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Abstract: Time series cross-validation is a technique to select forecasting models. Despite the
sophistication of cross-validation over single test/training splits, traditional and independent metrics,
such as Mean Absolute Error (MAE) and Root Mean Square Error (RMSE), are commonly used
to assess the model’s accuracy. However, what if decision-makers have different models fitting
expectations to each moment of a time series? What if the precision of the forecasted values is also
important? This is the case of predicting COVID-19 in Amapá, a Brazilian state in the Amazon
rainforest. Due to the lack of hospital capacities, a model that promptly and precisely responds
to notable ups and downs in the number of cases may be more desired than average models that
only have good performances in more frequent and calm circumstances. In line with this, this
paper proposes a hybridization of the Technique for Order of Preference by Similarity to Ideal
Solution (TOPSIS) and fuzzy sets to create a similarity metric, the closeness coefficient (CC), that
enables relative comparisons of forecasting models under heterogeneous fitting expectations and
also considers volatility in the predictions. We present a case study using three parametric and
three machine learning models commonly used to forecast COVID-19 numbers. The results indicate
that the introduced fuzzy similarity metric is a more informative performance assessment metric,
especially when using time series cross-validation.

Keywords: fuzzy sets; TOPSIS; multicriteria decision making; decision support systems; forecasting

1. Introduction

By 27 October 2021, almost two years after the initial occurrence of SARS-COV-2, the
World Health Organization (WHO) announced a total of 219.4 million cases worldwide
and 5 million accumulated deaths due to coronavirus disease [1]. Indeed, by 22 November
2021, some countries in Europe have announced a partial or complete lockdown aimed at
overcoming the infections spread across Europe, notwithstanding sustainability economy
problems [2]. After 80.2 thousand confirmed cases in the world in almost two months,
Brazilian authorities stated the SARS-COV-2’s primary infection on 25 February 2020 [3].
After a lag of two months, Brazil saw its initial pandemic numbers soar. At the end of
October 2021, Brazil had the third-largest number of confirmed cases globally (21.75 million)
and the second-highest number of deaths (606 thousand). Moreover, the number of daily
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new cases and deaths started decreasing only in June 2021 after mass vaccinations took
effect [4].

In Brazil, huge cities, such as São Paulo and Rio de Janeiro, attracted media attention
mainly due to their population, economic concentration, and the consequent dimension of
SARS-COV-2 numbers. Nevertheless, the pandemic affected even more Brazilian regions,
such as the North, which is covered mainly by the Amazon forest and holds about half
of the Brazilian area. Although the population density (4.78 inh./km2) and concentration
(8.8%) in the North region are low, by the end of September 2021, it was responsible
for 30.3% of all Brazilian SARS-COV-2 confirmed cases [5]. Moreover, the death risk by
standardized rates in the North region capitals was significantly higher [6,7] than in the
rest of the country, mainly due to the poor sanitary and social conditions.

In the North region of Brazil lays a state like an island surrounded and carved out of
the Amazon rainforest, as it does not hold land traffic routes with any other state of Brazil
(see Figure 1). The Amapá state has just 877,613 residents who live in an area larger than
England, but it is 67-times denser in England. As a result, Amapá has already experienced
an overload of mortality from transmissible infections, predominantly amidst indigenous
groups, such as other parts of the Brazilian Amazon [8]. In addition, despite previous
government efforts, several social and health challenges remain for the many people
residing in the state, such as public sanitation and minimal access to clean water [9]. This
particular scenario makes Amapá receptive to SARS-COV-2 and other disease outbreaks
that may occur. Until August 2020, according to the state’s official data, the state reported at
the second-highest Brazilian infection rate [5]. Consequently, in late May 2021, the capital
of Amapá, Mapacá, suffered the collapse of its healthcare system due to SARS-COV-2.

Macapá

Amapá

Brazilian Amazon
North Region
Amapá
Rest of Brazil

Figure 1. Amapá, Brazil [8].

Researchers have been presenting several models to assist local authorities in Amapá
and worldwide in many fields [10–15]; some of them assisting in forecasting COVID-19
numbers, such as when the outbreak will peak, how long it will last, how many will be
infected or die, and how the hospital demands will evolve [16–19]. The models vary from
univariate [16,20,21] to multivariate approaches [18,22] and from ex ante to ex post [23–25].
Other variables such as the number of PCR tests, mobility data, meteorological data,
and internet activity are also commonly forecasted or used as exogenous variables while
predicting others [18,23,24,26].

Regarding the types of models, compartmental models, such as the SIR model
(Susceptible-Infected-Removed) [27,28] and its extensions, are the most used in epidemic
outbreaks, especially for medium–long-term forecastings [22,29,30]. Nevertheless, short-
term forecastings are also important, especially in supporting operational decisions dur-
ing the COVID-19 pandemic. Thus, classical parametric and machine learning models
have also gained space during the pandemic, such as Autoregressive Integrated Mov-
ing Average (ARIMA) [21,31–37], Holt–Winters [35–40], Prophet [20,36,40–42], K-Nearest
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Neighbors (KNN) Regressor [37,43–45], Random Forest Regressor (RFR) [11,16,46,47],
and Support Vector Regressor (SVR) [16,37,40,47–49]. Researchers may also choose two
models [40,43–45,47] or more than three models [16,36,37] to make the forecasts.

There are several alternatives to model and forecast continuous time-dependent
variables. Consequently, selecting a proper forecasting model is of essential practical im-
portance. Model performance and evaluation are key to assessing the model quality fit,
measured by confronting actual values to the predicted ones [35]. To highlight, in the con-
text of COVID-19, researchers have used many metrics to this end, such as the Root Mean
Squared Error (RMSE) [33–38,46], Mean Absolute Percentage Error (MAPE) [34–37,39],
Mean Absolute Error (MAE) [16,31,48], Mean Square Error (MSE) [40,46,48], Symmetric
Mean Absolute Percentage Error (sMAPE) [16,43], Relative Root Mean Squared Error
(RRMSE) [43,48], the Adjusted R-squared (R2) score [33,48], the Improvement Percentage
(IP) [16,43], the Akaike Information Criterion (AIC) [32,38], and the Bayesian Information
Criterion (BIC) [38].

