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Abstract: Off-site construction is a modern construction method that brings many sustainability
merits to the built environment. However, the sub-optimal planning decisions (e.g., resource allo-
cation, logistics and overtime planning decisions) of off-site construction projects can easily wipe
away their sustainability merits. Therefore, simulation modelling—an efficient tool to consider
the complexity and uncertainty of these projects—is integrated with metaheuristics, developing a
simulation-optimization model to find the best possible planning decisions. Recent swarm intelli-
gence metaheuristics have been used to solve various complex optimization problems. However,
their potential for solving the simulation-optimization problems of construction projects has not been
investigated. This research contributes by investigating the status-quo of simulation-optimization
models in the construction field and comparing the performance of five recent swarm intelligence
metaheuristics to solve the stochastic time–cost trade-off problem with the aid of parallel computing
and a variance reduction technique to reduce the computation time. These five metaheuristics
include the firefly algorithm, grey wolf optimization, the whale optimization algorithm, the salp
swarm algorithm, and one improved version of the well-known bat algorithm. The literature anal-
ysis of the simulation-optimization models in the construction field shows that: (1) discrete-event
simulation is the most-used simulation method in these models, (2) most studies applied genetic
algorithms, and (3) very few studies used computation time reduction techniques, although the
simulation-optimization models are computationally expensive. The five selected swarm intelligence
metaheuristics were applied to a case study of a bridge deck construction project using the off-site
construction method. The results further show that grey wolf optimization and the improved bat
algorithm are superior to the firefly, whale optimization, and salp swarm algorithms in terms of the
obtained solutions’ quality and convergence behaviour. Finally, the use of parallel computing and a
variance reduction technique reduces the average computation time of the simulation-optimization
models by about 87.0%. This study is a step towards the optimum planning of off-site construction
projects in order to maintain their sustainability advantages.

Keywords: swarm intelligence metaheuristics; infrastructure; supply chain management; discrete-
event simulation; off-site construction; sustainability

1. Introduction

Off-site construction (OSC) is a sustainable construction method in which parts of the
structure are produced off-site and then transported to the construction site for erection [1,2].
OSC has many advantages for the improvement of productivity [3], quality [4], and
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safety [5] of the built environment. Besides this, OSC brings environmental improvements
to the construction industry [6]. OSC could reduce greenhouse gas (GHG) emissions by 48%
and 43% during the operation and construction phases, respectively [7]. Furthermore, OSC
could reduce construction waste compared with traditional construction [8]. Consequently,
OSC is adopted in both building and infrastructure projects. For instance, OSC is an
efficient way to narrow the gap between the supply and demand of both public and
private buildings [9]. In addition, many transportation agencies prefer OSC to deliver
infrastructure projects to mitigate the traffic interruption resulting from the traditional
cast-in-situ method [10].

Despite the benefits of OSC, its complexity and fragmentation require extensive
planning from the project managers [1,11]. The need for extensive planning is one of the
key barriers that hinder the wider adoption of OSC [12]. For successful project delivery,
the project manager has to make critical decisions while considering the dynamics and
uncertainty of OSC projects [13]. Some of these decisions are related to resource planning,
such as the number of required crews and the on-site and off-site equipment [14]. The rest
are related to logistics aspects, such as the location of the storage yards and their capacities.
These decisions should be made to deliver the project on time and within the allowable
budget. This problem is called the time–cost trade-off problem (TCTP), which has been
extensively addressed in the literature considering its different variants and has been
solved using both exact and approximate optimization methods. Approximate methods
are preferable because they efficiently handle complex projects with large networks in
a reasonable computation time [15]. Metaheuristics were widely used to solve single
and multi-objective TCTP. The Genetic Algorithm (GA) [16], Ant Colony Optimization
(ACO) [17], and Particle Swarm Optimization (PSO) [18] were applied to solve single-
objective TCTP. For multi-objective TCTP, researchers used dynamic programming [19],
multi-objective ACO [20], non-dominated sorting genetic algorithm II (NSGA-II), multi-
objective simulated annealing, and multi-objective PSO [21]. Despite the contribution
of these studies, their common limitations are: (1) The proposed models addressed the
traditional cast-in-situ construction method. Hence, they do not fit with OSC projects
characterized by a three-stage supply chain (i.e., production, logistics, and installation
stages) [22]. (2) The previous models failed to capture the complex interactions between
the resources and activities of OSC projects. These complex interactions form queues
inside the system, making the analytical methods impractical for the modelling of such
queuing systems [23]. (3) the previous models assumed that the activities’ durations and
costs are deterministic without considering the uncertainty associated with these types of
projects [24].

In order to address these gaps, researchers resorted to Discrete-Event Simulation (DES)
to capture the complexity and uncertainty of OSC projects without the need to develop
sophisticated mathematical models. However, DES is not an optimization tool on its own; it
can solely enable project planners to study the effect of the proposed resource planning and
logistics decisions on the project duration, cost and productivity [10]. In order to tackle this
limitation, researchers tend to combine simulation and metaheuristics into one approach
called “simulation-optimization (SO)”. Swisher et al. [25] defined SO as a “structured
approach to determine optimal input parameter values, where optimal is measured by
a function of output variables—steady-state or transient—associated with a simulation
model”. Given this definition, the solution obtained from the SO approach is the values
of the input parameters associated with the DES model. This solution’s performance is
evaluated by the DES model. The metaheuristic algorithm uses the current solution and its
evaluation to find a new set of input values [26]. Therefore, different types of metaheuristics
have been integrated with DES in the SO approach to solve multiple construction problems
characterized by complexity and uncertainty.

Evolution-based metaheuristics are a subcategory of metaheuristics inspired by the
laws of natural evolution. The advantage of these metaheuristics is that the new generation
of solutions is created using the fittest solutions in the current generation, hence improving
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the solutions over the generations [27]. Genetic Algorithms (GAs), which are the most
popular evolution-based metaheuristics, have frequently been used in SO for different con-
struction applications such as sewer pipeline installation [28], earthmoving operations [29],
the production planning of precast components [30], the planning of prefabricated building
construction [31], and bridge construction planning [32].

Swarm Intelligence (SI) metaheuristics are another subcategory of metaheuristics.
These metaheuristics are usually inspired by the social and hunting behaviours of colonies
and swarms of animals in nature. According to Mirjalili et al. [33], SI metaheuristics offer
multiple advantages over evolution-based metaheuristics. Firstly, they retain the informa-
tion associated with the search space over iterations, while evolution-based metaheuristics
dispose the information of previous generations once a new generation is created. Sec-
ondly, they are generally easier to implement because they have fewer operators than
the evolution-based metaheuristics (i.e., operators for crossover, mutation, elitism, etc.).
Despite these advantages, SI metaheuristics have rarely been used in SO for construction
applications. Examples of these applications are a concrete placement operation using
PSO [34], and the construction planning of bridge deck construction using ACO [35] and
PSO [36]. Because of the introduction of PSO and ACO, SI metaheuristics have witnessed
a dramatic development, leading to tens of metaheuristics that have potential over PSO
and ACO, while most of them use a lower number of tuning parameters. Examples of
such recent SI metaheuristics are the firefly algorithm (FA) [37], grey wolf optimization
(GWO) [38], the whale optimization algorithm (WOA) [39] and the salp swarm algorithm
(SSA) [40].

Given the above-mentioned preliminary review of the use of metaheuristics in SO
in the construction domain, this study contributes to the literature by addressing three
research questions that have not yet been addressed: (1) What is the status quo of the use of
metaheuristics for SO in the construction research field? (2) What is the potential of the use
of recent SI metaheuristics in SO to optimize the planning of OSC projects? (3) Which one
among the selected SI metaheuristics has better performance in obtaining more optimal
planning decisions for OSC? In order to address these questions, the metaheuristics used in
the SO of construction applications are first reviewed using a systematic review. Secondly,
a DES model of a bridge construction project using the OSC method is developed. Then,
its optimization model is formulated by defining the decision variables, objective functions
and constraints. Next, the developed model is integrated with the SI metaheuristics under
study. In order to reduce the computation time of the SO runs, parallel computing and a
variance reduction technique called common rand numbers (CRN) are used. After that, the
developed models are applied to a case study. Finally, a comparative analysis between the
SI metaheuristics under study is conducted using qualitative and quantitative measures.
Following the recommendations of Sörensen [41] and Juan et al. [26] regarding the need to
conduct comparative studies for SO, this study contributes by comparing the performance
of recent SI metaheuristics in SO of OSC projects.

The rest of this study is organized as follows: SO applications in the construction field
are reviewed in Section 2. Secondly, the problem description and the formulation of the
optimization model are discussed in Section 3. Thirdly, the adopted SO approach, the DES
modelling of an OSC project, and the five SI metaheuristics under study are illustrated and
coded in Section 4, including their parameter tuning. In addition, Section 4 elaborates on
the methods used to reduce the computation time, namely, the CRN method and parallel
computing. After that, the developed simulation and optimization models are applied to a
case study discussed in Section 5. Finally, the analysis and discussion of the performance
of the SI metaheuristics are provided in Section 6 in terms of their convergence behaviour
and statistical results, followed by conclusions in Section 7.

