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Abstract: Fuel quality is an important indicator for the suitability of alternative fuel for the utilization
in internal combustion (IC) engines. In this paper, light naphtha and fusel oil have been introduced
as fuel additives for local low octane gasoline to operate a spark ignition (SI) engine. Investigated
fuel samples have been prepared based on volume and denoted as GN10 (90% local gasoline and 10%
naphtha), GF10 (90% local gasoline and 10% fusel oil), and GN5F5 (90% local gasoline, 5% naphtha
and 5% fusel oil) in addition to G100 (Pure local gasoline). Engine tests have been conducted to
evaluate engine performance and exhaust emissions at increasing speed and constant wide throttle
opening (WTO). The study results reveal varying engine performance obtained with GN10 and GF10
with increasing engine speed compared to local gasoline fuel (G). Moreover, GN5F5 shows higher
brake power, lower brake specific fuel consumption, and higher brake thermal efficiency compared
to other investigated fuel samples over the whole engine speed. The higher CO and CO2 emissions
were obtained with GN10 and GF10, respectively, over the entire engine speed and the minimum
CO emissions observed with GN5F5. Moreover, the higher NOx emission was observed with pure
local gasoline while the lowest was observed with GF10. On the other hand, GN5F5 shows slightly
higher NOx emissions than GF10, which is lower than GN10 and gasoline. Accordingly, GN5F5
shows better engine performance and exhaust emissions, which can enhance the local low gasoline
fuel quality using the locally available fuel additives.

Keywords: naphtha; SI engine; fusel oil; engine performance; exhaust emissions; fuel additives;
thermal efficiency

1. Introduction

Global warming and increasing energy demand engage researchers to search for a
suitable alternative to reduce the dependence on mineral fuel. Petroleum fuel currently rep-
resents a significant share among other fuel sources [1–3]. The primary energy-consuming
sectors in the world are industry and transportation, which depend mainly on IC engines
that consume liquid mineral fuel. The utilization of this fuel is restricted by the limited
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sources, increasing price, and environmental pollution [4–6]. Furthermore, the combustion
emissions of mineral fuel can be considered as the primary contributor to environmental
pollution. Therefore, many agreements have been legislated to restrict the increasing global
warming, which indicates the utilization of high quality fuels that combust efficiently with
fewer pollutants to achieve this target [7–10].

Though many alternative fuels have been suggested by different researchers to be
used in SI engine [8,11–14], petroleum based fuel is the most dominant. Hence, focusing
on the utilization of high fuel quality to enhance the fuel combustion efficiency is a viable
option to face the energy crises challenge and global warming [15]. Fusel oil is a by-
product of the waste products processed by the method of fermentation. The high oxygen
content and octane number of fusel oil attract researchers to introduce fusel oil as fuel
for SI engines [16,17]. Naphtha is one of the leading products of refineries. It is used in
many industries like the petrochemical industry as a feedstock, gasoline fuel blend, and
widely as a diluent [18–21]. The biggest producer of naphtha worldwide is the Middle East.
The major share of this product is consumed by countries with substantial petrochemical
interests, like Korea and Japan, which are considered the leading importers [18].

Naphtha is a light, highly flammable mixture produced from the tar of coal, refined
petroleum, or shale gas. Naphtha can be classified into three main types, including the
light naphtha, which is used as a gasoline fuel blend and widely in the petrochemical
industry [22–24]. Medium naphtha can also be used as a gasoline fuel blend and offers
a more comprehensive range of uses in reforming or the petrochemical industry. The
last type of naphtha is the heavy naphtha used mainly to produce or improve gasoline
components [25]. Light naphtha is composed of pentane and slightly heavier material. It is
produced from crude oil distillation or natural gas liquid (NGLs) separation and, in this
case, called natural gasoline or pentanes plus [12,19,25–27]. Light naphtha is often blended
directly with gasoline in the refinery up to 5% blending ratio due to its low octane number
and relatively high vapour pressure, which limits utilization at a higher percentage [19].

Naphtha is used as a source for fuel production due to its large energy content, where
the amount of created chemical energy measured to be 3.14 megajoules of energy per
litter [28–30]. Moreover, naphtha is used in many other applications as a fuel, including
stoves, heating units, lanterns, cigarette lighters, and blowtorches due to its clean-burning
in addition to its utilization as a fuel additive [31].

Wang et al. [29] studied the auto ignition characteristics of gasoline-naphtha blend fuel
spray in a constant volume optically accessible combustion chamber using light naphtha
at different blending ratios. Varying ignition delay was used to achieve auto-ignition of
the tested fuel samples according to the adopted experimental conditions. The obtained
results reveal the random distribution of the auto-ignition in the combustion chamber with
similar spray angle and front penetration length before auto-ignition.