The RMSE is applicable for evaluating the overall accuracy of the forecasts while
punishing significant forecast errors in a square order [50]. The MAE is famous because it
is straightforward to calculate and understand. However, it can produce biased results by
counting meaningful outliers in datasets; the other measure, MSE, has the same limitation
as MAE [51–53]. Another widely used evaluation measure is the MAPE due to its benefits
of scale-independency and interpretability. However, MAPE has the notable limitation of
resulting in infinite or undefined values for zero or close-to-zero values [51,53,54]. Other
metrics used by researchers to assess the performance of machine learning methods are
R2, R2 adjusted, precision, recall, F1-score, and accuracy, or the Matthews Correlation
Coefficient (MCC) and the area under the receiver operating characteristic (ROC) curve,
also known as AUC [44,48,55]. A forecasting method that has the R2, R2 adjusted, F1-score,
or AUC closest to 1 is the one that should be chosen. Higher values for metrics that carry
the word “Mean” on their names indicate poor performance of a given algorithm [52,53,55].

Despite the variety of existing metrics, none of them seem to be specially tailored
to cross-validation forecasting approaches or to assess multiple forecasted values to each
observation in the testing sets. Commonly, metrics that are based only on averages may not
explore other information that the multiplicity of forecasted values may bring [56], such
as variability and different fitting expectations to each data point [57]. In fact, in practice,
frequently used forecasting metrics are also correlated, meaning that the performance of
one model according to a given metric will be linearly correlated to other metrics [55].

The objective of this paper is to present a novel metric that, in addition to averaging
errors, also deals with heterogeneous fitting expectations, capturing the volatility of the
forecasted values during cross-validation. As a consequence, this measure can relatively
assess the performance of COVID-19 forecasting models. To do so, we adopt a similarity
metric, the closeness coefficient (CC), which we take from the Fuzzy-TOPSIS (Technique for
Order of Preference by Similarity to Ideal Solution), an outranking method generally used
in the context of Multi-Criteria Decision Making (MCDM). A responsive metric in fitting
expectations is the one that can capture different perspectives or decision criteria over a
set of competing forecasting models. In our case, the perspectives are different periods
of a time series, such as periods of an increase, stability, or a decrease in the number of
COVID-19 cases. Furthermore, by using triangular fuzzy sets, the metric can consider the
volatility in the forecasted data related to the output of the models. Finally, it is a relative
metric that only makes sense when more then one model is at the pool of potential models
to be chosen. We exemplify the usage of this metric with the case of selecting COVID-19
forecasting models in the Amapá state, Brazil.

The main justification for using TOPSIS over other well-consolidated MCDM meth-
ods is that it operates with the concept of distance to the ideal solution [58], which is a
key aspect to the metric we propose. Other distance to ideal solution methods, such as
VIKOR (VIseKriterijumska Optimizacija I Kompromisno Resenje, in English Multicriteria
Optimization and Compromise Solution), could also be used to the same end, potentially
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producing similar results. However, TOPSIS is still preferred due to its easy usability and
level of consolidation among scholars.

To the best of our knowledge, this metric has never been presented before to assess
forecasting models, especially in the context of COVID-19 or other epidemics. The main
contributions of this paper and the proposed metric are summarized as follows:

• We introduce a novel similarity metric that, in addition to averaging errors, can also
capture heterogeneous fitting expectations and volatility in the forecasted values.

• The metric is suitable for comparing forecasting models trained and tested with
cross-validation techniques, such as rolling forward forecasting.

• The metric may potentially bring positive implications over automated model selec-
tion in a robust and sustainable manner.

• The metric also enables the conjunction of data-driven and expert-driven models,
such as TOPSIS and machine learning forecasting models, which are not commonly
tight-coupled to produce decision support systems [58].

• To exemplify the usage of the metric, we present a case study that compares three
classical and three machine learning forecasting models: Holt–Winters, ARIMA,
Prophet, KNN, RFR, and SVR.

The proposed metric also has limitations, especially in the face of more traditional
metrics that are widely used to compare forecasting models, such as MAE, RMSE, SMAPE,
and others.

• Since it is a relative metric, it is not suitable to assess standalone models’ performances
or compare models that are applied to different time series.

• The metric is more complex and demands more effort to be set than other classical metrics.
• It also requires judgments from decision-makers, making it more time-consuming.

The rest of this paper is organized as follows: Section 2 briefly introduces the TOPSIS,
fuzzy-TOPSIS models, and the proposed approach, which is an adaptation of fuzzy-TOPSIS
to rank forecasting models. Section 3 presents an actual case study that intends to rank
models to the reality of a Brazilian state carved in the Amazon region during the COVID-19
pandemic. In Section 4, we discuss the results and compare the proposed metric to the
ones already diffused in the literature. Finally, we provide the conclusions in Section 5.

2. Methodology

This section introduces the models used as the base of the introduced forecasting
model performance metric as well as the proposed fuzzy-TOPSIS model to rank forecast-
ing models.

2.1. TOPSIS

The TOPSIS is an MCDM method that calculates the value of a given alternative
by distancing it to its ideal and non-ideal concepts (or solutions). Hwang and Yoon [59]
presented TOPSIS in 1981, and since then, researchers have been primarily employing it
to rank alternatives in different fields of study, such as business [58], construction [60],
healthcare [61], and mining [62]. Hwang and Yoon [59] proposed the following step-by-step
TOPSIS to select the most suitable alternatives given a list of decision criteria.