2. Literature Review of Simulation-Optimization (SO) in the Construction
Research Field

This section answers the first research question mentioned in the previous section by
reviewing the SO applications in the construction research field. The specific aims are the
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identification of: (1) studies that adopted SO in the construction domain, (2) which simula-
tion methods (e.g., DES, agent-based simulation (ABS), system dynamics (SD)) have been
used in these studies, (3) which metaheuristics have been applied in these studies, (4) the
construction applications addressed, and (5) whether these studies applied parallel com-
puting or VRTs. These objectives can be applied using a systematic review method [42,43].
This method consists of two main steps: the extraction of related studies and their analy-
sis [44]. The first step starts by selecting a number of relevant keywords for the database
search. The following search code was used in the Scopus database: (TITLE-ABS-KEY
(“optimization”) AND TITLE-ABS-KEY (“construction”) OR TITLE-ABS-KEY (“infras-
tructure”) OR TITLE-ABS-KEY (“building”) AND TITLE-ABS-KEY (“simulation”) AND
TITLE-ABS-KEY (“DES”) OR TITLE-ABS-KEY (“discrete”) OR TITLE-ABS-KEY (“continu-
ous”) OR TITLE-ABS-KEY (“discrete-event”) OR TITLE-ABS-KEY (“system dynamic”) OR
TITLE-ABS-KEY (“system dynamics”) OR TITLE-ABS-KEY (“SD”) OR TITLE-ABS-KEY
(“agent”) OR TITLE-ABS-KEY (“multi-agent”) OR TITLE-ABS-KEY (“agent-based”) OR
TITLE-ABS-KEY (“ABS”) OR TITLE-ABS-KEY (“ABM”)) AND (LIMIT-TO (DOCTYPE,
“ar”)) AND (LIMIT-TO (LANGUAGE, “English”)) AND (EXCLUDE (SUBJAREA, “MATE”)
OR EXCLUDE (SUBJAREA, “PHYS”) OR EXCLUDE (SUBJAREA, “EART”) OR EXCLUDE
(SUBJAREA, “CHEM”) OR EXCLUDE (SUBJAREA, “CENG”) OR EXCLUDE (SUBJAREA,
“BIOC”) OR EXCLUDE (SUBJAREA, “MEDI”) OR EXCLUDE (SUBJAREA, “PHAR”) OR
EXCLUDE (SUBJAREA, “AGRI”) OR EXCLUDE (SUBJAREA, “NEUR”) OR EXCLUDE
(SUBJAREA, “IMMU”) OR EXCLUDE (SUBJAREA, “HEAL”) OR EXCLUDE (SUBJAREA,
“ARTS”) OR EXCLUDE (SUBJAREA, “NURS”) OR EXCLUDE (SUBJAREA, “PSYC”)). As
of November 2021, using this code results in the identification of 745 studies, as shown
in Figure 1. Figure 1 shows a common protocol used in the systematic review, called the
Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA), to screen
the relevant studies [45]. After checking the title and abstract of the retrieved studies,
637 studies were found to be irrelevant to the construction research field, namely the
implementation stage of construction projects. Then, the full texts of the remaining studies
(i.e., 745 – 637 = 108 studies) were evaluated, and 38 of them were found to be relevant. By
checking the reference list and studies that cited each of the 38 studies, eight more relevant
studies were detected, raising the number of related studies to 46, as shown in Figure 1.

The second step of the adopted systematic review method is to evaluate the 46 relevant
studies to identify the simulation methods and metaheuristics used, their applications, and
the use of parallel computing and VRTs. Figure 2 provides an overview of the classification
of the 46 studies based on multiple criteria. Figure 2a shows that most of these studies
(59%) are related to the traditional construction method, while Figure 2b shows that 65% of
these studies addressed single optimization problems. Regarding the metaheuristics used
in these studies, Figure 2c shows that the majority of these studies used evolutionary-based
metaheuristics (i.e., GA and evolutionary algorithms (EA)), while one-fifth of these studies
adopted SI metaheuristics (i.e., PSO and ACO). Table 1 provides details of this information,
including the adoption of parallel computing and VRTs to reduce the computation time,
as well as the type of simulation methods used in these studies. Most of these studies
integrated DES with optimization, while very few studies conducted SO using ABS and
SD, as shown in Table 1. Furthermore, Table 1 shows that three studies used parallel com-
puting, while only one study adopted VRTs. Despite the vast improvements in computing
power, computation time reduction is inevitable for five reasons: (1) Construction projects
are usually characterized by uncertainty. For example, their activities’ durations are best
represented by probabilistic distributions; hence, multiple simulation replications are re-
quired to obtain reliable results, which in turn prolong the computation time. (2) SO with
metaheuristics requires the call of the simulation model frequently to evaluate the fitness
of each individual solution of the population in each iteration. (3) Finding the optimum
values of the controllable parameters for each metaheuristic requires extensive numerical
experiments. (4) Construction researchers tend to hybridize DES with other simulation
approaches such as system dynamics [46] or integrate it with neural networks [47]. Such
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research developments would increase the capabilities of DES but at the expense of the
computation time. (5) OSC projects are dynamic in nature, meaning that optimized deci-
sions made in the early planning stage might be infeasible in later construction stages due
to inevitable uncertainties [32]. Therefore, there is a need to make near-optimum planning
decisions in a reasonable computation time.

Figure 1. PRISMA flow diagram for the studies’ screening and selection.
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Table 1. Summary of the previous studies on SO in the construction research field.

Construction
Method Construction Application Objective Function Sim. M Metaheuristic Single

Objective
Multi-

Objective
Parallel

Computing VRT * Reference

OSC

Onsite panelized construction Minimize CO2 emissions from the
on-site construction

DES GA X [48]

Production planning in Panelized
construction

Minimize the production time DES PSO and SA X [49]

Planning of precast supply chain
and construction configuration

Minimize project duration, costs
and GHG emissions

DES PSO X [50]

Job shop scheduling for construction
of off-shore wind foundation

Minimize total tardiness and
maximize total earliness

DES OptQuest (scatter
search)

X [51]

Disruption management of OSC
supply chain

Minimize total costs DES GA X [52]

Project scheduling and resource
allocation in modular construction

Maximize welfare of stakeholders DES Heuristics (greedy
and ascending-
auctionalgorithm)

X [53]

Production sequencing in wood
Panelized construction

Minimize the makespan DES PSO X [54]

Production planning of precast
components

Minimizeunit cost or maximize
production rate

DES GA X [30]

Planning of Precast beam bridge
deck construction using launching
gantry

Minimize project duration and costs DES ACO X [35]

Planning of Housing construction
using precast components

Minimize project duration and costs DES GA X [31]

Production planning of precast
components

Achieve On-time delivery and
minimize production costs

DES OptQuest X [55,56]

Planning of Precast full-span bridge
deck construction using launching
gantry

Minimize project duration and costs DES NSGA-II X X [10]

Planning of Precast full-span bridge
deck construction using launching
gantry

Minimize project duration and costs DES fmGA X X X [32]

Production scheduling of precast
components

Minimize delivery penalty costs DES GA X [57] *

Crane operation and planning Maximize the system’s social
welfare

DES Heuristic (Auction
protocol)

X [58] *

Resource assignment in precast
production facilities

Maximize the production rate or
minimize the system’s unit cost

DES Messy GA X [59]
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Table 1. Cont.

Construction
Method Construction Application Objective Function Sim. M Metaheuristic Single

Objective
Multi-

Objective
Parallel

Computing VRT * Reference

OSC

Resource allocation in industrial
construction projects

Maximize the system’s social
welfare

ABS Heuristics (Greedy
and dynamic
programming
algorithms)

X [60]

Production scheduling of precast
components

Minimize inventory costs and
delivery penalty costs

DES GA, DE, and ICA X [61]

Traditional
construction

Earthmoving operations Minimize time and cost of
earthmoving operations.

DES GA X [29]

Fleet management of earth moving
trucks

Minimize the time of earthmoving
operations.

DES GA X [62]

Dispatch scheduling of concrete
batch plants.

Minimize the idle time of trucks and
construction sites.

DES DE X [63]

Tunnel construction site layout Minimize site layout costs DES GA X [64]
Resource allocation for bridge
construction

Minimize project duration DES Heuristic X [65]

Activity scheduling and resource
allocation

Minimize project duration DES PSO X [66]

Temporary hoist planning in
high-rise building construction

Minimize the hoists’ rental costs DES GA X [67]

Construction of electrical
substations

Minimize project duration DES GA X [68]

Scheduling of shell construction
project

Minimize project duration DES EA X [69]

Concrete plant operation Minimize site idle time and
maximize plant utilization

DES GA X [70]

On-shore wind farm construction
planning

Minimize total construction costs DES OptQuest X [71]

Tower crane layout planning Minimize hoisting time or total costs ABS OptQuest X [72]
Building construction planning Minimize project duration, costs

and environmental impact
DES PSO X [73]

Scheduling of complex construction Minimize the project duration and
maximize resource utilizations

DES NSGA-II X X [74]

Fleet management of earth moving
trucks

Minimize the operational time DES GA X [75]

Planning concrete plant operation Minimize total operations
inefficiencies

DES PSO X [76]

Planning of hot in-place recycling of
asphalt pavement

Minimize cost and environmental
impact and maximize quality

DES NSGA-II X [77]

Construction scheduling Minimize project delay and resource
costs

DES NSGA-II X [78]

Sewer pipeline installation Maximize system production rate or
minimize the unit cost

DES Hybrid heuristic-GA X [28]
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Table 1. Cont.

Construction
Method Construction Application Objective Function Sim. M Metaheuristic Single

Objective
Multi-

Objective
Parallel

Computing VRT * Reference

Traditional
construction

Planning of bridge deck
construction using advanced
shoring method

Minimize project duration and costs DES PSO X [36]

Planning of concrete placement
operation

Maximize productivityor minimize
cost

DES PSO X [34]

Time-space conflictplanning Collision-free shortest path DES Rapidly-exploring
Random Tree

X [79]

Route planning for construction
waste collection

Minimize travel time MC GA X [80]

Concrete placingoperation Minimize carbon emissions and
costs & Maximize the production
rate

DES Full enumeration X [81]

Sustainability of low-income
housing projects

Minimize life cycle costs &
Maximize LEED credit

DES &
SD

NSGA-II X [82] *

Scheduling of execution processes in
building projects

Minimize makespan DES GreedyRandomized
Adaptive Search
Procedure

X [83]

Site layout planning and resource
allocation

Minimize the project’s duration DES GA X [84]

Sim. M, simulation method; VRT, variance reduction technique; DES, discrete-event simulation; GA, genetic algorithm; PSO, particle swarm optimization; SA, simulated annealing; ACO, ant colony optimization;
NSGA-II, non-dominated sorting genetic algorithm II; fmGA, fast messy genetic algorithm; EA, evolutionary algorithm ABS, Agent-based simulation; DE, differential evolution; ICA, imperialist competitive
algorithm; MC, Monte Carlo simulation; SD, system dynamics. * Sequential simulation-based optimization.
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Figure 2. Classification of studies on SO in the construction research field. GA, genetic algorithm;
PSO, particle swarm optimization; OptQuest, commercial optimization solver; EA, evolutionary
algorithm; ACO, ant colony optimization; SA, simulated annealing. (a) Construction applications;
(b) optimization dimension; (c) metaheuristics.

