the appropriateness of these models as a tool for drought
mitigation and warning systems.

Keywords: drought forecasting; SPI; genetic algorithm; HMM; ARIMA

1. Introduction

Drought is a naturally occurring climate phenomenon widely considered to be the
most complex and most costly natural disaster but is also the least understood [1,2].
Droughts, unlike other natural catastrophes such as hurricanes, floods, and tornadoes,
develop slowly across broad areas and last for years, harming natural resources, the en-
vironment, and people [3]. They are typically difficult to detect until they have caused
significant damage [4,5]. Such phenomena begin with a deficiency of rainfall, which af-
fects streamflow and soil moisture and can be caused or exacerbated by meteorological
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or climatic variables, as well as human activity [6]. Droughts can be categorized as me-
teorological, which refers to a lack of precipitation below a pre-defined threshold level;
hydrological, which corresponds to a decrease in streamflow; agricultural, which results
in decreases in soil water content and, consequently, crop production; or socioeconomic,
which refers to the economical adversity experienced by people as a result of a combination
of all the aforementioned categories [7].

Drought monitoring and evaluation can be conducted using a variety of tools. The
use of a drought index is one of the most widely used and effective techniques for ana-
lyzing drought conditions [8]. A thorough list of drought indices has been published by
Yihdego et al. [9]. It is impractical to validate all of the indices to reach a common under-
standing, as there are over 150 of them. Most often, the Standardized Precipitation Index
(SPI) is used. One of its advantages is that it can represent droughts on many time-scales
and is a basic moving average that is easy to understand. Furthermore, the SPI features are
consistent from one location to the next, and its computation depends only on precipitation
data. The SPI is a valuable main drought index for risk analyses and decision making, as it
is simple to understand and geographically consistent.

Forecasting future droughts in a given area is essential for supporting long-term
drought risk assessments and water resource management strategies [10]. Drought fore-
casting techniques can be classified into physical [11], stochastic [12], probabilistic [13],
and data-driven [14]. Data-driven techniques are more commonly used than physical and
conceptual methods for several reasons. The first is that they have faster development
time-frames and require less information [15,16], while the second is that data-driven
models in drought forecasting are based on well-established techniques, including the
auto-regressive integrated moving average (ARIMA) [17–22], Markov model [23,24], artifi-
cial neural network (ANN) [7,18,25], fuzzy logic (FL) [1,26], and support vector machine
regression (SVMR) [17].

Traditional models for estimating hydrological processes, such as ARIMA, have been
widely employed. Mishra and Desai [18] have used neural networks and ARIMA to fore-
cast drought using the SPI, and their results demonstrated that the ANN may be used to
anticipate droughts successfully. Recently, ANFIS models combining an ANN and fuzzy
logic have been applied to simulate and model several water resource issues [14,27,28].
ARIMA and seasonal ARIMA (SARIMA) are two widely used stochastic models that de-
scribe hydrological time-series [29]. Abebe and Foerch [30] have investigated the capability
of SARIMA for hydrological drought forecasting. Their results revealed that the ARIMA
(0, 1, 1)(0, 1, 1)12 was optimal over all the investigated models. Durdu [31] used ARIMA
and SARIMA models to forecast the SPI and reported that these models may be used to
forecast SPI at various time-scales with reasonable accuracy. In the late twentieth century, a
hidden Markov model (HMM) was applied to stochastic hydrology, as part of a class of
probabilistic statistical models. Verbist et al. [32] proposed an adequate drought indicator
to extend the downscaled rainfall forecasts from HMM to anticipate drought conditions.
For multi-decadal streamflow modeling, Bracken et al. [33] have used an HMM in con-
junction with large-scale climatic indicators to capture the regime characteristics. Several
studies have evaluated and developed a portion of the HMM (the Markov chain model)
for drought forecasting based on the present drought class [23,24,34] despite the fact that
few studies have used HMMs to report on drought forecasting [35,36].

Although all of these techniques have shown promise in increasing the accuracy
of drought forecasts, hybrid models have recently been successful in forecasting time-
series with remarkable precision [37–39]. Mishra et al. [40] have demonstrated that a
hybrid model, consisting of ARIMA and an ANN for SPI forecasting, showed enhanced
performance compared with classical models. Khan et al. [41] have integrated the Wavelet
transformation, ARIMA, and an ANN to forecast meteorological droughts in the Langat
River Basin in Malaysia using SPI based on 30-year rainfall data. They confirmed that the
Wavelet–ARIMA–ANN model improved forecasting accuracy achieved by either of the
models (ANN or Wavelet–ANN) used separately. Büyükşahin et al. [42] provided a new
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ARIMA–ANN hybrid method for forecasting time series in a more general framework.
Their findings revealed that techniques for combining linear and non-linear models during
the hybridization process are key factors in improving forecasting performance. Recently,
Abbasi et al. [43] investigated the prediction of the drought in Urmia Lake basin using a
hybrid model of the GA and ARIMA model. Their results showed that the GA–ARIMA
model improved the forecasting accuracy.

Although previous studies on the use of a combination of heuristic techniques and
optimization methods have been performed, there have been limited investigations into
hybrid drought forecasting [29]. Therefore, we developed novel hybrid models consisting
of a hidden Markov (HMM) model with a Genetic Algorithm and ARIMA with a Genetic
Algorithm. Furthermore, a novel hybrid ARIMA–GA–ANN, which combines the strengths
of the linear stochastic model ARIMA and a non-linear ANN, was proposed. The Genetic
Algorithm was added to estimate the parameters of the HMM, as well as to optimize the
parameters of the ARIMA model.

The weakness of the classical ARIMA model is the complexity of estimating its param-
eters. To handle this issue, a computerized model selection method must be included in the
optimization process in order to obtain accurate predictions. Therefore, in this study, the
GA is used to determine the best forecasting solution through optimization of the ARIMA
model and selecting the optimal values for its parameters (p,d,q).