Step 1: Let A = [aij]m×n be a decision matrix with m rows and n columns. The element
in the i-th row and j-th, aij, indicates a value given to alternative i, regarding a decision
criterion j. Consider also an n-dimensional vector C, where each position cj corresponds to
the weight assigned to the decision criterion j, where ∑n

j=1 cj = 1.

Step 2: Normalize and weight elements of A by dividing them by the routed summa-
tion of the column square values and multiplying them by the corresponding criterion
weight, as in Equation (1). Thus, a matrix A′ = [a′ij]m×n with all normalized values is set,
as in Equation (2).
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a′ ij =
cjaij√
∑m

i=1 a2
ij

(1)

A′ =



c1a11√
∑m

i=1 a2
i1

c2a12√
∑m

i=1 a2
i2c1a21√

∑m
i=1 a2

i1

c2a22√
∑m

i=1 a2
i2

. . .
cja1j√
∑m

i=1 a2
ij

. . .
cja2j√
∑m

i=1 a2
ij

...
...

c1ai1√
∑m

i=1 a2
i1

c2ai2√
∑m

i=1 a2
i2

. . .
...

. . .
cjaij√

∑m
i=1 a2

ij


(2)

Step 3: Let V+ and V− be m-dimensional vectors corresponding to the Positive and
Negative Ideal Solutions, respectively. They are calculated as indicated next.

V+ =

{
v+j := max

i
a′ ij

∣∣∣∣j = 1, 2, . . . , n
}

(3)

V− =

{
v−j := min

i
a′ ij

∣∣∣∣j = 1, 2, . . . , n
}

(4)

Step 4: Calculate the separation measures d+i and d−i between the row vector a′ i and
V+ and V−, respectively.

d+i =

√√√√ n

∑
j=1

(a′ ij − v+j )
2 (5)

d−i =

√√√√ n

∑
j=1

(a′ ij − v−j )
2 (6)

Step 5: Calculate the closeness coefficient (CC) as in Equation (7) of each alternative
i to the ideal solutions. Then, rank the alternatives by sorting the CC values in their
decreasing order.

CCi =
d−i

d+i − d−i
(7)

Under several circumstances, crisp data are inadequate to real-life model situations.
Human judgments are often vague and cannot estimate their preference with an accurate
numerical value. Thus, we might use linguistic assessments, a more realistic approach,
rather than numerical values to produce the classifications and weights of the criteria in
the problem [63,64]. Furthermore, crisp averages may lose information carried by a set of
samples to the same quantitative observation [57]. To tackle those gaps, researchers have
been mainly applying fuzzy set theory to TOPSIS approaches. A positive fuzzy number, x̃,
is characterized by a membership function, µx̃, which takes values in the interval [0, 1]. It is
an extension of classical set theory, and the operations are extensions of the fundamental
set theory operations of complement [65,66].

The triangular is the most common membership function in fuzzy-MCDM applica-
tions [58]. In contrast to more complex and novel membership functions and types of
fuzzy sets, triangular fuzzy numbers are the easiest to learn and understand. Thus, they
are traditionally suitable to first fuzzification attempts on novel MCDM methods when
uncertainty is primarily tackled [58,66]. For instance, classic MCDM methods, such as
AHP [67,68] and TOPSIS [63,69], debut on the fuzzy environment by employing the concept
of triangular fuzzy numbers. For a given fuzzy number, x̃, its associated membership
function is defined by a lower limit (x1), a middle value (x2), and an upper limit (x3), with
x1 ≤ x2 ≤ x3 (See Figure 2, where:
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µx̃(z) =


0, z < x1

z−x1
x2−x1

, x1 ≤ z ≤ x2
z−x3
x2−x3

, x2 ≤ z ≤ x3

0, z > x3

(8)

1

x1 x2 x3

Figure 2. Graphical representation of a triangular membership function.

Chen [63] performed the first extension of TOPSIS with triangular fuzzy numbers.
This approach is the baseline to the adaption of Fuzzy-TOPSIS we propose later on. The
procedure of Fuzzy-TOPSIS is similar to classical TOPSIS and is summarized as follows [69].

Step 1: Let Ã = [ãij]m×n be the fuzzy decision matrix, with ãij being a triplet (aij1, aij2, aij3),
where aij1 is the lower limit, aij2 the medium value, and aij3 is the upper value for alternative
aij. Consider also an n-dimensional vector C̃, where each element c̃j is a triplet (c̃j1, c̃j2, c̃j3),
where c̃j1, c̃j2, and c̃j3 are the lower, medium, and upper values for c̃j, respectively.

Step 2: Compute the normalized fuzzy decision matrix, R̃ = [r̃ij]m×n, where each
element r̃ij is calculated according to Equation (9).

r̃ij =

 aij1

max
k

{
a∗j3
} ,

aij2

max
k

{
a∗j3
} ,

aij3

max
k

{
a∗j3
}
 (9)

for a∗j3 = max
i
{ãij3}.

Step 3: Compute the weighted normalized fuzzy decision matrix, Ṽ = [ṽij]m×n, where
each element ṽij is calculated as in Equation (10).

ṽij = r̃ij � c̃j (10)

Step 4: Compute the Fuzzy Positive (FPIS) and Negative (FNIS) Ideal Solutions.