Given the above analysis of the literature of SO in the construction domain, a number
of research gaps were identified. Firstly, most of the studies used traditional SO methods
by solely integrating DES and metaheuristics without benefiting from recent approaches
such as reinforcement learning [47], machine learning [85], metamodeling [86], and hybrid
simulation [87]. Secondly, although solving stochastic SO models takes a long computa-
tion time, hindering its wide adoption [32], very few studies integrated SO models with
computation-time-reduction techniques such as VRTs and parallel computing. Thirdly, SI
metaheuristics have not been widely applied to the SO of construction applications despite
their advantages over evolutionary-based metaheuristics, as discussed in the previous
section. Moreover, among these SI metaheuristics, only PSO and ACO were adopted.
Because of the development of PSO and ACO, many other SI metaheuristics were proposed
and demonstrated to perform better in multiple optimization problems while using fewer
parameters. Examples of these SI metaheuristics are FA, GWO, WOA and SSA, to name a
few. Therefore, it is more worthy to test and compare such recent SI metaheuristics than to
introduce another metaheuristic that reuses existing concepts from previous metaheuris-
tics [41]. Therefore, many researchers have conducted comparison studies among multiple
metaheuristics in different research fields in order to evaluate their performances in dif-
ferent optimization problems, such as deterministic construction TCTP [88], bridge deck
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repairs [89], the design of water distribution networks [90], concrete foundation design [91],
the domain decomposition of finite element models [92], supply chain management [93],
the production scheduling of precast components [61], aircraft routing problems [94], and
the design of steel-frame structures [95,96]. Moreover, the SO of OSC represents a new test
field to validate and compare the potential of these new SI metaheuristics to solve a new set
of real-life optimization problems characterized by uncertainty and complexity [26]. Given
these gaps, the contribution of this study is the comparison of recent SI metaheuristics
that have not been investigated before solving a stochastic SO problem for OSC. This
study could be seen as one of the early attempts to evaluate the performance of recent
SI metaheuristics in the solution of this type of optimization problem characterized by
uncertainty. Consequently, it could highlight some defects in these metaheuristics for their
developers to tackle and could meanwhile suggest the most promising metaheuristics
for a specific application in order for researchers and practitioners to further improve or
exploit them.

3. Problem Statement and Formulation

Precast full-span construction using a launching gantry to construct bridge decks is
considered an example of infrastructure OSC projects in this research. The sequence of its
construction processes and the associated optimization problem are illustrated here.

3.1. Problem Description

OSC projects are characterized by their three-echelon supply chain, starting from
the production stage at the casting yard, followed by the logistics and installation stages,
as shown in Figure 3 [97]. The production stage starts by seizing a rebar cage mould,
a reinforcement crew, and casting yard space to place the steel reinforcement and the
stressing ducts of the bottom slab and the webs of the box girder. Then, the inner mould is
loaded to the rebar mould by the preparation crew. After that, the reinforcement of the top
slap is installed by the reinforcement crew. After finishing the rebar cage, it is lifted by the
yard crane to an outer mould, where the casting crew pours the concrete. After the concrete
pouring, the girders are cured using either traditional methods or accelerated methods.
Next, the preparation crew removes the inner mould so that the pre-stressing crew can
perform the first stage of post-tensioning. The second stage of the post-tensioning is
conducted after moving the girder to the storage area, the capacity of which depends on the
location of the casting yard. At this point, the production process of the girder is finished,
and the installation process at the construction site can commence after the transportation
of the girders to the bridge construction location by specific trailers. At the access point
of the bridge construction site, the girder is unloaded from the trailer and loaded onto a
trolley. Then, the trolley moves to the location of the launching gantry while the unloaded
trailer returns to the storage area to transport the other girders. After the girder arrives at
the launching location, the launching gantry repositions itself to the new span’s location.
Then, the launching gantry picks up the girder from the trolley and lays it on the bridge
piers while the unloaded trolley returns to the access point of the bridge. Finally, the
permanent bearings are grouted to carry the load of the girder after transferring its load
from the temporary bearings. It is worth mentioning that the trolley-loading process is
allowed only after the load transfer of the girders. The sequence of the aforementioned
production, transportation and installation processes, along with their associated resources,
is represented in Figure 3. The figure shows that the girders, in order to proceed from one
process to the next one, need to wait until all of the resources required to accomplish the next
process are available. The main objective is to find the optimum/near-optimum number
of human and equipment resources required to accomplish the production, logistics and
installation processes, as well as the number of daily working hours and weekly working
days, and the location of the production facility (i.e., the casting yard) that minimize the
project’s duration and costs.
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Figure 3. Sequence of activities of precast full-span bridge deck construction using a launching gantry, and its associated
resources. NT, number of trailers; NRC, number of rebar cage molds; NIM, number of inner molds; NOM, number of outer
molds; NPC, number of preparation crews; NSC, number of pre-stressing crews; NFC, number of reinforcement crews;
NCC, number of casting crews; YS, casting yard space; YC, yard crane; LG, launching gantry; TR, trolley; OC, on-site crane.

3.2. Optimization Model Formulation

This section elaborates on the development of the optimization model for the in-
frastructure OSC project, including the model parameters, decision variables, objective
functions, and constraints.

3.2.1. Model Parameters and Decision Variables

The model indices, parameters and variables are summarized in Table 2. The model
parameters include: (1) the duration of the production, logistics and installation processes of
the OSC project; (2) the hourly cost of the production, logistics and installation equipment,
and human resources; (3) the daily site indirect cost; (4) the mobilization and demobilization
cost of the production, logistics and installation equipment, and human resources; and
(5) the hourly storage cost.
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Table 2. The indices, parameters and decision variables used in the optimization model.

Indicies

Prefabricated box girders; g ∈ G, G is the set of girders.
p Production processes; p ∈ P, P is the set of production processes.
l Logistics processes; l ∈ L, L is the set of logistics processes.
i Installation processes; i ∈ I, I is the set of installation processes.
e Equipment resources; e ∈ E, E is the set of equipment.
c Human resources (i.e., crews); c ∈ C, C is the set of crews.

Parameters

Tgp Duration spent by a girder g in a production process p.
Tgl Duration spent by a girder g in a logistics process l.
Tgi Duration spent by a girder g in an installation process i.

Wgp Time waited by a girder g for a production process p.
Wgl Time waited by a girder g for a logistics process l.
Wgi Time waited by a girder g for an installation process i.
CIC Daily indirect or overhead costs.

MCEpe Mobilization cost of an equipment e used in a production process p.
MCEle Mobilization cost of an equipment e used in a logistics process l.
MCEie Mobilization cost of an equipment e used in an installation process i.
MCCpc Mobilization cost of a crew c working on a production process p.
MCClc Mobilization cost of a crew c working on a logistics process l.
MCCic Mobilization cost of a crew c working on an installation process i.
FCpe Fixed cost of an equipment e used in a production process p.
REpe Hourly cost of an equipment e used in a production process p.
REle Hourly cost of an equipment e used in a logistics process l.
REie Hourly cost of an equipment e used in an installation process i.
TEpe Duration spent by an equipment e working on production processes P.
TEle Duration spent by an equipment e working on logistics processes L.
TEie Duration spent by an equipment e working on installation processes I.
RCpc Hourly cost of crew c working on a production process p.
RClc Hourly cost of crew c working on a logistics process l.
RCic Hourly cost of crew c working on an installation process i.
TCpc Duration spent by crew c working on production processes P.
TClc Duration spent by crew c working on logistics processes L.
TCic Duration spent by crew c working on installation processes I.

φpc
Overtime cost adjustment factor of crew c working on production

processes P.

φlc
Overtime cost adjustment factor of crew c working on logistics

processes L.

φic
Overtime cost adjustment factor of crew c working on installation

processes I.
CS Hourly storage cost.

nepe, nele, and neie
The maximum number of equipment e available for production p,

logistics l, and installation i processes, respectively.

ncpc, nclc, and ncic
The maximum number of crew c available for production p, logistics l,

and installation i processes, respectively.

PYDmin and PYDmax
The minimum and maximum distances between the construction site

and available locations for the production facility.
YSmin and YSmax The minimum and maximum storage capacity of the production yard.

STmin and STmax
The minimum and maximum storage time of girders at the production

yard.
DWHmin and DWHmax The minimum and maximum number of daily working hours.
WWDmin and WWDmax The minimum and maximum number of working days per week.
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Table 2. Cont.

Decision variables

DWH Number of daily working hours.
WWD Number of working days per week.
NEpe Number of equipment resource e used in a production process p.
NEle Number of equipment resource e used in a logistics process l.
NEie Number of equipment resource e used in an installation process i.
NCpc Number of crew c working in a production process p.
NClc Number of crew c working in a logistics process l.
NCic Number of crew c working in an installation process i.
YS Storage capacity of the production yard.
ST Storage time of girders at the production yard.

PYD The distance between the construction site and available locations to
set up the production yard.

The decision variables of the optimization model cover a number of resource, logistics,
and overtime planning decisions that control the project’s duration and cost. They include:
(1) the amount of equipment and human resources required for the production, logistics
and installation processes; (2) the number of daily working hours and the number of
working days per week; (3) the location of the production yard; and (4) the storage time
and capacity. In total, the model includes 11 types of decision variables, as shown in Table 2.
All of these variable types are integers, except one binary variable related to a piece of
equipment used during the production stage. This variable represents the decision of the
use of either a steaming machine to accelerate the concrete curing process or the traditional
curing method.

3.2.2. Objective Functions and Constraints

In this study, the objective is to minimize both the project duration and the total
costs. Equations (1) and (2) calculate the project duration in working (DWD) and cal-
endar days (DCD), respectively. Equation (1) shows that the project duration includes
the sum of the working duration of each production, logistics and installation process
(Tp, Tl , and Ti, respectively), plus the times waited by each girder due to the unavailabil-
ity of resources in each production, logistics and installation process (Wp, Wl , and Wi,
respectively). The waiting times are obtained from the simulation model of the OSC project,
as illustrated in the next section. On the other hand, the working duration of the processes is
represented by probability distributions fitted from the historical data of previous projects,
except for the working duration of logistics processes (Tl). Tl depends on the distance
between the production facility and the construction site (PYD), and how long the girders
stay at the storage area (ST).