The HMM has been shown to be effective in time-series forecasting; however, one of its
weaknesses is the Learning Problem, which has been mostly solved using the Baum–Welch
method. As the Baum–Welch method is reliant on identifying the initial parameters, it
generally creates a model that is not optimal in practice. Moreover, the HMM requires the
construction of a large number of states, and solving a model with many states typically
requires complicated computations and takes a long time. Therefore, in this study, we
use a combination of HMM and GA (Hybrid HMM–GA) to address this problem. With
regard to the ARIMA–GA–ANN model, the ARIMA–GA model was used to decide the
best structure; then, the ANN (which is a non-lineal technique) was developed to model
the errors and to obtain the non-lineal behavior.

The model performances were assessed according to several performance indicators
and a visual comparison. According to a review of the existing literature, the proposed
ARIMA–GA model has not been widely used for drought forecasting. In addition, the
proposed HMM–GA has not been used in prior hydrological studies. In this study, the
hybrid HMM–GA and HMM–GA–ANN models, using the SPI, represent a novel approach
to forecast droughts and add to the existing knowledge. The remainder of this article is
organized as follows: A brief description of the proposed approach and the study area is
given in Section 2. The results are presented in Section 3. A discussion is given in Section 4.
Finally, our conclusions are provided in Section 5.

2. Materials and Methods
2.1. Study Area Description and Data Set

Wadi Bisha is one of the largest valleys in the Arabian Peninsula, extending about
250 km from Wadi Al-Dawasir toward the north at the Sarat Abidah Mountains, and the
length of the valley reaches 450 km (Figure 1). Wadi Bisha is famous for the abundance of
water tributaries that nourish it, which is what led oases to spread between the two ends
of the valley. This valley is considered the largest and most important in the Kingdom
of Saudi Arabia due to the width of its watercourse, which reaches a width of 2 km.
Therefore, the King Fahd Dam, one of the Middle East’s largest concrete dams, was built
in 1997 with a storage volume of 325 million cubic meters and a catchment area of around
7600 km2. This dam is in the Bisha Valley (17◦30′–20◦00′ N; 42◦00′–43◦00′ E) and was built
for agriculture and irrigation management, as well as to mitigate floods and droughts,
recharge groundwater aquifers, and provide the water treatment plant with water. More
than 100 tributaries provide water to the whole valley, maintaining a constant flow into
the reservoir. The annual rainfall distribution over the valley is significantly diverse by
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area, decreasing from 600 mm in the upper zone to 270 mm in the middle and 120 mm
in the lower. A maximum annual rainfall of 677 mm was recorded at Abha Station in the
southwest of the valley. The data sets used in the present study were made available by the
Ministry of Environment, Water, and Agriculture, which is responsible for the operation of
the King Fahd dam. The data sets, comprising monthly rainfall records of the stations and
shown in Figure 1, were used as input data for the different models developed in this study.
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2.2. Standardized Precipitation Index (SPI)

McKee [44] proposed the SPI, which has been approved as a drought index by the
World Meteorological Organization, for identifying the characteristics of meteorological
drought [45,46]. The SPI was calculated by fitting a gamma distribution to the cumulative
precipitation distributions over a specific location [47,48]. As its computation is only depen-
dent on precipitation, it is especially useful in data-scarce areas, where additional factors
such as streamflow, evaporation, and soil moisture data may be unavailable. The SPI was
calculated over a variety of timescales (3, 6, 9, 12, and 24 months) in order to provide
insight into various types of droughts. In this study, the capability of the proposed models
was assessed, in terms of short- to long-term drought modeling. SPI_3 and SPI_6 repre-
sent short- and medium-term moisture conditions, respectively, and provide a seasonal
precipitation estimate. Intersessional precipitation patterns over a medium time period
are indicated by the SPI_9 and SPI_12. Meanwhile, SPI_24 reflects longer-term droughts,
which are generally characterized by significant changes in streamflow, reservoir storage,
and groundwater levels. The magnitudes obtained from the SPI calculations were defined
using the categorization scheme presented in Table 1 [49]. In this study, an SPI software
package created by the authors [50] was used to perform calculations in the study area.
More details regarding the SPI calculation are presented in the Supplementary Material.
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Table 1. Weather categorization based on the SPI index following McKee et al. [44].

SPI Values Class Probability (%)

≥2 Extremely wet 2.3
1.5–1.99 Very wet 4.4
1.0–1.49 Moderate wet 9.2

–0.99 to 0.99 Near normal 68.2
–1.0 to –1.49 Moderate dry 9.2
–1.5 to –1.99 Severely dry 4.4
≤–2 Extremely dry 2.3

2.3. Genetic Algorithm

Genetic Algorithms (GAs) are heuristic search strategies used in a wide range of
complex optimization issues. John Holland established the fundamental principles of
GAs in the 1970s based on natural genetic evolutionary theory [51]. A basic GA proce-
dure usually includes four steps: fitness evaluation, selection, genetic operations, and
substitution. A basic GA loop has a population pool of chromosomes that includes the
encoded layout of possible alternatives for all GA processes, excluding the fitness evalua-
tion. The population is created at random, and the best solutions are found by evaluating
the objective function in the decoded structure of the chromosomes. The GA evolutionary
process begins when the population pool has been created, and a mating pool is established
at the start of the generations by choosing specific chromosomes. The offspring fitness
results are also assessed, and then some chromosomes in the population are replaced with
offspring, according to the substitution pattern. The generation process is iterated until
terminating criteria are met and the best chromosomes (or optimal solutions) emerge in the
final population.