In another study, Wang et al. [32] conducted an experimental investigation to evaluate
the impact of naphtha addition with commercial gasoline on the two-stage combustion
characteristics of multiple premixed compression ignition (MPCI) mode. The study results
reveal that adding naphtha results in achieving stable combustion in a wide load range.
Furthermore, higher thermal efficiency is obtained for naphtha and gasoline in MPCI mode
than diesel in CDC mode due to the low heat transfer loss for gasoline and low exhaust loss
for naphtha. To control NOx emissions within the limits of EURO VI, separated combustion
in MPCI is essential to reduce cylinder temperature with a moderate EGR ratio below 30%.

Wang et al. [20] conducted a study to investigate the performance of modern SI engine
operation with a blend of gasoline fuel and gas to liquid naphtha at full load conditions.
Thermal analysis was conducted for correlating fuel properties with experimental engine
data. The obtained results reveal comparable combustion characteristics and exhaust
emissions for the investigated fuel with the standard EN228 gasoline fuel at full load
conditions. Furthermore, the fuel consumption with the tested fuel blend was found to be
higher than that of gasoline due to the reduced octane rating caused by naphtha. Moreover,
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lower particulate emissions were measured with gasoline fuels containing up to 15.4 vol.%
naphtha compared to gasoline.

Simsek and Uslu [33] introduced fusel oil with different ratios (0–30%) to operate
spark ignition (SI) engine as an alternative energy source to gasoline at different engine
compression ratios and operation conditions. Their study finding indicates the future
focus of similar research concerning the optimization of blended fusel oil–gasoline fuel.
Similar work has found that fusel oil and gasoline blend at different ratios can be employed
for operating engines [34]. The same optimization concept has been used to indicate the
optimum operating parameters at 10% and 20% fusel oil ratio with gasoline [35].

All the studies mentioned above listed that the utilization of fusel oil can mitigate fuel
combustion pollution. However, the low calorific value restricted the utilization of fusel oil
at a high percentage ratio with gasoline. Furthermore, though naphtha has a low octane
number, it contains a large amount of chemical energy. Based on the author’s knowledge,
no study has been conducted to investigate the addition of light naphtha and fusel fuel as
a low octane blend to the local commercial gasoline.

This study investigates the addition of fusel oil as an octane enhancer and naphtha as
an additive with high energy content to the local low octane gasoline fuel. An engine test
has been conducted with different fuel samples to evaluate the engine performance and
exhaust emissions compared to pure local gasoline as a threshold.

The proposed research is organized as follows. Section 2 introduces the methodology.
Section 3 presents the results and discussion. Section 4 highlights the conclusions of
the paper.

2. Methodology
2.1. Fuel Preparation

A blend of local low octane gasoline, light naphtha and fusel oil was used to operate
a gasoline engine. Properties of the selected fuel are shown in Table 1. Local low octane
gasoline was supplied from a local petrol station in Kirkuk, Iraq. Light naphtha was
supplied by a local chemical company while fusel oil was provided by Eskişehir sugar
factory, Turkey. The investigated fuel blend denoted as G100 (Pure Local gasoline), GN10
(90% Local gasoline and 10% naphtha), GF10 (90% Local gasoline and 10% fusel oil), and
GN5F5 (90% Local gasoline, 5% naphtha and 5% fusel oil). Each fuel sample was prepared
based on volume and mixed using a magnetic stirrer for about 20 min at 2000 rpm to ensure
a homogenous fuel blend. Prepared fuel samples were stored in airtight glass bottles in the
laboratory at room temperature for the engine test.

Table 1. Properties of local gasoline, light naphtha and fusel oil [4,21].

Parameters Local Gasoline Light Naphtha Fusel Oil

Oxygen cc - - 18
H/C ratio 2.25 2.34 -

Density(kg/m3) at 20 C 765 654 800.3
lower heating value(Mj/kg) 41.8 45.1 35.32

RON 86 65 98.7
Cetan number 10 41 42

Latenet heat T 298 K(Kj/kg) 500 - 874
Flashpoint (c) 38 - 42

Viscosity, (mm2/s) at 40 ◦C 0.467 2.74 4.162
Autoignition temperature, ◦C ~300 - 416

2.2. Engine Test

The fuel engine test was conducted using a single-cylinderTD110 spark ignition engine
with a constant compression ratio of 9.5:1. The engine shown in Figure 1 is a naturally
aspirated four-stroke portal fuel injection with a total displacement of 230 cc and cylinder
bore and piston stroke of 66 mm and 57 mm, respectively. The engine produced maximum
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power of 3.6 kW and a maximum speed of 3600 rpm. A hydraulic dynamometer was used
to apply the desired load on the engine through the control valve that regulates the pump
water flow. The adjusted pressure was indicated utilizing a pressure gauge connected
to the dynamometer water flow pipe. Digital meters on the measuring panel shown in
Figure 2 measure the torque, brake power and temperatures at different points on the
engine. Brake-specific fuel consumption (BSFC) of the engine was measured using a glass
tube with a 16 mL bulb, in which the time consumed is measured using a stopwatch. The
engine was warmed up for about 15 min. Then, data collection commenced with the tested
fuel. Each test was repeated in triplicate, and the average is considered the final result for
more accurate and reliable study results.
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3. Results and Discussion