DWD =
1

DWH
×

G

∑
g=1

[
P

∑
p=1

(Tgp + Wgp) +
L

∑
l=1

(Tgl + Wgl) +
I

∑
i=1

(Tgi + Wgi)

]
(1)

DCD = DWD +
DWD
WWD

× (7−WWD) (2)

Regarding the project’s cost (TPC), Equation (3) shows that it equals the sum of the
direct (DC) and indirect costs (IC). Equation (4) shows that the indirect costs include the
overheads (CIC) and the mobilization and demobilization costs (MC) of each piece of
equipment and human resource used in the production, logistics and installation processes.
The latter is calculated using Equation (5). The second cost component is the direct cost
(DC) associated with the production, logistics and installation processes. It consists of
three cost components, as shown in Equation (6). The first is the sum of the direct costs of
the equipment resources assigned to accomplish the production, logistics and installation
processes (CE), as illustrated in Equation (7). The second cost component is the sum of the
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direct costs of the human resources assigned to conduct the processes of the three supply
chain stages (CC), as shown in Equation (8). The third cost component is the storage costs
(SC), as shown in Equation (9). The previous cost estimation equations were adapted from
Salimi et al. [10] and Marzouk et al. [35].

TPC = IC + DC (3)

IC = (DWD× CIC) + MC (4)

MC = 2×
[

P
∑

p=1

[
E
∑

e=1
NEpe ×MCEpe +

C
∑

c=1
NCpc ×MCCpc

]
+

L
∑

l=1

[
E
∑

e=1
NEle ×MCEle +

C
∑

c=1
NClc ×MCClc

]
+

I
∑

i=1

[
E
∑

e=1
NEie ×MCEie +

C
∑

c=1
NCic ×MCCic

]] (5)

DC = CE + CC + SC (6)

CE =
P

∑
p=1

E

∑
e=1

REpe × NEpe × TEpe + NEpe × FCpe +
L

∑
l=1

E

∑
e=1

REle × NEle × TEle +
I

∑
i=1

E

∑
e=1

REie × NEie × TEie (7)

CC =
P

∑
p=1

C

∑
c=1

RCpc × NCpc × TCpc × φpc +
L

∑
l=1

C

∑
c=1

RClc × NClc × TClc × φlc +
I

∑
i=1

C

∑
c=1

RCic × NCic × TCic × φic (8)

SC = YS× CS× ST (9)

Because there is an inverse relationship between the two objectives (i.e., the total
project’s duration and costs), they are integrated into a non-dimensional fitness function
using the function transformation method shown in Equation (10) [98].

Min ft(x) = Wt ×
(

DCD(x)− DCD∗

DCD∗

)
+ Wc ×

(
TPC(x)− TPC∗

TPC∗

)
(10)

where ft(x) is the fitness value of solution vector x (i.e., a configuration of the decision
variables); DCD(x) and TPC(x)are the project duration and cost corresponding to solution
x, respectively; DCD∗ and TPC∗ are the minimum values of the project duration and
cost, respectively; and Wt and Wc are the relative weights of the project duration and
cost, respectively (note that Wt + Wc = 1). The values of these weights (i.e., Wt and Wc)
are project dependent [35]. In some cases, delivering the project in a shorter duration
is prioritized over the reduction of the total costs, such as the case of constructing field
hospitals to face COVID-19 [99]. In other cases, such as the limited budget, the reduction
of the total costs does matter more than shortening the project duration.

1 ≤ NEpe ≤ nepe ∀p ∈ P, e ∈ E (11)

1 ≤ NEle ≤ nele ∀l ∈ L, e ∈ E (12)

1 ≤ NEie ≤ neie ∀i ∈ I, e ∈ E (13)

1 ≤ NCpc ≤ ncpc ∀p ∈ P, c ∈ C (14)

1 ≤ NClc ≤ nclc ∀l ∈ L, c ∈ C (15)

1 ≤ NCic ≤ ncic ∀i ∈ I, c ∈ C (16)

PYDmin ≤ PYD ≤ PYDmax (17)

YSmin ≤ YS ≤ YSmax (18)
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STmin ≤ ST ≤ STmax (19)

DWHmin ≤ DWH ≤ DWHmax (20)

WWDmin ≤WWD ≤WWDmax (21)

SM = 0, 1 (22)

Indeed, it is commonly known in the literature that the domain of each decision
variable is defined in a single equation as a constraint in the optimization model [100,101].
Following this concept results in the definition of the decision variables of the proposed
optimization model in Equations (11)–(22). Usually, in OSC projects, the availability of
equipment and human resources at each supply chain stage (i.e., production, logistics and
installation) is limited. Besides this, increasing the number of resources at the production
and construction stages impacts their productivity and safety. Therefore, the number of
resources assigned to each production, logistics and installation process must be less than a
maximum number defined in each supply chain stage, as shown in the constraints (11–16).
Constraints (17) and (18) ensure that the location of the production facility (PYD) is within
the allowable range and that its storage capacity (YS) does not exceed the specified limit.
Constraint (19) limits the storage time of the girders inside the storage area. Constraints
(20) and (21) ensure that the number of daily working hours (DWH) and the working
days per week (WWD) are within the allowable ranges. Finally, constraint (22) indicates
whether a steaming machine to accelerate the concrete curing is used or not during the
production stage.

4. Solution Methods

This section elaborates on the methods adopted to achieve the research objectives.
Firstly, the adopted SO approach, and its simulation and optimization components are
explained in Section 4.1. Secondly, the methods used to reduce the computation time of the
SO are discussed in Section 4.2.

4.1. The Adopted Simulation Optimization Approach

Simulation and optimization methods were integrated over decades using various
approaches to solve complex and stochastic problems. Interested readers can refer to
studies by Amaran et al. [102], Tekin and Sabuncuoglu [103], Wang and Shi [104], and Juan
et al. [26] for more information on the classifications and terminologies established in this
domain. This study adopts an SO approach in which the simulation model performs as
an evaluation function (EF) in the optimization process [26]. Figure 4 shows the general
framework of this SO approach. This approach consists of two parts: the optimization part
and the simulation part. The optimization part starts by defining the decision variables
of the optimization problem and the range of their allowable values. Then, an initial
population of potential solutions of size P is generated randomly. Next, these generated
solutions are identified to the simulation model in order to evaluate their fitness values (i.e.,
the simulation model acts as an EF). Note that each solution represents a vector of values
of the input parameters associated with the simulation model. Each solution j is evaluated
by a number of replications R to address the uncertainty of the activities’ durations in the
simulation model. The mean of these replications’ results represents the fitness value of
each solution. After the estimation of the fitness values of the generated solutions, the
optimization part uses these values and the previously generated population to generate
the second population of solutions based on the metaheuritic’s logic. This cyclic process
between the optimization and simulation parts is repeated until the stopping condition of
the optimization part is met. Finally, the optimization part returns the best solution found
so far and its fitness value.
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Figure 4. General framework of the adopted simulation optimization approach. DES, Discrete-event simulation.

4.1.1. Simulation Model Development

As explained in Section 3.1, the infrastructure OSC project under study represents
a system that consists of a number of sequential processes wherein the precast girders
represent passive entities serviced in these processes. Besides this, there is a complex
interaction between these processes and different resources. The precast girders compete
for these resources in order to move from one process to the next, forming queues inside
the system. The representation of this type of complex and dynamic system characterized
by queues using analytical models is cumbersome; DES is ideal for the modelling of such
systems [23]. Figure 5 shows the DES model of a precast full-span construction project
built in the MATLAB environment. The model was built using SimEvents, a general-
purpose piece of simulation software available in the MATLAB Simulink Library [105].
As shown in Figure 5, eleven blocks of SimEvents are used to model the system under
study. These blocks are: Entity Generator, Entity Queue, Entity Server, Resource Pool,
Resource Acquirer, Resource Releaser, Composite Entity Creator, Composite Entity Splitter,
Entity Input Switch, Entity Terminator, and Stop. Initially, the Entity Generator block
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creates entities that represent the precast girders. Then, the precast girders undergo the
different processes/activities modelled by the Entity Server blocks. Each Entity Server
block delays the entity by the duration of its respective process. However, for the entities
to undergo each process, the resources required to accomplish this process need to be
assigned to these entities. The Resource Acquirer blocks are responsible for performing this
function by seizing the required equipment and human resources stored in the Resource
Pool blocks. Because any entity cannot depart from the Resource Acquirer blocks until
it has seized all of the required resources, these blocks consider the waiting times due
to the potential unavailability of the required resources. After finishing each process, its
associated resources are released to be assigned to other entities. This function is conducted
using the Resource Releaser blocks. Note that the system includes other types of entities
to represent transport resources, such as trailers and the trolley. Once these resources are
created using the Entity Generator blocks, they wait for the incoming precast girders at
the Entity Queue blocks. Upon loading the incoming precast girder to the waiting trailer
or trolley, both entities (i.e., the precast girder and the trailer or trolley) are combined into
one entity using the Composite Entity Creator block. After the girder’s unloading, this
combined entity is split into its two original entities (i.e., the precast girder and the trailer
or trolley) using the Composite Entity Splitter blocks. The unloaded trailer and trolley
return to wait for another incoming girder using the Entity Input Switch blocks. After the
girder is installed at its final destination, its representative entity is terminated using the
Entity Terminator block. After installing all of the girders of the project, the simulation
model is stopped using the Stop block.

Figure 5. Discrete-event simulation model of a precast full-span construction project using a launching gantry in the
MATLAB environment.

4.1.2. Swarm Intelligence Metaheuristics

This section illustrates the five SI metaheuristics (FA, GWO, NBA, WOA and SSA) used
in the optimization part of the adopted SO approach, as well as the controllable parameters
of each metaheuristic. These SI metaheuristics were selected for the investigation of their
performance because they are among the recent SI metaheuristics that gave satisfactory
results, and they showed robustness in different optimization problems. These parameters
balance exploration (globally exploring the search space through a randomized search)
and exploitation (locally searching in the promising areas obtained from the exploration
process). At the end of this section, the methods used to tune the controllable parameters
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of the SI metaheuristics are discussed. The five SI metaheuristics were coded in the
MATLAB environment.