2.4. Hidden Markov Model (HMM)

The Markov chain is a stochastic process that relies on probability theory, which can
be employed to describe the influences between consecutive records of random variables
and to predict their future properties, depending on the current conditions [52]. The HMM
is also a stochastic model, which has a limited arrangement of states that have a (typically
multi-dimensional) probability distribution linked to them. The transition between these
states is controlled by transition probabilities. Outcomes or observations are produced in
any of these states, according to the related probability distribution. A classical continuous
HMM is characterized by its parameter vector λ = [A,B,π], where A denotes the transition
probability matrix of the states, B is the emission matrix, and π represents the initial
distribution of the states. The implementation of an HMM involves the definition of three
model parameters: the number of states (N), number of distinct observation symbols in
each state (M), and the length of the observation sequence (Lsq), as well as three likelihood
measurements for the entire parameter range of the model, which have been provided
in [53,54]. The state sequence would be

{
ns1 , ns2 , . . . . . . , nsLsq

}
, and the observation

sequence can be written as
{

Ds1 , Ds2 , . . . . . . , DsLsq

}
. The following equations are used to

determine the model parameters:
Transition probability,

A =
{

aij
}

, (1)

aij = P
[
nst+1 = j/nst = i

]
, subject to 1 ≤ i, j ≤ N and ∑N

j=1 aij=1 (2)

Emission matrix,
B = {bi (Dm)}, (3)

bi(Dm) = P[Dm(t)/ns (t) = i] 1 ≤ i ≤ N; 1 ≤ Dm ≤ M (4)

where Dm is the mth symbol in the observation vector.
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The initial state distribution is

πi = P[ns1 = i] 1 ≤ i ≤ N. (5)

From the definitions above, it is clear that a complete specification of an HMM involves
three model parameters (N, M and Lsq) and three sets of probability parameters [A,B,π].

2.5. Hybrid HMM–GA Model

In this study, a GA was employed to solve the single-objective optimization problem,
to optimize the HMM parameters, and to improve the performance and efficiency of
drought forecasting. The initial values of the parameters (Initial Transition Probability
Matrix, Initial Emission Probability Matrix, and steady-state probability) were determined
using a classical HMM. The trained HMM then became an initial matrix for optimizing the
HMM parameters during the GA simulation. The pre-defined parameters were taken as an
initial population as input to the GA. Here, the fitness function for the GA optimization
was a minimization function that reduced the RMSE (Equation (16)). The RMSE represents
the model’s fit to the data sets and illustrates how closely related the observed data are to
the forecasted values. The matrix determined by a classical HMM was an advantage of
the proposed model during initialization, for which the first phase was used to determine
the parameters. The size of the chromosome was equal to the number of parameters to be
optimized. Selection, Crossover, and Mutation were the three operators in the GA.

2.6. ARIMA Model

Auto Regressive Moving Average (ARMA) is the most useful type of stochastic model,
which has numerous benefits including exponential smoothing, higher forecast capacity,
and the potential to provide more insight into time-related changes. Only stationary data
may be used with the ARMA model; if the original data are non-stationary, a difference
has to be provided in the time-series, and the resultant model is known as the ARIMA
model [55]. A typical non-seasonal ARIMA model is characterized by three parameters,
(p, d, q), where d represents the order of difference in the time-series Yt, and p and q
represent the orders of the auto-regressive and moving averages, respectively. The general
ARIMA model may be written as:

ϕp(B)∇dYt = θq (B)εt (6)

where ϕp(B) and θq (B) are polynomials of p and q, and ϕp(B) and θq (B) are written
as follows:

ϕp(B) = 1− ϕ1 B− ϕ2 B2 − · · · − ϕp Bp ϕp(B)∇dYt = θq (B)εt (7)

θq (B) = 1− θ1 B− θ2 B2 − · · · − θq Bq (8)

Moreover, εt is a sequence of errors that are normally and independently distributed,
and B is the lag operator BiYt = Yt−i.

2.7. Seasonal ARIMA (SARIMA) Model

Box et al. [54] modified the ARIMA model to address the seasonality, resulting in the
SARIMA model, which is defined as ARIMA (p, d, q)(P,D,Q)S, in which (P,D,Q)S represents
the seasonal component. The SARIMA model can be defined as follows:

ϕp(B) ∅P (Bs) ∇d ∇D
s Yt = ΘQ (Bs) θq (B) εt (9)

where
ϕp (B) = 1−ϕ1 B− . . . .−ϕp Bp (10)

ϕp (B) = 1−ϕ1 B− . . . .−ϕp Bp (11)
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∅P (Bs) = 1−∅1 Bs− . . . −∅P BsP (12)

ΘQ (Bs) = 1−Θ1 Bs− . . . −ΘQ BsQ (13)

where B represents the backward shift operator, s represents the seasonal lag, and εt
represents a series of normalized independent errors. Furthermore, ∅ and ϕ represent the
parameters of seasonal and non-seasonal AR, and Θ and θ represent the parameters of
seasonal and non-seasonal MA, respectively.

2.8. Hybrid SARIMA–GA Model

The development and application of the ARIMA model mostly include model iden-
tification, parameter estimation, diagnosis checking, and forecasting using the selected
models. In the identification phase, the time-series was examined for stationarity, and
then the temporal correlation of this series was recognized by assessing its auto-correlation
function (ACF) and partial ACF (PACF) in order to estimate preliminary values for p, q, P,
and Q to assume several candidate models based on these values [55]. In the estimation
phase, the model’s parameters were estimated using least squares, and, in the final phase,
the diagnostic checking of goodness of fit was carried out. The optimum model was
selected using the Akaike Information Criterion (AIC):

AIC = −2 log L + 2 m (14)

where m = p + q + P + Q, and L is the likelihood function. The model with the lowest AIC
was chosen.

In the classical ARIMA model, based on the ACF and PACF, several candidate models
are investigated, and the model with the minimum AIC is selected. This procedure does
not guarantee the model with optimal parameters; however, in the proposed ARIMA–GA
model, the genetic algorithm approach can speed up the search in prospective ARMA
models’ space to find the best model based on the objective function rather than testing
various individual models derived from the ACF and PACF. The objective function of the
proposed GA–ARIMA model is to select the best model by minimizing the AIC. The num-
ber of AR and MA parameters (pmax + qmax) are considered the starting population,
where each parameter is an individual in the population, which consists of distinct sets of
solutions, and each solution set is referred to as a chromosome. Each value in the solution
set consists of a number of genes. Consider a population size matrix (Mp), which yields a
population matrix of Mp (pmax + qmax) elements. As a result, the genes will create within
the specified range, and the first generation will be generated at random in real values.
If the maximum number of generations is reached or the specified fitness value is achieved,
the stop criterion is met, and the GA is ended; otherwise, the algorithm is reiterated until
the fitness value is achieved.