FPIS = (ṽ∗1 , ṽ∗2 , ..., ṽ∗n), where ṽ∗j = max
i

{
ṽij
}

(11)

FNIS = (ṽ−1 , ṽ−2 , ..., ṽ−n ), where ṽ−j = min
i

{
ṽij
}

(12)

Step 5: Compute the positive (d∗i ) and negative (d−i ) distances of each alternative i to
its FPIS and FNIS, respectively.

d∗i =
n

∑
j=1

d(ṽij, ṽ∗j ) (13)

d−i =
n

∑
j=1

d(ṽij, ṽ−j ) (14)

where the distance between two generic fuzzy numbers, x̃1 = (l1, h1, u1) and x̃2 = (l2, h2, m2)
(See Figure 3), can be obtained using the vertex method, given as:
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d(x̃1, x̃2) =

√(
1
3
[(l1 − l2)2 + (h1 − h2)2 + (u1 − u2)2]

)
(15)

𝑥1 𝑥2 𝑥3 𝑧1 𝑧2 𝑧3

𝑑( 𝑥, ǁ𝑧)

1

Figure 3. The vertex method: the distance between two TFNs.

Step 6: Compute the closeness coefficients for each alternative i, CCi, according to
Equation (16). Then, sort the alternatives by decreasing value of CC.

CCi =
d−i

d−i + d∗i
(16)

2.2. The Proposed Approach

The proposed model is essentially an adaptation of the Fuzzy-TOPSIS model pro-
posed by Chen [63]. In Steps 1–5, it organizes the decision environment and creates data
throughout forecasting. To the best of our knowledge, those steps are not found in other
TOPSIS-based models. Steps 6–11 directly use the logic and equations proposed by Chen,
but we made several adjustments to accommodate the predicted values from the prediction
models. We displayed these adjustments following each stage of the proposed model. The
step-by-step of the introduced model is given next.

Step 1: Divide the time series observations into two portions: a fixed training set and a
fluctuating testing/training set, as represented by Figure 4.

Fixed training set Fluctuating testing/training set t

y

Figure 4. Time series sets.

Step 2: Segment the fluctuating testing/training set in n categories according to
decision-makers preferences and/or the time series characteristics. Figure 5 exemplifies
n = 4. Please notice that non-successive observations may fall into the same category since
a time series may display similar behaviors for different periods in time.



Sustainability 2021, 13, 13599 8 of 25

c1 c2 c3 c3c4
c2

t

y
Fluctuating testing/training set

Figure 5. Segmenting and classifying the fluctuating testing/training set.

Step 3: Aggregate the observations according to the m categories and weight the
observations inside each category according to the decision-makers preferences. Table 1
shows the weighting scale, containing the conversion from linguistic to crisp and fuzzy
weights, used to assess each category. All data points that fall into a category will receive the
corresponding weight to that category. Thus, for the pn observations inside the n categories,
their weights are equal to the weight given to the category k, so ck = ck

1, ck
2, · · · , ck

pk
. The

vector with the weights to all r observations in the fluctuating testing/training set is given
in Equation (17):

C̃ = [c̃k
i ]r = (C̃1

p1
_C̃2

p2
_ · · ·_ C̃n

pn) = [c̃1
1, c̃1

2, · · · , c̃1
p1

, c̃2
1, c̃2

2, · · · , c̃2
p2

, c̃n
1 , c̃n

2 , · · · , c̃n
pn ] (17)

with r = p1 + p2 + · · ·+ pn.

Table 1. Scale to assess the importance of each category.

Linguistic Crisp Fuzzy

Low 1 (1,1,2)
Medium Low 2 (1,2,3)
Medium 3 (2,3,4)
Medium High 4 (3,4,5)
High 5 (4,5,5)

In Table 1, the column Linguistic refers to the linguistic weights that the decision-
makers may assign to each criterion. The column Crisp refers to the crisp correspondent
scale that is commonly used on MCDM methods. The Fuzzy correspondents to the fuzzy
scale, which we use to convert the linguistic variable to triangular fuzzy numbers.

Step 4: Select the m forecasting models to be compared and assemble the decision
hierarchy (See Figure 6).

Forecasting model selection

c1

c1
1 c1

2 … c1
p1

c2

c2
1 c2

1 … c2
p2

cn

cn
1 cn

2 … cn
pn

…

Model 1 Model 2 … Model m

Figure 6. Decision hierarchy—Objective, categories, data points, and models.
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Step 5: To the time series defined in Step 1 , run the models q time each, where
q = r − w + 1, with w the forecasting window, which is also the testing set. Thus, to
each model run, add one observation to the training set until r = w. Figure 7 graphically
exemplifies how the training set evolves in time and also how the testing set gives one step
ahead in its origin with each new run in the cross-validation.

Training data Test data
Run 1

.

.

.

Run 2

Run q

Figure 7. Forecasting window.

Step 6: To observe the fluctuating testing/training set, assemble a triangular fuzzy
number, ẽk

ij, which is also composed by a triplet, with k = 1, 2, . . . , n and where ek
ij1 is the

smallest residual, ek
ij2 is the median of all residuals to a given observation, and ek

ij3 is the
biggest residual of the forecasting to the r observations and m forecasting models. For the
first and last observations of the fluctuating testing/training set, ek

ij1 = ek
ij2 = ek

ij3. Thus, the
residual fuzzy matrix, aggregated according to n categories, Ẽr×m, for r observations and
m models is given by:

Ẽ = [ẽk
ij]r×m =



ẽ1
11 ẽ1

12 · · · ẽ1
1m

ẽ1
21 ẽ1

22 · · · ẽ1
2m

...
...

. . .
...

ẽ1
p11 ẽ1

p12 · · · ẽ1
p1m

ẽ2
11 ẽ2

12 · · · ẽ2
1m

ẽ2
21 ẽ2

22 · · · ẽ2
2m

...
...

. . .
...

ẽ2
p21 ẽ2

p22 · · · ẽ2
p2m

...
...

. . .
...

ẽn
11 ẽn

12 · · · ẽn
1m

ẽn
21 ẽn

22 · · · ẽn
2m

...
...

. . .
...