Firefly Algorithm (FA)

Inspired by the way in which fireflies communicate with each other for mating,
Yang [106] proposed a stochastic population-based metaheuristic. The pseudo-code of the
FA is shown in Figure 6. The first step is to generate randomly the positions of all of the
fireflies in the population. Secondly, we evaluate the brightness (fitness value) of each
firefly. Thirdly, we move the fireflies with high fitness values to those with lower fitness
values in the case of minimization problems by using Equation (23). It is worthwhile to
note that the attractiveness β depends on the distance r between the fireflies, as indicated
in Equation (25). After that, the brightness of the new fireflies is evaluated. Finally, these
steps are repeated until we meet the defined terminating conditions.

xi = xi + β0 ∗ e−γr2
ij ∗
(
xj − xi

)
+ α ∗

(
u− 1

2

)
(23)

where xi = the position of a firefly attracted to a brighter firefly xj; rij = the distance between
two fireflies i and j calculated by Equation (24); β0 = the attractiveness at r = 0, usually
equalling 1. γ = the light absorption coefficient; α = a constant number between 0 and 1;
and u = a random number between 0 and 1.

rij =

√√√√ d

∑
k=1

(
xi,k − xj,k

)2
(24)

where xi,k = the kth component of the position of a firefly i, and xj,k= the kth component of
the position of a firefly j.

β = β0 ∗ e−γr2
(25)

Figure 6. The pseudo-code of the FA.
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The controlling parameters of the FA are parameters γ and α. The convergence speed
of the FA is greatly affected by the values of γ. However, α controls the exploration of
the FA.

Grey Wolf Optimization (GWO) Algorithm

The GWO algorithm, inspired by both the leadership hierarchy and the hunting
behaviour of grey wolves, was developed by Mirjalili et al. [33]. The pseudo-code of the
GWO algorithm is shown in Figure 7. Firstly, all of the positions of the grey wolf population
(i.e., solutions) are randomly generated. Secondly, the simulation model is called upon to

evaluate the fitness of each solution. Thirdly, the best three solutions (
→
Xα,

→
Xβ and

→
Xδ) are

identified. These three solutions (
→
Xα,

→
Xβ and

→
Xδ) will be used to guide the other solutions

of the population toward the optimal solutions. Fourthly, the position of each wolf is
updated using Equations (26)–(28). Finally, the fitness of the updated solutions (wolves’

positions) is estimated by the simulation model, and the first three best solutions (
→
Xα,

→
Xβ

and
→
Xδ) are identified. The preceding steps are repeated until the selected stopping criteria

are achieved.

→
Dα =

∣∣∣∣→C1·
→
Xα −

→
X(i)

∣∣∣∣, →Dβ =

∣∣∣∣→C2·
→
Xβ −

→
X(i)

∣∣∣∣, →Dδ =

∣∣∣∣→C3 ·
→
Xδ −

→
X(i)

∣∣∣∣ (26)

→
X1 =

→
Xα −

→
A1·
( →

Dα

)
,
→
X2 =

→
Xβ −

→
A2·
( →

Dβ

)
,
→
X3 =

→
Xδ −

→
A3·
(→

Dδ

)
(27)

→
X(i + 1) =

→
X1 +

→
X2 +

→
X3

3
(28)

where
→
Xα = the position of the first best solution in iteration i;

→
Xβ = the position of the

second-best solution in iteration i;
→

Xδ = the position of the third-best solution in iteration

i;
→
X(i) = the position of a solution in iteration i;

→
Dα,

→
Dβ and

→
Dδ = the vectors used to

calculate
→
X1,

→
X2 and

→
X3, which represent the encircling behaviour of grey wolves;

→
A and

→
C = coefficient vectors updated each iteration by the use of Equations (29) and (30).

→
A = 2

→
a ·→r1 −

→
a (29)

→
C = 2·→r2 (30)

→
a = 2−

(
i ∗ 2

I

)
(31)

where
→
a = a parameter decreased linearly from 2 to 0 over the iterations according to

Equation (31),
→
r1 and

→
r2 = uniformly distributed random numbers between 0 and 1, and

I = the maximum number of iterations.
The parameters that affect the performance of the GWO algorithm are the number of

wolves, the number of iterations, and parameters
→
a and

→
C . The randomness of

→
C at each

iteration ensures the diversification of the GWO algorithm. However,
→
a decreases linearly

after each iteration in order to balance the diversification and intensification.



Sustainability 2021, 13, 13551 20 of 41

Figure 7. The pseudo-code of the GWO algorithm.

Novel Bat Algorithm (NBA)

Meng et al. [107] improved the performance of the original Bat Algorithm (BA) by
developing the NBA. The pseudo-code of the NBA is presented in Figure 8. Firstly, the
positions and velocities of all of the bats in the population are initialized randomly. Sec-
ondly, the simulation model is used to evaluate the fitness of each bat. Thirdly, the position
of each bat is updated based on its habitat selection. The bats choose randomly between
the quantum behaviour (Equation (32)), to forage in different habitats, and the mechanical
behaviour (Equations (34)–(37)), to forage in limited habitats. Fourthly, a local search is im-
plemented by generating a solution around the best solution using Equations (39) and (40).
Fifthly, the fitness value of the new solutions is calculated, and the parameters of the NBA
are updated according to Equations (41)–(44). Finally, the previous steps are iterated until
the satisfaction of the stopping criteria.

xt+1
i,j =

 gt
j + θ ∗

∣∣∣meant
j − xt

i,j

∣∣∣ ∗ ln
(

1
ui,j

)
, i f randj < 0.5,

gt
j − θ ∗

∣∣∣meant
j − xt

i,j

∣∣∣ ∗ ln
(

1
ui,j

)
, otherwise,

(32)

θ(k) =
(Maxθ −Minθ) ∗ (K− k)

K
+ Minθ (33)

where xi,j = the position of bat i in a D-dimensional search space and j ∈ {1, 2, , D}; t = the
current iteration; gt = the global best position; θ = the contraction–expansion coefficient
calculated at each iteration k over the number of iterations K; Maxθ and Minθ = the
maximum and minimum values of θ; meant = the average of the bats’ positions; and u and
rand = random numbers between 0 and 1.

fi,j = fmin + ( fmax − fmin) ∗ rand (34)

f ,
i,j =

(
c + vt

i,j

)
c + vt

g,j
∗ fi,j ∗

1 + Ci ∗

(
gt

j − xt
i,j

)
∣∣∣gt

j − xt
i,j

∣∣∣+ ε

 (35)

vt+1
i,j = w ∗ vt

i,j +
(

gt
j − xt

i,j

)
∗ fi,j (36)
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xt+1
i,j = xt

i,j + vt
i,j (37)

w(k) =
(Maxw−Minw) ∗ (K− k)

K
+ Minw (38)

where fi,j = the frequency of bat i at dimension j; fmax and fmin = the maximum and
minimum values of the frequency; Ci = the compensation rate for the Doppler effect in
echoes randomly selected between 0 and 1 for each bat i; c = the speed in the air (340 m/s);
ε = the smallest constant in the computer; vi,j = the velocity of bat i at dimension j; vg,j = the
velocity of the best solution at dimension j; w = the inertia weight given a value between
Maxw and Minw; and rand = a random number between 0 and 1.

xt+1
i,j = gt

j ∗
(

1 + rand n
(

0, σ2
))

(39)

σ2 =
∣∣At

i − At
mean

∣∣+ ε (40)

where rand n
(
0, σ2) = a Gaussian distribution with mean 0 and standard deviation σ2; At

i =
the loudness of the bat i; and At

mean = the average loudness of all of the bats.

i f (rand < Ai && f (xi) < f (x)) (41)

f (x) = f (xi) (42)

At+1
i = αAt

i (43)

rt+1
i = r0

i
(
1− e−γt) (44)

where f (xi) = the fitness value of bat i; f (x) = the fitness value of the best solution found
so far; At

i = the loudness of bat i at iteration t; rt
i = the pulse rate of bat i at iteration t; and α

and γ = constants, which are usually equal 0.9.

Figure 8. The pseudo-code of the NBA.
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The parameters that affect the performance of the NBA are parameters
α, γ, P, G, C, w and θ. α and γ affect the convergence speed of the NBA. P affects
the bats’ choice to either adopt quantum behaviour or mechanical behaviour. The tuning
of G is required to ensure exploration and exploitation. Based on some experiments, Meng
et al. [107] suggested that C can be in the interval (0.1,1). w has the same effect of its
counterpart in the PSO algorithm, and it is recommended that w is decreased linearly from
0.9 to 0.4. Similarly, θ is recommended to be decreased linearly from 1 to 0.5.

Whale Optimization Algorithm (WOA)

Inspired by the hunting behaviour of humpback whales, Mirjalili and Lewis [27]
provided the WOA to solve single-objective optimization problems. The pseudo-code
of the WOA is depicted in Figure 9. First of all, the positions of all of the whales in the
population are randomly generated. Secondly, the fitness of each whale is calculated by
using the simulation model. Thirdly, the position of the fittest whale is identified. Fourthly,
each whale chooses to update its position by using either a spiral movement (Equation (46))
or a circular movement (Equations (48) or (53)). This choice is based on a probability of
50%. If a whale chooses the circular movement, the position of this whale is updated using
the position of the fittest whale identified so far (Equation (48)), if the absolute value of A
is smaller than one; A is a parameter in the WOA updated by Equation (49). However, if
the absolute value of A is larger than or equal to one, the whale’s position is updated by
using the position of a randomly chosen whale (Equation (53)). Finally, the previous steps
are repeated until the satisfaction of the predefined terminating conditions.

→
D̀ =

∣∣∣∣→X̀(i)−
→
X(i)

∣∣∣∣ (45)

→
X(i + 1) =

→
D̀·ebl · cos(2πl) +

→
X̀(i) (46)

where
→
X̀(i) = the position of the fittest whale found so far in iteration i;

→
X(i) = the position

of a solution in iteration i;
→
D̀ = the distance between a whale and the food (the fittest whale

found so far); b = a positive number used to define the shape of the spiral; l = a random
number in the interval of (−1,1); and | f |= the absolute value of f .

→
D =

∣∣∣∣→C ·→X̀(i)−
→
X(i)

∣∣∣∣ (47)

→
X(i + 1) =

→
X̀(i)−

→
A·
→
D (48)

where
→
A and

→
C = coefficient vectors updated by Equations (49) and (50), respectively.

→
A = 2

→
a ·→r −→a (49)

→
C = 2·→r (50)

where
→
a = a decreased variable from 2 to 0 over the iterations, updated by Equation (51), as

proposed by Zhong and Long [108];
→
r = a uniformly distributed random number between

0 and 1.
→
a = 2 ∗ cos

(
µ ∗ i

I
∗ π

)
(51)

where µ = the adjustable factor; i = the current iteration; I = the maximum number
of iterations.