2.9. Artificial Neural Network (ANN)

ANN implementations have been addressed in several hydrological problems [56].
The ability to simulate non-linear interactions, as well as conceptual stability, robustness,
and ease of implementation, are some of the primary advantages of ANN. The three
significant components of the ANN model include model configuration (parameters and
architecture), input data, and output data layers (Figure 2). The input dataset is used in the
first layer, which is connected to the hidden layers via a network of neurons. Depending
on the level of data mining, there could be one or more hidden layers during the modeling
process. The number of optimum hidden layers and associated neuron weights might
then be determined using the input–output dataset during the training phase. Although
there are no universally recognized criteria for determining the optimal number of input
variables, neurons, or hidden layers, data processing has been demonstrated to improve
the effectiveness of the ANN model. Multi-layer perceptron (MLP), radial basis function
(RBF) networks, and recurrent neural networks (RNNs) are examples of artificial neural
networks that have been implemented in the literature.
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2.10. Hybrid ARIMA–GA–ANN Model

Since the ARIMA is a linear approach and assuming that the generated errors (residu-
als) using this technique still preserve the non-linear behavior, the ANN is developed to
model the residuals series and to obtain the non-linear behavior, and the result of this is
added to the final forecasts. Therefore, the hybrid ARIMA–GA–ANN model consists of an
ARIMA–GA model for the linear part of the time series data and an ANN model for the
non-linear part. The non-linear series is constituted by the residuals produced after fitting
the ARIMA–GA model to the original data, where:

Yt = LPt + NPt

where Yt is the original time series, LPt is linear part based on the ARIMA–GA model, and
NPt is the non-linear part based on the ANN model. The hybrid ARIMA–GA–ANN model
thus takes advantage of the ARIMA and ANN models in recognizing different patterns.

2.11. Performance Evaluation of the Developed Models

The following performance metrics were used to assess the forecast performance of
the aforementioned models. These performance indicators included absolute variance
fraction (R2) [57,58], mean square error (RMSE), mean absolute deviation (MAD), and the
Nash–Sutcliffe co-efficient (E), as follows:

R2 = 1−
∑n

i=1

(
SPIoi − SPI f i

)2

∑n
i=1(SPIoi)

2 (15)

RMSE =

√√√√ 1
n

n

∑
i=1

(
SPIoi − SPI f i

)2
(16)

MAD =
∑n

i=1

∣∣∣SPIoi − SPI f i

∣∣∣
n

(17)

E = 1−
∑n

i=1

(
SPIoi − SPI f i

)2

∑n
i=1
(
SPIoi − SPIo

)2 (18)
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where SPIo and SPIf represent the calculated and forecast values, respectively, and n
represents the number of observations.

Furthermore, Relative Operating Characteristic (ROC), which is a graph, was constructed
for evaluating the accuracy of drought forecasting models in discriminating between events
and non-events, i.e., the resolution of the forecast (Supplementary Materials).

2.12. Methodology

The following steps were performed for this study based on the methodologies men-
tioned above (Figure 3). A GUI was developed using the Matlab software in order to
simulate the data and forecasting models in this study.
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Figure 3. Framework of the drought forecasting system proposed in this study.

• First of all, the quality of the rainfall records was examined through absolute homo-
geneity tests in order to select homogeneous climate data series. These tests included
the Buishand range test, Von Neumann ratio test, and the standard normal homogene-
ity test. More details about these tests are available in the Supplementary Material.

• The SPI values were then calculated at various time-scales (SPI_3, SPI_6, SPI_9, SPI_12,
and SPI_24) for the investigated stations, using the equations presented in the Sup-
plementary Material. For each SPI time-series, the ata sets were split into two sets:
training (76% of data) and testing (24% of data) sets. ARIMA, ARIMA–GA, ARIMA–
GA–ANN, HMM, and HMM–GA were then used to forecast each SPI time.

• Model training was then performed in order to obtain the best parameters of the
models. The proposed hybrid forecasting models were then tested, and the model
performance was evaluated using the evaluation criteria in Equations (15)–(18).
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• Finally, the historical calculated SPI data were compared with the forecast values
from HMM–GA, ARIMA–GA, ARIMA–GA–ANN, and the classical ARIMA and
HMM models.

3. Results

For this study, two evolutionary models—ARIMA–GA and HMM–GA—were devel-
oped to forecast SPI at multiple time-scales, and the results were compared with classical
ARIMA and HMM models to evaluate their performance improvement. After computation
of the SPI, the data set was divided into two periods: Training data (from 1968 to 2008) and
validation data (from 2009 to 2019).

3.1. Computation of SPI at Multiscale

Complete meteorological drought magnitudes in the Bisha Valley were evaluated
using the SPI at various time-scales. Figure 4 shows sample SPI results from Abha Station
in the southern part of the catchment area. It was impractical to identify the start and
end of a drought using SPI-1, as it fluctuates significantly, so we applied the SPI at 3, 6, 9,
12, and 24 months to recognize drought events. Figure 4 presents variations in drought
characteristics for Abha Station in terms of frequency, length, and SPI magnitude. Various
significant droughts were detected in the study area. The first was in 1977 and was classified
as an extreme event. The second lasted through 2003–2007 and was classified as a severe
event for the entire valley. Basic statistical properties of the SPI series at the selected stations
are given in Table 2.