ẽn
pn1 ẽn

pn2 · · · ẽn
pnm


r×m

(18)

Step 7: Compute the normalized residual fuzzy matrix, G̃ = [g̃k
ij]r×m, just as presented

by Chen [63], where each element g̃k
ij, for k = 1, . . . , n; i = 1, . . . , pk; j = 1, . . . , m is given by:

g̃k
ij =

(
ek

ij1

e∗j3
,

ek
ij2

e∗j3
,

ek
ij3

e∗j3

)
, (19)

with the lower, medium, and upper values being, respectively, ek
ij1, ek

ij2, and ek
ij3, coming

from matrix Ẽ and e∗j3 = max
i,k

{
ẽk

ij3

}
.

Step 8: Construct the weighted normalized fuzzy decision matrix, Ṽ = [ṽk
ij]r×n, where

ṽk
ij = g̃k

ij � c̃k
i .

Step 9: Compute the Fuzzy Positive Ideal Solution (FPIS) and Fuzzy Negative Ideal
Solution (FNIS). We assume that the best forecasting model to a given observation is the
one closer in distance to its FPIS and farthest to its FNIS. Thus, the FPIS is the minimal
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possible residual, and the FNIS is formed by the maximum residuals among all forecasting
models for the given observation.

FPIS = 0 (20)

FNIS = (ṽ1−
1 , ṽ1−

2 , · · · , ṽ1−
p1

, ṽ2−
1 , ṽ2−

2 , · · · , ṽ2−
p2

, · · · , ṽn−
1 , ṽn−

2 , · · · , ṽn−
pn ) (21)

where ṽk−
i = max

j

{
ṽk

ij

}
.

Step 10: Compute the distance of each model predicted observation from each FPIS,
d∗j , and FNIS, d−j , using Equations (22) and (23). We calculate the distances between two
Triangular Fuzzy Numbers using the vertex method (See, Figure 3 and Equation (15)).

d∗j =
n

∑
k=1

pk

∑
i=1

d(ṽk
ij, FPIS) (22)

d−j =
n

∑
k=1

pk

∑
i=1

d(ṽk
ij, ṽk−

i ) (23)

Step 11: Compute the closeness coefficient for each forecasting model j, CCj, according
to Equation (24) for each forecasting model and rank them from highest closeness coefficient
to the lowest.

CCj =
d−j

d−j + d∗j
(24)

3. Case Study: Forecasting in the Amazon Region

In this section, we exemplify the usage of the proposed metric with the case study
of a Brazilian state, Amapá. We first present the data we use and how we collected them.
Then, we briefly introduce the forecasting protocol and the models used to predict future
observations of the target variable. Finally, we evaluate the models according to the
similarity metric we introduced in Section 2.2.

3.1. Data Acquisition

We performed all modeling to the daily number of confirmed COVID-19 cases in
the Amapá state, fully located in the Brazilian Amazonian region. The number of obser-
vations/timestamps in this case study since the first official case, in 20 March 2020, up
to 28 September 2021, is 558. We gather the data from official reports at the state level.
The collected data are also available in an application programming interface provided
by Brasil.io repository [5], where the dataset is named "caso" and is presented under the
“COVID-19” section.

The data we use may diverge from the Brazilian government’s website as the counting
protocol may differ from the state of Amapá. Additionally, this paper does not treat cases
of sub-notifications, and the target variable is forecasted by the models only considering as
predictors lagged values. All data we use, as well as the results from subsequent sections
of this paper, can be found in the Supplemental File.

We divided the time series into two parts, respecting Step 1 of the methodology we
proposed. Let the fixed training set be denoted by A and the fluctuating testing/training set
be denoted by B. From the 558 observations/days, A encompasses 238 observations, while
B encompasses 320. Figure 8 shows A and B, as well as their centered moving average, for
42 days.
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Figure 8. Observations for the case study.

Furthermore, in respect to the proposed methodology’s Step 2, we classify different
segments of B, according to six categories:

• Stability Start (CSS): the first week (7 days) of a stability period;
• Stability (CS): a period with no significant increase or decrease in the tendency of the

time series;
• Increasing Start (CIS): the first week of an increasing period;
• Increasing (CI): a period of a significant increase in the tendency of the time series;
• Decreasing Start (CDS): the first week of a decreasing period;
• Decreasing (CD): a period of a significant decrease in the tendency of the time series.

These categories reflect local decision-makers’ concerns, which also weigh the impor-
tance of each category according to their needs. For instance, better predictions during
periods with an increase in the number of daily COVID-19 confirmed cases are the most
appreciated since those times may require more infrastructure investments or negotiation
with other regions to transfer the excess of new patients. Similarly, but less critically, are
the predictions during decreasing periods since during these times, the state may be open
to receiving patients from other regions or temporarily close temporary facilities, such as
campaign hospitals. Figure 9 shows the splitting of B into categories.
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Figure 9. Observation categories defined by the decision-makers.
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Then, following Step 3, Table 2 presents the linguistic grades given by the decision-
makers to each of the categories. The column Category refers to each category defined
recognized by the decision-makers, Code refers to its abbreviation, and Scale shows the
verbal scale assigned, according to Table 1.

Table 2. Scale to access the importance of each category

Category Code Scale

Stability Start CSS Low
Stability CS Medium
Increasing Start CIS Medium High
Increasing CI High
Decreasing Start CDS Medium High
Decreasing CD Medium

3.2. Forecasting Protocol

Thus, the first forecasting run uses all the fixed training set A as the training set and
predicts the first 21 observations of B. Then, we perform the walking forward over the
fluctuating testing/training B, now using 239 observations (238 from A and 1 from B),
and attempt to predict from the 2nd to the 22th observation of B, as shown in Figure 7.
Finally, we repeat this procedure until the training set encloses 537 observations (238 from
A and 299 from B), and the last 21 observations of B are the testing set. Therefore, we have
only 1 prediction to the first and last observations of B, 2 predictions to the 2nd first and
2nd last observations of B,..., 20 predictions to the 20th and 301th observations of B, and
21 predictions to all observations of B between positions 21th and 300th. Figure 10 shows a
flowchart describing the adopted forecasting protocol.