→
D =

∣∣∣∣→C · →Xrand −
→
X
∣∣∣∣ (52)
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→
X(i + 1) =

→
Xrand −

→
A·
→
D (53)

where
→

Xrand = the position of a randomly chosen whale from its population.

Figure 9. The pseudo-code of WOA.

The adjustable parameters that affect the performance of WOA are parameters
→
a and

b, besides the population size and the number of iterations. The careful decrease of
→
a

throughout the iterations enables the WOA to balance diversification and intensification.
Furthermore, Kaveh and Ghazaan [109] demonstrated the vulnerability of the WOA to
b values.

Salp Swarm Algorithm (SSA)

The SSA, as proposed by Mirjalili et al. [110], is a nature-inspired metaheuristic
optimization algorithm inspired by salps’ intelligent foraging behaviour. Salps are aquatic
creatures similar to jellyfish. The pseudo-code of the SSA is shown in Figure 10. Firstly, the
position of each salp in the population is randomly initialized. Secondly, the simulation
model is used to evaluate the fitness of each individual salp. Thirdly, the algorithm
identifies the salp position with the best fitness value and assigns it to variable F, which
represents the food source that will be pursued by the followers. Fourthly, the controlling
parameter C1 is updated using Equation (54). Finally, the position of the leader is updated
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by using Equation (55), and the positions of the followers are updated using Equation (56).
These steps are repeated until the specified stopping criteria are met.

C1 = 2e−(
4l
L )

2
(54)

where C1 is a controlling parameter, L is the maximum number of iterations, and l is the
current iteration.

xj =

{
Fj + C1

((
ubj − lbj

)
c2 + lbj

)
, c3 ≥ 0

Fj − C1
((

ubj − lbj
)
c2 + lbj

)
, c3 < 0

(55)

where xj = the position of the leader in the jth dimension; Fj = the position of the food
source in the jth dimension; ubj = the upper bound of jth dimension; lbj = the lower bound
of jth dimension; and c2 and c3 = random numbers generated from a uniform distribution
in the interval of (0,1).

xi
j =

1
2

(
xi

j + xi−1
j

)
(56)

where xi
j = the position of ith follower salp in the jth dimension.

Figure 10. The pseudo-code of the SSA.

The SSA is controlled by only one parameter—C1—besides the population size and
the number of iterations. C1 is scheduled throughout the iterations to ensure both diversifi-
cation and intensification.

Parameter Selection of the Metaheuristics

Unquestionably, any metaheuristic performance is susceptible to the values of its
parameters. In this study, the parameter settings recommended by the developers of
the SI metaheuristics are used initially. In order to improve the solution quality of each
metaheuristic, their parameters are tuned by conducting many experiments. The final
parameter settings of each SI metaheuristic are listed in Table 3. In order to ensure a fair
comparison between the SI metaheuristics, each metaheuristic has to use the same number
of objective function evaluations [111]. Consequently, the population size of all of the
metaheuristics is 50 individuals, and the maximum number of iterations is 50. As shown in
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the third column of Table 3, offline tuning, the pre-scheduled variation of parameter settings,
and the self-adaptation of the parameter settings are three approaches for parameter tuning.
The offline tuning is conducted by trial-and-error, where the parameters’ values are kept
constant throughout the iterations. However, it is time-consuming, and depends on user
experience. Furthermore, it ignores the interaction effect among the parameters. Therefore,
online tuning methods are developed for the automatic tuning of parameters through
iterations with minimal human interference [112]. The online tuning methods used in this
study are the pre-scheduled variation and self-adaptation methods. In the pre-scheduled
variation method, the parameters’ values change through the iterations according to a
predefined function. In the self-adaptation tuning method, the parameters are tuned by the
metaheuristic itself, similarly to other decision variables.

Table 3. The methods used to tune the parameters’ values of each SI metaheuristic.

Metaheuristic Parameter Parameter Tuning Method Value or Range

FA
light absorption coefficient γ Self-adaptive (1–30)

constant number α Self-adaptive (0.1–0.2)

GWO Parameter
→
a Pre-scheduled (2–0)

Coefficient
→
C Pre-scheduled (0–2)

NBA

Constant α Offline (constant) 0.99
Constant γ Offline (constant) 0.9

Probability of habitat selection P Pre-scheduled
(random number within the range) (0.6–0.9)

Frequency of updating loudness and
pulse emission rate G Offline (constant) 4

Compensation rate for Doppler effect in
echoes C

Pre-scheduled
(random number within the range) (0.1–0.9)

Inertia weight w Pre-scheduled (0.5–0.9)
Contraction–expansion coefficient θ Pre-scheduled (0.5–1)

WOA Parameter
→
a Pre-scheduled (2–0)

positive number to define the spiral
shape b Self-adaptive (0.5–2)

SSA Parameter C1 Pre-scheduled (2–0)

4.2. Reduction of the Computation Time

Two approaches were adopted to provide the project manager with accurate planning
solutions in a reasonable time. These approaches are CRN and parallel computing. An
explanation of each approach and its implementation is given in the following subsections.

4.2.1. Common Random Numbers (CRN)

CRNs are one of the most popular variance reduction techniques (VRTs) used to
reduce the variance of the random output from the simulation model without increasing
the number of simulation replications [113]. The CRN is suitable for SO, especially for the
comparison of two or more solutions. Its main idea is that the solutions generated at each
iteration should be evaluated in the simulation model using the same generated random
variates. The CRN is successfully implemented by synchronizing random numbers without
affecting the independence between the simulation replications and the stochastic pro-
cesses. However, there is no guarantee that the CRN could reduce the solutions’ variability;
it may even backfire. Therefore, Law et al. [113] recommended the implementation of a pre-
liminary analysis before applying CRN. This preliminary analysis tests its efficacy through
four performance measures represented by Equations (57)–(60). The first performance
measure (Equation (57)) states that the variance of the difference between the fitness values
of two candidate solutions (S2

Z(N)) should be reduced after applying CRN. The second one
(Equation (58)) says that this value (S2

Z(N)) after using CRN should be less than the sum of
the variance of the two candidate solutions. The third measure explains that the confidence
interval’s half-width should be reduced after using CRN (Equation (59)). This reduction
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in the half-width can reduce the number of replications [114]. The fourth (Equation (60))
states that the fitness values of the two candidate solutions (X1, X2) should be positively
correlated which results into a positive covariance (Cov(X1, X2) > 0); thus, the variance of
Z(N) could be reduced according to Equation (61).

S2
Z(N)CRN < S2

Z(N)no_CRN (57)

S2
Z(N) < S2

1(N) + S2
2(N) (58)

hCRN
Z (N) < hno_CRN

Z (N) (59)

Corr(X1n, X2n)
CRN > 0 (60)

Var
[
Z(N)

]
=

Var(Zn)

N
=

Var(X1n) + Var(X2n)− 2 ∗ Cov(X1n, X2n)

N
(61)

where S2
Z(N)CRN and S2

Z(N)noCRN = the sample variance of Zn (Zn is the difference between
the fitness values of two candidate solutions (X1n , X2n)) with and without using the CRN
for N replications, respectively; S2

1(N) and S2
2(N) = the variance of the fitness values of two

candidate solutions (X1n , X2n), respectively, for N replications; hCRN
Z (N) and hno_CRN

Z (N) =
the half-width of the 95% confidence interval of Zn with and without using the CRN,
respectively, for N replications; Corr(X1n, X2n)

CRN = the correlation between X1n and X2n
after using CRN; Var(y) = the variance of y; Cov(X1n, X2n) = the covariance of X1n and X2n.

Two solutions—called solutions A and B, as shown in Table 4—were arbitrarily chosen
to study CRN’s feasibility. Table 5 shows the statistical results obtained before and after
applying CRN for solutions A and B for 100 replications. Table 5 indicates that the variance
of the difference between the fitness value, the project’s duration and the project’s cost
of solutions A and B is reduced by about 48%, 41% and 65%, respectively, after applying
CRN. Table 5 shows that the variance of Zn (S2

Z(N) = 0.0028) after using CRN is less than
the sum of the variance of the fitness value of solutions A and B (0.0033 + 0.0031 = 0.0064).
Furthermore, using CRN leads to a reduction in the half-width of the fitness value, the
project’s duration and the project’s cost by about 28%, 23% and 41%, respectively. This
reduction in the half-width could be used to reduce the required number of replications.
For example, only 100 replications are required to reach a half-width of the fitness value
equal to 0.0103 when using CRN. However, more than 195 replications are required to
reach the same half-width if we do not use CRN. Hence, the computation time can be
reduced significantly because one replication takes about 10 s on a workstation (Intel(R)
Xeon(R) CPU @ 2.27 GHz, 40.0GB Random Access Memory (RAM)). Finally, using the
CRN results in a positive correlation between solutions A and B. Based on these pilot study
results, CRN can indeed reduce the variance between the generated solutions.

After the demonstration of the efficacy of CRN, the confidence interval method
with a 95% confidence level was used to determine the minimum number of simula-
tion replications required to obtain results with no more than 5% error in their means
(i.e., H

X
< 0.05, where X = the sample mean and H is the half−width). By conducting

multiple simulation experiments on different solutions, four replications using CRN were
determined to achieve this level of reliability.

4.2.2. Parallel Computing

The basic idea of parallel computing is to divide the total computational load of a
given problem into independent parts and allocate them to available processors to be
solved simultaneously in order to reduce the computation time [115]. Parallel computing
can be implemented on a single computer with multiple processors, a network of connected
computers, or a combination of both [116]. In this study, a single computer with multiple
processors was selected to implement parallel computing because the other options are
rarely available to construction planners.
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Table 4. The two solutions used to check the efficacy of the use of CRN.

Decision Variables
Solutions

A B

NT 2 1
PYD 50 50
NRC 4 9
NIM 5 5
NOM 4 3
NPC 4 5
NSC 3 2
NFC 4 8
NCC 5 7
SM 1 1
OP 7 7
YS 35 35
ST 6 11

Objective Values
Solutions

A B

Mean fitness value (10−4) 18396.93 18626.14
Variance of fitness value 0.0033 0.0031

Mean project duration (day) 84.4 85.03
Mean project costs ($) 1645074 1650806

NT, number of trailers; PYD, distance between the casting yard and the construction site; NRC, number of rebar
cage molds; NIM, number of inner molds; NOM, number of outer molds; NPC, number of preparation crews;
NSC, number of pre-stressing crews; NFC, number of reinforcement crews; NCC, number of casting crews; SM,
steaming machine for concrete curing; OP, Overtime Policy; YS, casting yard storage capacity; ST, storage time of
the span in the casting yard in hours.