3.2. ARIMA and Hybrid ARIMA–GA Models

Based on the calculated SPI, we employed the ARIMA model to forecast droughts.
As the SPI results at the stations demonstrated similar patterns, we took Abha Station
as an example. According to the KPSS test, the investigated series were non-stationary;
therefore, a first-order difference was required to satisfy the modeling requirements. The
estimated ACF and PACF showed that auto-correlation decayed exponentially as the lag
k increased, indicating that the differenced SPI_3 series was stationary. Figure 5 reveals
significant spikes in the PACF curve at the first and fourth lags, suggesting that the process
may have been an integration of AR and MA. In the classical ARIMA model, a collection of
ARIMA (p, 1, q) models with various values of p and q would be assessed, and the model
with the lowest AIC would be regarded as the best fit. Five types of tentatively ARIMA
models for SPI_3 with varied values of p and q are selected, and the validity of the model
is tested by using AIC. It is found that ARIMA (1, 1, 1) is the best model for forecasting
SPI_3 data series. Once model co-efficient estimation is finalized, the future values of the
SPI_3 are forecasted based on the historical data values and estimated model co-efficients.
This process is repeated for all SPI time scales (SPI_6, SPI_9, SPI_12, and SPI_24) to select
the best model in each case as presented in Table 3. However, in this approach, it was
not sufficient to select a candidate model as the best global one. Therefore, the GA was
employed to optimize the model parameters in order to achieve the best overall model and
to compare it with classical ARIMA. For the GA, the population size was selected as 250,
with a crossover rate of 0.8, mutation rate of 0.01, and 200 iterations. To optimize the orders
of an ARIMA model using the GA, four parts in each chromosome were needed to reflect
the orders of AR, MA, seasonal AR, and seasonal MA. Once the fitness requirements had
been determined, the GA-based model identification was achieved, and a diagnostic check
was performed (Figure 6). A comparison of the classical ARIMA models and GA-based
models is presented in Table 3.
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Figure 4. Temporal evolution of the standardized precipitation index (SPI) at 3-, 6-, and 12-month
time-scales in Bisha Valley for the reference period 1968–2019 (Abha Station).

Table 2. Basic statistical properties of SPI at selected stations in Bisha Valley for the reference period
1968–2019.

Stations SPI Mean SD Min Max Skewness Kurtosis

Abha

SPI_3 0.02 1.05 −2.55 2.78 0.131 2.87
SPI_6 0.07 1.04 −2.92 2.57 0.317 3.24
SPI_9 0.08 1.04 −3.30 2.38 0.423 2.78

SPI_12 0.08 1.04 −3.79 2.22 0.476 3.51
SPI_24 0.05 1.03 −4.79 2.02 0.241 2.83

Bisha

SPI_3 −0.03 1.01 −1.78 2.78 0.42 2.76
SPI_6 0.01 1.03 −2.11 2.57 −0.28 2.61
SPI_9 0.05 1.04 −2.26 2.38 −0.43 2.85

SPI_12 0.07 1.03 −2.30 2.22 −0.02 3.28
SPI_24 0.04 1.02 −4.00 2.02 −0.54 3.52

Alnamas

SPI_3 0.06 1.01 −1.88 2.66 0.32 2.64
SPI_6 0.01 1.05 −2.31 2.46 −0.26 2.78
SPI_9 0.10 1.05 −2.29 2.45 −0.37 2.84

SPI_12 0.07 1.03 −2.34 2.32 −0.12 3.39
SPI_24 0.04 1.06 −4.15 2.12 −0.34 3.22
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Table 2. Cont.

Stations SPI Mean SD Min Max Skewness Kurtosis

Mahaeil

SPI_3 0.06 1.06 −2.18 2.22 −0.42 2.83
SPI_6 0.09 1.05 −2.53 1.81 −0.30 3.65
SPI_9 0.06 1.05 −2.85 1.68 −0.37 3.27

SPI_12 0.05 1.04 −3.05 1.36 −0.27 3.52
SPI_24 0.03 1.03 −4.14 1.28 −0.15 2.99

Sarat
Obida

SPI_3 0.05 1.01 −2.55 2.17 −0.03 3.48
SPI_6 0.03 1.00 −2.92 2.06 −0.17 3.16
SPI_9 0.10 0.99 −3.30 1.63 −0.45 3.39

SPI_12 0.07 0.99 −3.79 1.58 −0.07 2.68
SPI_24 0.04 1.01 −4.79 1.68 −0.16 3.06

Sabt
Alayia

SPI_3 0.01 1.10 −2.19 1.87 −0.06 2.79
SPI_6 0.05 1.09 −2.39 1.63 −0.18 3.03
SPI_9 0.07 1.09 −2.45 1.42 −0.42 3.68

SPI_12 0.07 1.08 −2.59 1.30 −0.37 3.65
SPI_24 0.04 1.06 −2.84 1.14 −0.32 2.79
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Figure 5. Autocorrelation function (ACF) and partial auto-correlation function (PACF) plots for the
standardized precipitation index SPI_3 at Abha Station.

Table 3. Akaike information criterion (AIC) of Abha Station for ARIMA and ARIMA–GA models.

SPI Time Series Model AIC

SPI_3
ARIMA (1,1,1) 1083.47

SARIMA (1,1,1)(1,0,1)12 1073.58
SARIMA–GA (5,1,1)(1,0,5)12 976.94

SPI_6
SARIMA (1,1,1)(1,0,1)12 521.44

SARIMA–GA (1,1,1)(5,0,5)12 503.89

SPI_9
SARIMA (1,1,1)(1,0,1)12 295.44

SARIMA–GA (5,1,5)(1,0,1)12 258.72

SPI_12
SARIMA–GA (1,1,1)(1,0,1)12 −10.52
SARIMA–GA (1,1,1)(1,0,5)12 −50.51

SPI_24
SARIMA (1,1,1)(1,0,1)12 −401.88

SARIMA–GA (1,1,1)(1,0,5)12 −447.16

After finishing the parameter estimation, additional procedures confirmed that the
generated residuals were independent, had normal probability distributions, and were
of constant variance (conditional heteroscedasticity). The uncorrelatedness of residuals
was investigated using a correlogram (Figure 6a,b) and the Ljung–Box Q-test for residual
auto-correlation. Figure 5 shows that most of the residual ACF and PACF values were
inside the confidence zone, indicating that there was insignificant correlation between
them. Furthermore, at a significance level of 0.01, the Ljung–Box Q-test confirmed that the
residuals were not auto-correlated. Figure 6c,d depict the histogram and normal probability
plots of the SPI_3 residuals, respectively. According to the histogram, the residuals were
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generally centered on zero and almost normally distributed. Furthermore, they existed
on a diagonal line that reflected their normality, as shown by the normal probability plot.
The Engle test for residual heteroscedasticity failed to reject the null hypothesis of no
conditional heteroscedasticity, confirming that the model was well-fitted. The above tests
confirmed that the investigated model was appropriate for the associated SPI time-series.
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precipitation index SPI_3 residuals at Abha Station.