2nd Run

1st Run

3rd Run

4th Run

299th Run

300th Run



Training set = 238 days

Training set = 239 days

Training set = 240 days

Training set = 241 days

Training set = 536 days

Training set = 537 days

Fixed training set = 238 days

Fluctuating training set: 0 – 299 days

Testing set = 21 days

W
al

k
in

g
 f

o
rw

ar
d

Figure 10. Forecasting protocol.

3.3. Forecasting Models

We run six forecasting models according to the forecasting protocol defined in Section 3.2
and take the data presented in Section 3.1 as input. First, we select the six forecasting
models commonly used for predicting the number of COVID-19 cases. Once the models
are defined, we complete the decision hierarchy, as prescribed by Step 4 in the proposed
methodology subsection (see Figure 11).

For the forecasting in Figure 9, we split and started the time series from points 1
(equal to the point 238 original) to 320 (equal to 558) included in the forecasting window,
as shown in Table 3, which shows the defined categories, their correspondent codes, and
the data points included in the fluctuating testing/training set, that fall inside each one of
the categories.
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Figure 11. The case decision hierarchy.

Table 3. Categories and forecasting widows.

Categories Code Points Included in the Forecasting Widow

Stability Start CSS 18–24; 172–178; 299–305
Stability CS 25–66; 179–235; 306–320
Increasing Start CIS 92–98
Increasing CI 1–17; 99–133
Decreasing Start CDS 67–73; 134–140; 236–242
Decreasing CD 74–91; 141–171; 243–298

As proposed in Step 5 of the proposed methodology, for each model, we perform a
total of 320 runs. Figure 12 presents a graphical summary of the mean predicted value for
each observation in the fluctuating testing/training set.

ARIMA

KNN

Holt-Winters

Prophet

RFR

SVR

Target Values Predicted Values

Figure 12. Prediction achieved by the forecasting models.

The parameters and hyperparameters are tuned to each new run of the models. Thus,
we do not list the optimal combination of parameters to each one of the models for each
new run during the cross-validation. The following section briefly presents the six forecast
models used in this research.

3.3.1. ARIMA

ARIMA, also known as the Box–Jenkins model [70], is a statistical approach commonly
used for time series analysis and forecasting. The model’s composition of integration (I),
autoregressive (AR), and moving average (MA) comprises the ARIMA model. Time
series components consist of trend, seasonal, cyclic, and random or irregular movement
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categories [35]. ARIMA can additionally be set to recognize seasonality, the optimal value
of which can be found after running a Canova–Hansen test [71].

The ARIMA model is commonly referred to as an ARIMA (p, d, q), where p is the order
of autoregression, d is the degree of difference, and q is the order of the moving average [31].
The optimum values of autoregressive (p), degree of their differences (d), and moving
average (q) may also be found by search-grid. Generally, the chosen parameter values are
those that minimize the Information Criterion (AIC). Benvenuto et al. [21], Ceylan [31], and
Singh et al. [32] present examples of the ARIMA applicability to forecast the number of
COVID-19 cases. The general equations for AR and MA models are [31]:

Yt = φ1Yt−1 + φ2Yt−2 + ... + φpYt−p + εt (25)

Yt = θ1εt−1 + θ2εt−2 + ... + θqεt−q + εt (26)

where Yt, εt, φ, and θ are the observed values at time t, the value of the random shock at
time t, AR, and MA parameters, respectively. Thus, an ARIMA model is given by:

Yt = α + φ1Yt−1 + φ2Yt−2 + ... + φpYt−p + εt−
θ1εt−1 − θ2εt−2 + ... + θqεt−q

(27)

where α is a constant. When dealing with non-stationarity, the data may be differentiated
first, and the ARIMA model is then performed.

3.3.2. Holt–Winters

Holt [72] and Winters [73] are the forerunners of the Holt–Winters method, likewise
acknowledged as triple exponential smoothing. The Holt–Winters method is an improved
version of the simple exponential smoothing model to recognize trend and seasonality
in a time series. The method has three parameters: α, the smoothing factor, β, a trend
smoothing parameter, and γ, which relates to seasonality. Numerous authors have used
this model to forecast the number of COVID-19 cases [38,39].

The two literature Holt–Winters models use additive or multiplicative settings based
on the seasonal component. The additive model can be applied with a linear trend and an
exponential trend. Moreover, the Holt–Winters additive model is suitable for data with
trends and seasonality that do not grow over time [35,36]. The equations of the additive
model are as follows:

St = α
yt

It − L
+ (1− α)(St−1 + bt−1), (28)

where t indicates a given period, St is the smoothed observation (level) at period t, L the
cycle length, α is the smoothing parameter of level, and yt the value in t for a target variable.
The trend factor (bt), the seasonal index (It), and the forecast at m steps (Ft + m) are given
by Equations (29)–(31), respectively.

bt = β(St − St−1) + (1− β)bt−1 (29)

It = γ
yt

St
+ (1− γ)It−L+m (30)

Ft+m = (St + mbt)It−L+m (31)

where β and γ are the smoothing parameters of trend and season, sequentially.
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3.3.3. Support Vector Regression (SVR)

The Support Vector Machine (SVM) is a supervised machine learning technique
adopted for regression, classification proposals, and time series data forecasts [37]. Vap-
nik [74] is the vanguard of this technique, as well as its regression variant, the support
vector regression (SVR), which was vastly broadcasted by the work of Drucker et al. [75].
We can find some employment of SVR [16,48,49] in the COVID-19 forecasting context. The
common logic of an SVR is moderately simple. For example, assume a linear regression,
which aims to minimize the sum of square errors:

Minimize f (x) =
n

∑
i=1

(yi − wixi)
2 (32)

where yi is the target, wi the coefficient, and xi the feature. Then, the SVR training intends
to minimize the following system.