Table 5. The values of the performance measures before and after applying the CRN.

Performance
Measures

Before CRN After CRN

Fitness
Value DCD (day) TPC ($) Fitness

Value DCD (day) TPC ($)

S2
Z(100) 0.0054 3.7580 54,953.86 × 104 0.0028 2.2110 18,983.16 × 104

hz(100) 0.0144 0.3799 4594.59 0.0103 0.2914 2700.43
Corr(XAn, XBn) −0.0477 −0.0428 −0.0793 0.5651 0.5080 0.6879

DCD,, project duration in calendar days; TPC, total project costs.

Four strategies are available to implement parallel computing in metaheuristics. These
strategies are low-level, search space decomposition, independent multi-search, and coop-
erative search strategies [117]. The low-level strategy is usually implemented using the
master–slave parallel programming paradigm, as shown in Figure 11. In this paradigm, the
master core generates solutions for the initial population and distributes these solutions
among the slave cores. Then, the slave cores evaluate the dispatched solutions and send
their fitness values to the master core. After that, the master core uses these solutions’
fitness values to generate the second generation of solutions according to the metaheuristic
logic. This process is repeated until the satisfaction of the terminating conditions of the used
metaheuristic. Therefore, there is no communication among the slave cores. For example,
suppose the metaheuristic population P consists of 50 solutions, and five slave cores (i.e.,
N = 5) are available besides the master core. In this case, the process starts at the master
core, which randomly generates the initial 50 solutions. The master core then distributes
the 50 solutions equally among the slave cores. After that, each slave core evaluates the
fitness value of the ten solutions assigned to it using the simulation model. Each solution
must be evaluated by a number of replications R to account for the model’s uncertainty.
Then, the mean fitness value of these replications for each solution is calculated. The five
slave cores can evaluate the assigned solutions in parallel. After evaluating the mean
fitness values of the ten assigned solutions, the slave cores send the 50 solutions and their
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mean fitness values to the master core. Next, according to the applied metaheuristic logic,
the master core uses the received information to generate 50 new solutions for the new
population. This process is iterated until it meets the stopping conditions. As shown in
Figure 11, the low-level strategy does not require any modifications to the metaheuristic
logic, or the search space, unlike the other parallelization methods. Consequently, the
low-level strategy is selected to implement parallel metaheuristics.

Figure 11. The master–slave paradigm for the parallelization of SO.

5. Model Implementation

The case study of the precast full-span bridge deck construction using a launching
gantry provided by Mawlana [118] was used in this study. This case study is a bridge
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which consists of 35 equal spans, with a total length of 875 m. Table 6 shows the probability
distributions of each activity duration. As shown in Table 6, the activity durations are
represented by triangular distribution. Triangular distribution has been commonly used
to represent construction activity durations because it requires only three parameters (i.e.,
low, mode, and high) that experts can easily estimate if there is no historical data [119].
Furthermore, McCabe [120] indicated that triangular distribution provides a good approxi-
mation of the beta distribution, which was demonstrated by AbouRizk and Halpin [119] as
an adequate distribution to fit the historical data of activity durations. In this case study,
planning for 14 resources, overtime planning, and logistics decision variables considerably
affect the project duration and cost. The ranges of the 14 decision variables are listed in
Table 7. The chosen overtime policy represented by the number of daily working hours and
the number of working days per week affects the workers’ productivity and the activities’
durations. The detailed information related to each overtime policy, and the hourly cost
of the different resources and other cost parameters are available in the Supplementary
Materials. In this study, it is assumed that both the project duration and cost have equal
weights (i.e., Wt = Wc = 0.5), meaning that both objectives (i.e., shortening the project
duration and saving the total costs) have the same priority [121–123]. This information
was identified for the developed DES model built using SimEvents (Version 9.6.0 (R2019a)).
In this study, SimEvents was selected to model the system under study because of its
easier compatibility with parallel computing paradigms than special-purpose construction
simulation software [10]. Before the integration of the developed simulation model with
the SI metaheuristics, it was validated based on the results obtained by Mawlana and
Hammad [32]. They simulated the same project using STROBOSCOPE simulation software.
Table 8 compares the results of ten different solutions evaluated by the two simulation
models (STROBOSCOPE and SimEvents). An ANOVA F-test was conducted to determine
if there is a significant difference between the results of the two simulation models. The
obtained p-values for the time and cost are 0.327 and 0.078, respectively. At a significance
level of α = 0.05, there is no significant difference between the results of the two simulation
models.

Table 6. Activities durations of the precast full-span bridge deck construction using a launching
gantry [32].

Activity

Duration (Minutes)
(Triangular

Distribution [Min,
Mode, Max])

Activity

Duration (Minutes)
(Triangular

Distribution [Min,
Mode, Max])

Reinforcement of
bottom slab and webs [640, 961, 1280] Trailer loading [30, 60, 90]

Loading the inner
mold [120, 300, 480] Trailer haul F (Distance, Speed)

Reinforcement of the
top slab [660, 984, 1300] Trailer return F (Distance, Speed)

Lift to the outer mold [23, 45, 68] Trolley loading [30, 60, 90]
Concrete pouring [520, 771, 1020] Trolley haul F (Distance, Speed)
Concrete curing (600 or 1200) Reposition of LG [120, 240, 360]

Remove the inner
mold [90, 255, 420] Pickup span [30, 60, 90]

1st pre-stressing [120, 300, 480] Erect span [120, 240, 360]
Move to storage area [30, 60, 90] Trolley return F (Distance, Speed)

2nd pre-stressing [120, 300, 480] Grouting of bearing [120, 240, 360]
Delay for storage time Decision variable (ST) Load transfer [30, 60, 90]
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Table 7. The ranges of the 14 decision variables of the optimization problem.

Decision Variables Minimum Increment Maximum

Number of trailers (NT) 1 1 10
Distance between the casting yard and the

construction site (PYD)
10 10 100

Number of rebar cage molds (NRC) 1 1 10
Number of inner molds (NIM) 1 1 10
Number of outer molds (NOM) 1 1 10

Number of preparation crews (NPC) 1 1 10
Number of pre-stressing crews (NSC) 1 1 10

Number of reinforcement crews (NFC) 1 1 10
Number of casting crews (NCC) 1 1 10

Steaming machine for concrete curing (SM)
0 (conventional

curing) 1 1 (accelerated
curing)

Casting yard storage capacity (YS) 35 5 50
Storage time of the span in the casting yard

(ST) in hours 1 1 15

Number of daily working hours (DWH) 8 1 12
Number of working days per week (WWD) 5 1 7

Table 8. Comparison between the results of the two pieces of simulation software: STROBOSCOPE
and SimEvents.

Solutions
Stroboscope SimEvents

Duration (Days) Cost (104$) Duration (Days) Cost (104$)

1 73 277 74 280
2 76 266 77 271
3 77 247 77 244
4 80 214 80 217
5 81 207 81 208
6 83 205 83 207
7 84 197 84 199
8 89 195 89 202
9 92 193 92 192
10 98 167 97 167

After selecting the low-level strategy, a pilot study is required to determine the opti-
mum number of cores to be used for parallel computing. The number of cores is increased
from one to twelve, as shown in Figure 12. Twelve is the maximum number of cores
available in the used device. The corresponding time to evaluate the fitness values of a
population of 50 individuals is recorded. The results show that the minimum computation
time is achieved using ten cores. Using this number of cores reduces the computation time
by 87.0% compared with using only one core, which represents the case of not applying
the parallel computing. This significant reduction in the computation time matches the
results of studies by Mawlana and Hammad [32] and Salimi et al. [10], who indicated a
reduction in the computation time by 90.5% and 95.1%, respectively, after using parallel
computing. Figure 12 shows that increasing the number of cores does not always reduce
the computation time. For example, increasing the number of cores from 11 to 12 increases
the computation time. This result is because increasing the number of cores reduces the
computation load assigned to each core, whereas the communication overhead increases.
Moreover, the even distribution of the computation load to the available cores is an im-
portant factor in the reduction of the computation time. For example, the distribution of
50 solutions to ten cores, as shown in Figure 12, lead to the shortest computation time.
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Figure 12. The computation time associated with a different number of cores for the parallelization
of metaheuristics.

6. Results and Discussion

This section presents a qualitative and quantitative comparison between the five SI
metaheuristics after using CRN and parallel computing to reduce the computation time.
The stopping condition adopted in this study is reaching the predefined maximum number
of iterations (i.e., 50 iterations). Using this stopping condition, each SO run of each SI
metaheuristic took on average 11 h on a workstation (Intel(R) Xeon(R) CPU @ 2.27 GHz and
40.0 GB Random Access Memory (RAM)). Note that solving stochastic SO takes a longer
computation time than usual because each solution in each population needs to be evalu-
ated by the number of simulation replications to account for the model’s uncertainty [10].
In order to address this issue, commercial SO software such as OptQuest combines neu-
ral networks with metaheuristics to speed up the SO process [26,124]. The comparisons
between the SI metaheuristics are based on five independent runs with different random
variates of each SI metaheuristic. Firstly, the analysis of each SI metaheuristic convergence
behaviour is discussed in Section 6.1 to provide a qualitative comparison between the SI
metaheuristics. In order to measure the competitiveness quantitatively among them, a
statistical analysis of each SI metaheuristic is provided in Section 6.2.

6.1. Analysis of the Convergence Behaviour

In the literature, the convergence curve is the most common way to assess the per-
formance of an optimization algorithm qualitatively in terms of its ability to achieve
exploration and exploitation. Each line graph in Figure 13 shows the convergence curve of
each SI metaheuristic.