All of the previous steps were also applied to the drought indices SPI_6, SPI_9, SPI_12,
and SPI_24, the results of which are presented in Table 3. After selecting the best model
using GA-based ARIMA, drought forecasting was performed for the period 2009–2019,
and the results were compared with historical records. Figure 7 presents a comparative
analysis of historical and forecasted SPI in the testing period, while Table 4 summarizes
the evaluation results of ARIMA and ARIMA–GA in forecasting the SPI at Abha Station.
The classical ARIMA model had obviously lower accuracy than the evolutionary ARIMA–
GA models in the training and testing phases. In the case of SPI_3, for the training
phase, the performance measures of the SARIMA model were R2 = 0.821, RMSE = 0.529,
MAD = 0.4577, and E = 0.624. For the testing phase, R2 = 0.822, RMSE = 0.669, MAD = 0.478,
and E = 0.502. Considering the performance indices, the SARIMAA–GA model had
better accuracy than the SARIMA model, where the training performance measures were
R2 = 0.876, RMSE = 0.520, MAD = 0.417, and E = 0.747. The values for the testing period
were R2 = 0.873, RMSE = 0.556, MAD = 0.438, and E = 0.642.

3.3. Hybrid ARIMA–GA–ANN Model

The ANN model was fitted to the residuals obtained after fitting the ARIMA–GA
model. The input nodes represent the previously lagged residuals of the observations,
while the output nodes are the forecasted values for the future. On the basis of the back-
propagation training approach, a three-layer ANN model was constructed, with hidden
nodes using the widely used sigmoid activation function and the output layer using the
linear function. Since the number of nodes within the hidden layer of the constructed
ANN model impacts significantly the performance of the model, the optimum number
of neurons in this layer was achieved through a trial-and-error technique by varying the
number of neurons. The training process would be completed when the RMSE of all tested
datasets were reduced to a minimum. The best performance during the testing period
was obtained with nine nodes in the hidden layer. By combining the output of the ANN
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and the output of the selected linear ARIMA–GA model, the hybrid ARIMA–GA–ANN
models was obtained, and the results were compared with historical records. In the case
of SPI_3, the performance indices showed that the SARIMA–GA–ANN model had better
accuracy than the SARIMA–GA model, where the training performance measures were
R2 = 0.932, RMSE = 0.483, MAD = 0.398, and E = 0.752. The values for the testing period
were R2 = 0.911, RMSE = 0.502, MAD = 0.403, and E = 0.733.
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Table 4. Performance criteria of the developed models for SARIMA and SARIMA–GA models.