Minimize f (x) =
1
2
||w||2 (33)

Subject to g(x) = |yi − wixi + bi| ≤ ε (34)

where bi is a linear coefficient and ε is the error. Cost and Kernel are two examples of
hyperparameters usually tuned in this algorithm.

3.3.4. K-Nearest Neighbors (KNN)

The K-Nearest Neighbors (KNN) technique is a nonparametric and lazy learning
classification method [37,44]. Initially, the KNN was designed to accomplish classification
problems. Notwithstanding, decades after the KNN’s original conceptualizations, around
the early 1990s, researchers began investigating it for regression goals [76]. Instead of
learning the training dataset, KNN does not need a training phase and holds the training
dataset [44].

The KNN algorithm explores the k nearest past comparable values (nearest neighbors)
by minimizing a similarity measure in a time series context [37]. Later, the forecasting is
an average of these K-nearest neighbors. Moreover, the KNN gives the smallest similarity
measure within the past and new cases [37]. Although it sounds straightforward, it requires
a significant computational cost [43]. In the COVID-19 environment, several researchers
have employed this approach in classification problems. Nevertheless, only some have
applied it to forecast the number of COVID-19 cases [43]. For this algorithm, the number of
neighbors is the most common hyperparameter to be tuned. The central distance functions
employed for continuous variables are:

Minkowski, d(x,y) =

(
k

∑
i=1

(|xi − yi|)q

)1/q

(35)

where k refers to the number of samples. When q = 1, the metric produces the Manhattan
distance, whereas when q = 2, one has the Euclidean distance (both frequently used
distance metrics for this end).

3.3.5. Random Forest Regression (RFR)

The Random Forest (RF) approach is a machine learning algorithm with several
decision trees proposed by Breiman [77], which is a compound of bagging and ran-
dom subspaces methods. Currently, practitioners of machine learning and researchers
apply the RF approach in regression and classification assignments. For example, the
authors [11,16,46,47] have employed the RF approach to deal with COVID-19 forecasting.

In the RF algorithm, initially, data are randomly split into two parts: training data
(the in-Bag) for learning and validation (the out-of-Bag data) for the testing learning levels.
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Next, the algorithm randomly creates many decision trees with “boot-strap samples” from
the data [11,44,46]. Subsequently, the randomly selected predictors define the branching
of each tree at node points. Lastly, the results from each tree average are the final RF
estimation [44,46]. It is remarkable when applied with the randomness of the time se-
ries [16]. As for dividing criteria in each tree’s branch in regression applications, we use
the Mean Squared Error (MSE). For RFR, the number of estimators and the maximum tree
depth are the most common hyperparameters tuned.

3.3.6. Prophet

The Facebook team released a decomposed model called Prophet for forecasting,
which is an open-source library [40]. It applies a decomposable times series model, with
three central model elements: the trend function (g(t)), the periodical function (s(t)), and
the holidays (h(t)). It also appropriates an error εt if the model does not predict any
abnormal changes.

y(t) = g(t) + s(t) + h(t) + εt (36)

where

g(t) = (k + a(t)Tδ)t + (m + a(t)γ) (37)

In Equation (37), k is the increase rate, δ is the rate arrangements, m is the offset
parameter, and γj is set to sjδj to make a continuous function. An extra important feature
is that the model does automated changepoint election, setting a sparse prior on δ.

On the other hand, it relies on the Fourier series to incorporate daily, weekly, and
annual seasonalities. In the case of COVID-19, we are more concerned about weekly
seasonality [8].

s(t) =
n=1

∑
N

(
ancos

(
2πnt

P

)
+ bnsin

(
2πnt

P

))
(38)

For instance, Prophet has few occurrences in forecasting the death and the accumu-
lated cases confirmed in the COVID-19 context [20,41].

3.4. Model Evaluation and Comparison

After running each model 320 times, each time, one step ahead over the fluctuating
testing/training set (see Figure 10, we reorganize the observations into the categories
and then build triangular fuzzy numbers, ẽk

ij = (ek
ij1, ek

ij2, ek
ij3), for each predicted obser-

vations, all in accordance with Step 6 of the proposed methodology. For instance, after
running the Holt–Winters method, represented by j = 2, the observation t = 274, which
occupies position i = 13 inside category k = 2, has the following rounded predicted
values: [331, 406, 396, 308, 249, 390, 383, 355, 370, 331, 301, 284, 280, 250, 343, 342, 361, 338, 346,
335, 305] for the actual value y = 203. Thus, the lower limit ẽ2

13,1,1 = 250 is the predicted
value with minimum deviation from the actual value, ẽ2

13,1,3 = 406 is the value with max-
imum deviation, and ẽ2

13,1,2 = 338 is the median prediction considering all 21 predicted
values, as collected from runs 17 to 37. This way ẽ2

13,1,1 = (250, 338, 406).
In possession of all fuzzy numbers for each observation of B and for the six models, we

then build the Residual Fuzzy Matrix, Ẽ320x6, whose three first and last rows we represent in
a tabular form in Table 4. Please notice that each model represents one column of the matrix
defined by Equation (18), and the observations inside the fluctuation testing/training set
are represented by the rows. Tables 6–9 are also tabular forms of the matrices defined by
the proposed model step-by-step, and l, m, and u in the sub-heading of the tables denote
the lower, middle, and upper values of the triangular fuzzy numbers.
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Table 4. Residual Fuzzy Matrix for the case with the first and last three rows.