Generally, Figure 13 shows that the population fitness of the five SI metaheuristics
is improved throughout the iterations. As shown in Figure 13, the NBA exhibits steep
convergence during the first iterations. However, the search process is stuck in a local
optimum point which is better than the solutions obtained by the WOA, FA and SSA.
The performance of the NBA demonstrates its ability to detect the promising regions in
the search space early and exploit them. On the one hand, this performance might be
beneficial because good-quality solutions can be obtained in a reasonable time; however,
being stuck in local optima prevents the optimizer from exploring other promising search
regions. Despite the fact that GWO shows no improvements for some iterations, it achieves
a better balance between exploration and exploitation compared to NBA. This balance
between exploration and exploitation prevents GWO from trapping into a local optimum
early. Furthermore, GWO shows a relatively rapid convergence in the beginning and
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reaches a better solution than NBA at the end of iterations. As for FA, its performance is
characterized by smooth and steady convergence. Despite its ability to avoid trapping in
local optima, it could not obtain better results at the end of its iterations compared with
the NBA and GWO. These results indicate that FA might need more iterations to reach
more optimum search regions and overcome the NBA and GWO. Furthermore, it could not
give good results in the beginning due to its slow convergence. Unlike FA, WOA shows
rapid convergence in the beginning, but stagnation in local optima for a large number of
iterations made the performance of WOA unappealing. This means that the exploration
process in WOA should be improved to avoid such a performance. Finally, SSA neither
shows rapid convergence at the beginning of the search process nor reaches better results
at the end of the search process.

Figure 13. The convergence curves of the five SI metaheuristics.

6.2. Statistical Results of the SI Metaheuristics

Although the convergence analysis provides a qualitative comparison among the SI
metaheuristics, it cannot assess the extent to which each metaheuristic outperforms its
counterparts. For this purpose, some statistical measures were used to measure the central
tendency and the variability of the obtained results. Furthermore, the half-width of the 95%
confidence interval of the mean was calculated. The Tukey method, a multiple-comparison
method in ANOVA, was used to detect which metaheuristic provides results’ means which
are significantly different from the means of other metaheuristics, and hence to rank the SI
metaheuristics with an overall confidence level of 95%.

Table 9 summarizes these statistical measures of the project duration obtained by the
SI metaheuristics. It can be noticed that the minimum project duration resulting from
the optimization algorithms is 79 days. The NBA and WOA find this minimum value.
On the other hand, 85 days is the most prolonged project duration recorded from the
numerical experiments, and it is obtained by SSA. Figure 14 shows the box and whisker
plot of the project durations obtained by each metaheuristic. WOA and SSA provide
the lowest mean of the recorded project durations, whereas FA gives the highest mean.
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The means of the project durations resulting from GWO and NBA are 81.8 and 82 days,
respectively. The values of the percentage error, which is the subdivision of the half-width
of the 95% confidence interval of the project duration and the project duration mean (i.e.,
H
X
< 0.05, where X = the sample mean and H is the half−width) show that the number

of optimization runs results in quite reliable outcomes (below 5%), as shown in the last row
of Table 9.

Table 9. The statistical results of the project duration (days) obtained by the five SI metaheuristics.

Summary Statistics NBA GWO FA WOA SSA

Minimum 79 80 80 79 80
Maximum 84 83 84 84 85

Mean 82 81.8 82.2 81.4 81.4
Standard deviation 2.34 1.64 2.04 2.40 2.07

Half-width 2.91 2.04 2.54 2.99 2.57
Percentage error (half-width/mean) 3.55 2.49 3.09 3.67 3.16

Figure 14. Box and whisker plot of the near-optimum project durations obtained by the five
SI metaheuristics.

Table 10 lists the statistical results of the project cost for each SI metaheuristic. NBA
gives the minimum recorded project cost (i.e., 1,578,000 $), whereas SSA finds the highest
project cost. Figure 15 shows that the solutions obtained by GWO have the lowest mean
project cost. However, SSA produces solutions with the highest mean project cost. The
average costs obtained by NBA and WOA are 1,638,900 $ and 1,650,100 $, respectively.
However, higher cost means are reported from FA. The percentage error values in Table 10
show again that the number of optimization runs is sufficient.

Table 10. The statistical results of the project cost (104 $) obtained by the five SI metaheuristics.

Summary Statistics NBA GWO FA WOA SSA

Minimum 157.80 158.35 160.71 158.26 164.69
Maximum 172.39 170.69 175.72 171.27 177.80

Mean 163.89 163.45 166.92 165.01 173.22
Standard deviation 6.84 6.45 7.30 7.01 5.11

Half-width 8.49 8.01 9.06 8.70 6.35
Percentage error (half-width/mean) 5.18 4.90 5.43 5.27 3.66
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Figure 15. Box and whisker plot of the near-optimum project costs obtained by the five SI meta-
heuristics (USD, United States Dollars).

Figures 14 and 15 cannot help rank the SI metaheuristics because these figures rep-
resent two objectives with an inverse relationship (i.e., the project’s duration and cost).
For instance, the SI metaheuristics which obtain solutions with a low mean of the project
duration have a high mean of the project cost, and vice versa. Therefore, the fitness values
of the obtained solutions are used to rank the SI metaheuristics. Figure 16 shows the box
and whisker plot of the fitness values of the solutions obtained by the SI metaheuristics.
The results indicate that GWO and NBA produce the best results. For WOA and FA, their
generated solutions have higher fitness values. On the other hand, the solutions obtained
by SSA have the highest fitness values (the worst results). Besides this, the solutions
obtained by GWO have the least variability, followed by the NBA. However, the SSA
produces the most scattered solutions. The variability among the other SI metaheuristics
solutions is quite similar. In order to make a decisive comparison among the means of
the optimization algorithms’ fitness values, Tukey’s method was selected to conduct the
pairwise comparisons [125]; its results are shown in Figure 17. The results show that, with
a 95% confidence level, there is no significant difference between the fitness of the solutions
generated by GWO, NBA, and WOA. The FA solutions are worse than those obtained by
GWO and NBA, while SSA provides the worst solutions among the SI metaheuristics.

Figure 16. Box and whisker plot of the near-optimum fitness values of the solutions obtained by the
five SI metaheuristics.
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Figure 17. Tukey pairwise comparisons between the five SI metaheuristics conducted by Minitab
18 software.

Given the above analysis, it can be concluded that GWO, the NBA, and the WOA
can find the best solutions, and there is no statistically significant difference between the
quality of their solutions. Given the relatively new advent of these three metaheuristics
(i.e., GWO, NBA, and WOA), few studies have reported their efficiency in the solution
of different construction planning problems such as the optimization of construction
duration and schedule robustness using GWO [126], and the construction stage and zone
optimization of Rockfill dams using the WOA [127]. On the other hand, the FA generates
less optimal solutions than those produced by the others, while the SSA provides the
worst results. Regarding the convergence behaviour, the NBA shows rabid convergence
behaviour compared with the other optimization algorithms. However, GWO shows the
best balance between exploration and exploitation to avoid stagnation into a local optimum,
and the FA exhibits smooth and steady convergence behaviour. However, the SSA suffers
from becoming stuck in local points during the search process. The performance of the
SSA can indeed be enhanced using other equations to control its only control parameter
(i.e., C1).

7. Conclusions

As a new construction method, OSC has the potential to improve the sustainability
of the built environment. However, its wider diffusion is hindered by multiple barriers;
among them is the need to make extensive planning decisions. This barrier calls for com-
putational methods that help project managers to make the optimum planning decisions.
Simulation and optimization are among the key computational methods that can capture
the complexity and uncertainty of OSC projects. This study investigated, for the first time,
recent SI metaheuristics, namely: the FA, GWO, the NBA, the WOA and the SSA, for
the integration of simulation and optimization, and applied them to infrastructure OSC
projects to simultaneously minimize projects’ duration and cost.

These SI metaheuristics were applied to a case study of a bridge deck construction
project using the OSC method. The construction operations were simulated via a DES
model. In order to reduce the computation time of the SO process, CRN and parallel
computing were integrated into the SO models, reducing the average computation time
by 87.0%. Then, a comparative study based on the convergence behaviour and the sta-
tistical analysis of the five SI metaheuristics was conducted. The convergence behaviour
analysis indicated that the NBA shows rabid convergence behaviour compared with the
other SI metaheuristics. However, GWO shows the best balance between exploration and
exploitation to avoid stagnation into local optima. The FA exhibits smooth and steady
convergence behaviour, whereas WOA and the SSA suffer from becoming stuck in local
points. Based on the 95% confidence level, the statistical analysis proved that there is
no statistically significant difference between the solution qualities obtained by GWO,
the NBA and the WOA. However, the FA and SSA provide less optimal solutions. This
comparative analysis proves that the NBA and GWO are very competitive for the SO of
OSC projects. Considering the time and effort needed to tune the controllable parameters of
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the SI metaheuristics, GWO is preferable to the NBA, because GWO has a smaller number
of tuning parameters. Besides this, its simplicity makes it more accessible for researchers
to modify its logic or hybridize it with other local search methods to further improve its
performance. To summarize, this study contributes to the body of knowledge by comparing
multiple and recent SI metaheuristics for the stochastic SO of TCTP in infrastructure OSC
projects. Furthermore, the study incorporates CRN and parallel computing with the SO
models to reduce the computation time. To the best of the authors’ knowledge, this study
is one of the first to integrate recent SI metaheuristics such as the FA, GWO, NBA, WOA
and SSA with DES for the SO of OSC projects.

This study offers a valuable reference to professionals and academics who are inter-
ested in the optimization of the planning of OSC projects. The integration of CRN and
parallel computing with the most recent and powerful SI metaheuristics such as GWO, the
NBA and the WOA can provide project managers with near-optimum resource planning
and logistics decisions to reap the full sustainability merits of OSC. This study could be
seen as one of the early attempts to evaluate the performance of multiple SI metaheuristics
in the solution of a set of optimization problems characterized by uncertainty in the con-
struction industry [26]. Hence, it can guide researchers to test the performance of other
metaheuristics for the SO of different construction projects.

Nonetheless, this study’s conclusions should be interpreted in the light of some
limitations. According to the no-free-lunch theorem, the reported results herein cannot be
generalized to other types of construction projects. Furthermore, the developed simulation
model ignores some non-physical aspects of OSC projects, such as organizational policies,
rework, and the laborers’ skill level. These aspects could be considered using SD, forming
a hybrid DES–SD model. Such hybrid models could provide another challenging testbed
for SI metaheuristics to optimize real-world systems characterized by complexity and
uncertainty. Given the potential and simplicity of GWO in SO for OSC, its performance
could be further improved by hybridizing it with local search methods such as the Hooke–
Jeeves method and the Nelder–Mead simplex method. Furthermore, different kinds of
OSC projects could be used to test SI metaheuristics.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
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