SPI Time Series Model R2 RMSE MAD E

Tr
ai

ni
ng

SPI_3
SARIMA (1,1,1)(1,0,1)12 0.821 0.559 0.457 0.624

SARIMA–GA (5,1,1)(1,0,5)12 0.886 0.521 0.417 0.747
SARIMA–GA–ANN (5,1,1)(1,0,5)12 0.932 0.483 0.398 0.752

SPI_6
SARIMA (1,1,1)(1,0,1)12 0.868 0.315 0.274 0.827

SARIMA–GA (1,1,1)(5,0,5)12 0.928 0.304 0.224 0.884
SARIMA–GA–ANN (1,1,1)(5,0,5)12 0.949 0.282 0.193 0.914

SPI_9
SARIMA (1,1,1)(1,0,1)12 0.872 0.239 0.243 0.859

SARIMA–GA (5,1,5)(1,0,1)12 0.932 0.226 0.183 0.926
SARIMA–GA–ANN (5,1,5)(1,0,1)12 0.956 0.177 0.167 0.954

SPI_12
SARIMA (1,1,1)(1,0,1)12 0.886 0.175 0.204 0.877

SARIMA–GA (1,1,1)(1,0,5)12 0.936 0.164 0.134 0.952
SARIMA–GA–ANN (1,1,1)(1,0,5)12 0.963 0.145 0.112 0.961

SPI_24
SARIMA (1,1,1)(1,0,1)12 0.893 0.171 0.181 0.894

SARIMA–GA (1,1,1)(1,0,5)12 0.948 0.099 0.101 0.976
SARIMA–GA–ANN (1,1,1)(1,0,5)12 0.976 0.051 0.086 0.983

Te
st

in
g

SPI_3
SARIMA (1,1,1)(1,0,1)12 0.822 0.669 0.478 0.502

SARIMA–GA (5,1,1)(1,0,5)12 0.873 0.561 0.438 0.642
SARIMA–GA–ANN (5,1,1)(1,0,5)12 0.911 0.502 0.403 0.733

SPI_6
SARIMA (1,1,1)(1,0,1)12 0.853 0.443 0.298 0.719

SARIMA–GA (1,1,1)(5,0,5)12 0.914 0.395 0.248 0.779
SARIMA–GA–ANN (1,1,1)(5,0,5)12 0.925 0.301 0.205 0.779

SPI_9
SARIMA (1,1,1)(1,0,1)12 0.848 0.395 0.264 0.710

SARIMA–GA (5,1,5)(1,0,1)12 0.908 0.327 0.204 0.788
SARIMA–GA–ANN (5,1,5)(1,0,1)12 0.913 0.241 0.176 0.864

SPI_12
SARIMA–GA (1,1,1)(1,0,1)12 0.867 0.276 0.193 0.804
SARIMA–GA (1,1,1)(1,0,5)12 0.921 0.235 0.123 0.876

SARIMA–GA–ANN (1,1,1)(1,0,5)12 0.933 0.167 0.095 0.921

SPI_24
SARIMA (1,1,1)(1,0,1)12 0.862 0.22 0.161 0.819

SARIMA–GA (1,1,1)(1,0,5)12 0.926 0.182 0.081 0.910
SARIMA–GA–ANN (1,1,1)(1,0,5)12 0.945 0.157 0.061 0.957

3.4. HMM and Hybrid HMM–GA Models

The SPI data used in the ARIMA model were taken as the training and testing data for
the HMM. The initial transition probability matrix, initial emission probability matrix, and
steady-state probability were determined using a classical HMM. The trained HMM was
then passed as an initial matrix for optimizing the HMM parameters during the simulation
process in the GA. The pre-defined parameters were taken as an initial population as input
to the GA during the simulation. Optimal selection of the HMM parameters was achieved
using the GA to optimize the RMSE with a population size of 250, a crossover rate of 0.8,
a mutation rate of 0.01, and 200 iterations. The average number of states was around 7,
which seemed to support the calculated categories of drought in the study area. In this
phase, the number of states remained roughly constant, while the fitness value continued
to rise, indicating that the model found a local optimum and was still evolving. Once
the global best-performing HMM model was selected through this process, the forecasted
values of the selected model were estimated, and the forecasted and measured values
were compared.

Figure 8 illustrates the measured and forecasted SPI and scatterplot for the HMM
and HMM–GA models during the testing phase. The results indicated that the HMM–GA
model achieved further improvements by reducing scatter in the forecast inflow. The
performance criteria showed that the HMM–GA model performed better than the HMM. In
the case of the training phase for SPI_3, the performance measures for the HMM (Table 5)
were R2 = 0.892, RMSE = 0.414, MAD = 0.338, and E = 0.668. For the testing phase, they were
R2 = 0.863, RMSE = 0.495, MAD = 0.354, and E = 0.637. In view of the performance indices,
the HMM–GA model had better accuracy than the HMM model as illustrated in Table 5,
with performance measures of R2 = 0.920, RMSE = 0.385, MAD = 0.309, and E = 0.823 during
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training. For the testing period, these values were R2 = 0.917, RMSE = 0.495, MAD = 0.354,
and E = 0.787.
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Table 5. Performance criteria of the developed HMM and HMM–GA models.

SPI Model R2 RMSE MAD E

Tr
ai

ni
ng

SPI_3
HMM 0.892 0.414 0.338 0.688

HMM–GA 0.926 0.385 0.309 0.823

SPI_6
HMM 0.915 0.262 0.203 0.885

HMM–GA 0.938 0.233 0.166 0.946

SPI_9
HMM 0.923 0.212 0.180 0.919

HMM–GA 0.951 0.177 0.135 0.991

SPI_12
HMM 0.935 0.173 0.151 0.938

HMM–GA 0.953 0.125 0.099 0.978

SPI_24
HMM 0.943 0.127 0.134 0.957

HMM–GA 0.975 0.073 0.075 0.984

Te
st

in
g

SPI_3
HMM 0.863 0.495 0.354 0.637

HMM–GA 0.917 0.411 0.324 0.787

SPI_6
HMM 0.896 0.328 0.221 0.769

HMM–GA 0.928 0.265 0.184 0.834

SPI_9
HMM 0.915 0.292 0.195 0.760

HMM–GA 0.937 0.238 0.151 0.843

SPI_12
HMM 0.93 0.204 0.143 0.860

HMM–GA 0.966 0.142 0.091 0.937

SPI_24
HMM 0.945 0.163 0.119 0.876

HMM–GA 0.972 0.098 0.060 0.974

4. Discussion and Comparison of the Forecasting Models

We compared the hydrological performance of five drought forecasting models:
ARIMA, ARIMA–GA, ARIMA–GA–ANN, HMM, and HMM–GA. The comprehensive
analysis, performed in the evaluation of the five models (Tables 4 and 5), revealed variation
in their performance. The statistical indices used to evaluate the models (R2, RMSE, MAD,
and E) revealed that both ARIMA–GA–ANN and HMM–GA outperformed the other three
models with very closely results and produced the highest R2, the minimum RMSE, and
maximum E. The ARIMA and HMM models exhibited a slight decrease in performance
from the training phase to the testing phase; however, the drop in performance measures
produced by HMM was comparatively high.

According to the statistical indices in Tables 4 and 5, the models with GA performed
considerably better than those without, and the GA improved the forecasting accuracy in
both the training and testing phases. Consequently, the RMSE values of ARIMA–GA were
reduced by an average of 10.06% and 9.36%, respectively, in comparison with ARIMA, in
the training and testing phases. In addition, the R2 values of ARIMA–GA increased by
6.68% and 6.64%, respectively, compared to ARIMA, in training and testing. Furthermore,
modeling of the residuals of the ARIMA-GA model using ANN enhanced the forecasting
accuracy of the hybrid ARIMA–GA with an average reduction of 20% in RMSE. The RMSE
values of HMM–GA were reduced by 16.40% and 23.46%, respectively, compared with
HMM, for training and testing. However, the R2 values of HMM–GA model increased by
an average of 2.93% and 3.71%, respectively, compared to HMM in training and testing.