When using fuel additives with gasoline, it is essential to evaluate engine performance
exhaust emissions as an important indicator for the suitability of fuel blend to operate



Sustainability 2021, 13, 13019 5 of 11

an SI engine efficiently. Although gasoline fuel has different specifications according
to the regional fuel standards, SI engines are designed and fabricated by the different
manufacturers based on the same standard fuel specifications range. This study tested
different fuel samples in SI engine at increasing engine speed within the engine operation
range from 1000 to 3000 rpm and constant wide throttle opening (WTO). The results have
been studied and discussed to indicate the engine behaviour with different fuel samples.

3.1. Engine Performance

Engine brake power represents the noticeable parameter that can be considered to
evaluate the output power. It is calculated based on the measured torque and specified
engine speed. Figure 3 shows that, in general, engine brake power reveals a similar in-
creasing trend with increasing engine speed using all investigated fuel samples, indicating
reasonable behaviour of the tested engine in terms of output power. However, significant
variation is observed among the value of brake power obtained with different fuel samples.
At low engine speed, the addition of 10% naphtha and 10% fusel oil to local gasoline results
in an improvement of engine brake power to 0.828 kW and deterioration to 0.691 kW
respectively compared to 0.765 kW for local gasoline at 1000 rpm, while GN5F5 produced
the highest brake power of 0.859 kW. The deviation of engine brake power with GN10
and GF10 converges with increasing engine speed to reach a similar value to G at medium
engine speed. At the same time, GN5F5 shows higher brake power compared to other
investigated fuel samples. The deviation of engine brake power with GN10 and GF10 was
observed again with increasing engine speed. At a high speed of 3000 rpm, the addition
of 10% naphtha and 10% fusel oil to local gasoline fuel results in a deterioration of engine
brake power to 2.890 kW and improvement to 2.576 kW respectively compared to 2.701 kW
for local gasoline while GN5F5 produced the highest brake power of 2.953 kW which is
higher than that of local gasoline by 9.3%. This is due to the enhancement in both the
octane number and heating value of the fuel compared to other fuel samples.
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3.2. Brake Specific Fuel Consumption

Although the engine brake power can be considered to evaluate the engine output
power, brake specific fuel consumption (BSFC) is another important indicator for the
engine performance assessment. Figure 4 shows that, in general, engine BSFC reveals a
similar trend of variation with increasing engine speed using all investigated fuel samples,
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indicating reasonable behaviour of the tested engine in terms of fuel consumption. How-
ever, significant variation is observed among the value of BSFC observed with different
fuel samples.
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At low engine speed, adding 10% naphtha and 10% fusel oil to local gasoline results
in a decrease in BSFC to 0.237 kg/kW.h and an increase to 0.255 kg/kW.h respectively
compared to 0.246 kg/kW.h for local gasoline at 1000 rpm, while GN5F5 produced the
lowest BSFC of 0.227 kg/kW.h. The deviation of engine brake power with GN10 and GF10
converges with increasing engine speed to reach a similar value to G for GN10 at medium
engine speed with a higher value for GF10. At the same time, GN5F5 shows a lower
BSFC compared to other investigated fuel samples. The deviation of BSFC with GN10 and
GF10 continues to converge with increasing engine speed. At the high speed of 3000 rpm,
adding 10% naphtha and 10% fusel oil to local gasoline fuel results in a comparable BSFC
of 0.202 kg/kW.h and 0.206 kg/kW.h respectively compared to 0.204 kg/kW.h for local
gasoline, while GN5F5 produced the lowest value of 0.19 kg/kW.h, which is lower than
that of local gasoline by 6.8%.

3.3. Brake Thermal Efficiency

Engine brake thermal efficiency (BTE) is the overall indicator of fuel conversion
efficiency and combustion quality. Although engine brake power and brake specific fuel
consumption reveal different trends with the investigated fuel samples, brake thermal
efficiency can be adopted to evaluate the overall engine performance. Figure 5 shows that,
in general, engine BTE reveals a similar trend of variation with increasing engine speed
using all investigated fuel samples, which indicates reasonable behaviour of the tested
engine in term of BTE.
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However, significant variation is observed among the values of BTE with different
fuel samples. At low engine speed, the addition of 10% naphtha and 10% fusel oil to local
gasoline results in an increase in BTE to 35.85% and deterioration to 34.4% respectively
compared to 34.8% for local gasoline at 1000 rpm, while GN5F5 produced the highest
BTE of 36.57%. The deviation of engine brake power with GN10 and GF10 converge with
increasing engine speed to reach a similar value at medium engine speed with a higher
value for G and GN5F5. The convergence of BTE with GN10 and GF10 in addition to G
continue with increasing engine speed to reach comparable values at the high speed of
3000 rpm. On the other hand, the higher BTE was observed for GN5F5 with increasing
engine speed, which is higher than that of local gasoline by 3.2%.