These results confirmed the GA-induced improvement in both ARIMA and HMM
due to the ability of the GA to find the parameters for the optimal solution of the two
models. A paired Student’s t-test was performed to assess the statistical difference between
the observed values and those forecasted by the four models. This test compared the
means of the calculated and forecasted SPI, in order to determine whether the two vectors
were statistically different. The h value for all tests was zero, and p values are presented
in Table 6. All tests failed to reject the null hypothesis that the calculated SPI data and
forecasted SPI data, for all time-scales, came from independent random samples with
normal distributions and equal means. The ROC curves (Figure 9) represent the probability
of detection (PoD) as a function of the false alarm rate (FAR) (see Supplementary Material).
The ROC curves were significantly above the no-skill line for all drought categories and
all SPI indices, confirming the ability of the proposed models. Table 7 illustrates that
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the areas under the ROC curves, for the ARIMA–GA and HMM–GA models, were more
than 0.5, confirming the ability of the proposed models to recognize events and non-events.
Furthermore, Table 7 shows that HMM–GA was more skilled than ARIMA–GA and that
the two models had the potential to be more skilled for extreme occurrences with higher
SPI thresholds. An additional statistical evaluation was carried out to further investigate
the model performance using the Taylor diagram (Figure 10), which describes the statistical
characteristics of the models and their relative positions from the observed data set during
the training and testing phases based on the RMSE and the triangle inequality comparison.
Figure 10 confirms that both ARIMA–GA–ANN and HMM–GA models outperformed the
other models, as it was the closest to the reference line (RMSE) and observed data sets in
both training and testing phases for all SPI time-scales.

Table 6. Results of the paired sample t-test applied to the observed and the forecasted values of the standardized precipita-
tion index.

Model
Training Testing

SARIMA SARIMA–GA HMM HMM–GA SARIMA SARIMA–GA HMM HMM–GA

p
SPI_3 0.805 0.945 0.895 0.945 0.226 0.233 0.948 0.911
SPI_6 0.845 0.896 0.945 0.896 0.099 0.137 0.905 0.977
SPI_9 0.901 0.925 0.971 0.925 0.154 0.166 0.870 0.877
SPI_12 0.916 0.942 0.986 0.942 0.229 0.201 0.958 0.804
SPI_24 0.927 0.976 0.997 0.976 0.548 0.559 0.858 0.904
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Table 7. Area under the ROC curves for ARIMA–GA and HMM–GA models.

Model SPI SPI < –1 SPI < –1.5 SPI < –2

ARIMA–GA
SPI_3 0.635 0.657 0.685
SPI_6 0.686 0.693 0.729
SPI_9 0.712 0.736 0.778

HMM–GA
SPI 3 0.707 0.749 0.792
SPI 6 0.793 0.809 0.857
SPI 9 0.797 0.826 0.867
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Further evaluation of the proposed models’ accuracy in drought forecasting at various
lead time was performed. Table 8 presents the forecasting results of SPI_3 and SPI_6 at
1-month and 6-month lead time. The forecasts of 6 months’ lead time, which included
the outputs from forecasts of lead times of 1–5 months [15,36], confirmed that the forecast
accuracy of all models decreased as the lead time increased.

Table 8. Performance measures for comparison of observed and forecasted data for SPI 3 and SPI6
for different lead times.

Model

SPI_3 SPI_6
1-Month Lead 6-Month Lead 1-Month Lead 6-Month Lead

R2 RMSE R2 RMSE R2 RMSE R2 RMSE

SARIMA 0.822 0.669 0.503 0.823 0.853 0.443 0.522 0.786
SARIMA–GA 0.873 0.561 0.522 0.746 0.914 0.395 0.703 0.652

SARIMA–GA–ANN 0.911 0.502 0.634 0.721 0.925 0.301 0.761 0.563
HMM 0.863 0.495 0.613 0.663 0.896 0.328 0.563 0.584

HMM–GA 0.917 0.411 0.679 0.631 0.928 0.265 0.776 0.467
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The findings of our study supported the results of previous studies [40,41,59,60], which
reported that employing a hybrid drought forecasting model enhanced the forecasting
accuracy of the stand-alone model. For instance, Salisu and Shabriet [59] have proposed a
hybrid Wavelet–ARIMA model and explored its ability to forecast drought using SPI data
from January 1954 to December 2008. The comparison of their results revealed that the
Wavelet was able to improve the forecasting accuracy of the hybrid model, as the mean
square error decreased by an average value of 43%. Xu et al. [60] have proposed a hybrid
ARIMA–support vector regression (SVR) model to forecast the SPI on multiple scales. Their
results revealed that the proposed hybrid ARIMA–SVR model outperformed the classical
ARIMA models. Mishra et al. [40] proposed integrating ARIMA with an ANN, and their
results illustrated that the proposed hybrid model has the potential to provide much more
reliable forecasting of the SPI series, compared with classical ANN and ARIMA models.
Khan et al. [41] have combined the strengths of the wavelet transformation, ARIMA, and
ANN in a new method for drought forecasting. Their results revealed that the ANN model
achieved an average R-value of 0.423; however, the wavelet-based ANN model had an
R-value of 0.415. Furthermore, they reported that wavelet–ANN–ARIMA achieved R
values of 0.914 for the forecasted SPI. The aforementioned discussion and the findings of
this study confirmed that our work added insight into the use of hybrid HMM–GA and
ARIMA–GA to forecast meteorological drought.

5. Conclusions

In this study, we examined the potential of the ARIMA, ARIMA–GA, ARIMA–GA–
ANN, HMM, and HMM–GA models for 1-month- and 6-months-ahead SPI forecasting.
The models were evaluated using historical monthly rainfall data in the Bisha Valley, Saudi
Arabia. Four statistical measures were used to assess their performance, and a Taylor
diagram was presented to assess the correspondence between the calculated SPI and the
output of each model. Generally, the results demonstrated that the ARIMA–GA–ANN
and HMM–GA models provided more accurate forecasting compared to classical ARIMA
and HMM. The performance of the models confirmed that the HMM–GA model was
more capable than the ARIMA model of forecasting the SPI. Indeed, employing GA as
an additional optimization algorithm in the HMM and ARIMA models improved the
performance of both models significantly. Furthermore, considerable improvement of
forecasting accuracy was achieved by combining the advantage of the linear ARIMA–
GA model and non-linear ANN model. Based on the results and discussion, the main
conclusion of this study is that integrating HMM and ARIMA with GA and ANN resulted
in a highly valuable tool for meteorological drought forecasting.
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