3.4. Exhaust Emission

Exhaust emissions are important indicators for the suitability of the suggested fuel
for operating an SI engine, especially with the current legislation restricting the emitted
pollutants that contributes to global warming. The emission of carbon monoxide (CO)
derives from the incomplete combustion of the air–fuel mixture in the combustion chamber
and is affected strongly by the temperature at the end of the combustion phase. Figure 6
presents the variation of CO emissions for different tested fuel samples with increasing
engine speed. The higher CO emissions were obtained with GN10 followed by pure
gasoline approximately over the entire engine speed. Both naphtha and gasoline are
hydrocarbon fuels that tend to provide incomplete oxidation during the combustion in the
combustion chamber. However, adding fusel oil to gasoline results in complete oxidation,
reducing the generation of CO emissions. Minimum CO emissions were observed with
GN5F5 over the whole engine speed. This may be attributed to the higher oxygen content
of fusel oil and the moderate effect of octane number and heating value of naphtha and
fusel oil on the mixture combustion temperature, which indicates complete combustion.
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The emission of carbon dioxide (CO2) derived from the complete combustion of the
air–fuel mixture in the combustion chamber is affected strongly by the oxygen content.
Figure 7 presents the variation of CO2 emissions for different tested fuel samples with
increasing engine speed. The higher CO2 emissions obtained with GF10 over the entire
engine speed may be attributed to the higher oxygen content of fusel oil. Both naphtha
and gasoline showed lower observed CO2 emissions. However, GN5F5 shows a slight
increment in the generation of CO emissions, which is lower than that of GF10. This may
be attributed to the higher oxygen content of fusel oil and the moderate effect of the octane
number of naphtha on fuel mixture combustion, which indicates complete combustion.
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Figure 7. Variation of CO2 emissions.

NO and NO2 are the most common nitrogen oxides as the other oxides quantities are
relatively small. NOx is formed as a by-product from the oxidation of nitrogen molecules
inside the cylinder at a high temperature. Most of the literature indicated a reduction in
NOx emission with increasing alcoholic fuel content.
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The variations of NOx emissions for different tested fuel samples with increasing
engine speed are shown in Figure 8. In general, the NOx emissions were decreased as the
engine speed increased. The NOx emission of gasoline is the highest, while that for GF10
is the lowest, which could be explained by the lower in-cylinder temperature due to the
cooling effect of fusel oil during the combustion phase. GN5F5 shows slightly higher NOx
emissions than GF10, which is lower than that of GN10 and gasoline.
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4. Conclusions

When using fuel additives with gasoline, it is essential to evaluate engine performance
exhaust emissions. In this study, fusel oil as octane enhancer and naphtha as an additive
with high energy content to the commercial gasoline fuel have been investigated. A blend
of commercial gasoline, light naphtha, and fusel oil was used to operate a gasoline engine.
Different blends have been investigated in this study, including GN10, GF10, GN5F5, and
pure commercial gasoline (G100). Based on the property characterization and engine test
results, the following conclusions can be addressed:

1. GN5F5 shows higher brake power and lower brake-specific fuel consumption com-
pared to other investigated fuel samples over the whole engine speed.

2. Significant variation was observed among the values of BTE with different fuel
samples and the higher BTE was observed for GN5F5.

3. Varying engine performance was obtained with GN10 and GF10 at increasing engine
speed compared to local gasoline fuel (G).

4. The higher CO emissions were obtained with GN10 followed by pure gasoline ap-
proximately over the entire engine speed range and the minimum CO emissions were
observed with GN5F5.

5. The higher CO2 emissions were obtained with GF10 over the entire engine speed
while GN5F5 shows a slight increment in the generation of CO emissions, lower than
that of GF10.

6. Gasoline emits higher NOx emissions while GF10 is the lowest. GN5F5 shows slightly
higher NOx emissions than GF10, which is lower than GN10 and gasoline.

Finally, it can be concluded that GN5F5 was observed to be a better mixing blend
in terms of engine performance and exhaust emissions. This fuel mix can be adopted to
enhance engine operation using locally available fuel additives, which mitigates environ-
mental pollution, especially when using waste by-product additives.
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