HW RFR KNN SVR Prophet ARIMA
l m u l m u l m u l m u l m u l m u

167 167 167 161 161 161 285 285 285 179 179 179 320 320 320 169 169 169
241 220 199 289 194 99.1 280 271 263 238 237 236 381 376 372 232 208 184
21.5 28.5 89.4 13.3 154 242 40.4 46 136 42.1 44 46.1 126 123 120 50.6 111 168

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

53.8 49.3 40.6 6.23 7.27 8.53 20.9 25.9 28.7 194 195 195 22.6 21.3 20.1 13.8 14.9 16.7
2.63 8.69 14.8 14.8 15 15.1 23.7 29.3 34.9 200 200 201 28.2 26.5 24.9 19.9 21.3 22.7
15.3 15.3 15.3 0.07 0.07 0.07 14 14 14 181 181 181 54.5 54.5 54.5 0.82 0.82 0.82

We compute them in the normalized fuzzy matrix, R̃320x6, according to Step 7. Table 5
shows the first and last three rows of the tabular form of R̃.

Table 5. Normalized Fuzzy Matrix for the case with the first and last three rows.

HW RFR KNN SVR Prophet ARIMA
l m u l m u l m u l m u l m u l m u

0.52 0.52 0.52 0.50 0.50 0.50 0.89 0.89 0.89 0.56 0.56 0.56 1.00 1.00 1.00 0.53 0.53 0.53
0.52 0.58 0.63 0.26 0.51 0.76 0.69 0.69 0.74 0.62 0.62 0.63 0.98 0.98 1.00 0.48 0.52 0.61
0.09 0.09 0.37 0.05 0.17 1.00 0.17 0.17 0.56 0.17 0.18 0.19 0.50 0.50 0.52 0.21 0.21 0.69
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
0.21 0.21 0.28 0.03 0.04 0.04 0.11 0.13 0.15 0.99 0.99 1.00 0.10 0.10 0.12 0.07 0.08 0.09
0.01 0.04 0.07 0.07 0.07 0.08 0.12 0.15 0.17 1.00 1.00 1.00 0.12 0.12 0.14 0.10 0.10 0.11
0.08 0.08 0.08 0.00 0.00 0.00 0.08 0.08 0.08 1.00 1.00 1.00 0.30 0.30 0.30 0.00 0.00 0.00

We transform them into linguistic weights assigned by the decision-makers to the
criteria in a fuzzy scale, according to Table 1, so we construct the Weighted Fuzzy Matrix,
Ṽ = [ṽij]320x6, as requested by Step 8. Table 6 shows the first and last three rows of the
tabular form of Ṽ.

Table 6. Weighted Fuzzy Matrix for the case with the first and last three rows.

HW RFR KNN SVR Prophet ARIMA
l m u l m u l m u l m u l m u l m u

2.09 2.61 2.61 2.01 2.51 2.51 3.57 4.46 4.46 2.23 2.79 2.79 4.00 5.00 5.00 2.12 2.64 2.64
2.09 2.89 3.17 1.04 2.55 3.80 2.76 3.46 3.68 2.48 3.12 3.13 3.91 4.89 5.00 1.93 2.61 3.05
0.35 0.44 1.84 0.22 0.83 5.00 0.67 0.87 2.81 0.69 0.91 0.95 1.98 2.48 2.60 0.84 1.05 3.46
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
0.21 0.21 0.55 0.03 0.04 0.09 0.11 0.13 0.29 0.99 0.99 2.00 0.10 0.10 0.23 0.07 0.08 0.17
0.01 0.04 0.15 0.07 0.07 0.15 0.12 0.15 0.35 1.00 1.00 2.00 0.12 0.12 0.28 0.10 0.10 0.23
0.08 0.08 0.17 0.00 0.00 0.00 0.08 0.08 0.15 1.00 1.00 2.00 0.30 0.30 0.60 0.00 0.00 0.01

Following Step 9, we compute the Fuzzy Positive and Negative Ideal Solutions, FPIS
and FNIS. Table 7 shows the first and last three FPIS and FNIS rows of the tabular form of
the Fuzzy Ideal Solutions.
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Table 7. Fuzzy Ideal Solutions for the case with the first and last three rows.

Fuzzy-PIS Fuzzy-NIS
Obs. l m u l m u
239 0.00 0.00 0.00 4.00 5.00 5.00
240 0.00 0.00 0.00 3.91 4.89 5.00
241 0.00 0.00 0.00 1.98 2.48 5.00

...
...

...
...

...
...

556 0.00 0.00 0.00 0.99 0.99 2.00
557 0.00 0.00 0.00 1.00 1.00 2.00
558 0.00 0.00 0.00 1.00 1.00 2.00

According to Step 10, we calculate the Euclidian distances of each model’s predicted
values from each FPIS and FNIS by using the vertex method, which also defuzzifies the
fuzzy numbers, obtaining once again crisp values. Table 8 shows the first and last three
rows for the Positive and Negatives to each model.

Table 8. First and last three and Positive and Negative Distances for each forecasting model.

Positive Distances Negative Distances
HW RFR KNN SVR Prophet ARIMA HW RFR KNN SVR Prophet ARIMA
2.45 2.36 4.18 2.62 4.69 2.48 2.24 2.33 0.51 2.07 0.00 2.21
2.76 2.71 3.32 2.93 4.63 2.57 1.89 2.25 1.31 1.70 0.00 2.07
1.11 2.93 1.74 0.86 2.37 2.14 2.36 1.39 1.74 2.61 1.38 1.38

...
...

...
...

...
...

...
...

...
...

...
...

0.36 0.06 0.20 1.41 0.16 0.12 1.05 1.35 1.22 0.00 1.25 1.30
0.09 0.11 0.23 1.41 0.19 0.15 1.33 1.31 1.19 0.00 1.22 1.26
0.12 0.00 0.11 1.41 0.43 0.01 1.30 1.41 1.30 0.00 0.99 1.41

Finally, the total distances, d∗j and d−j (see Step 10), as well as the closeness coefficient,
CCj (see Step 11), are calculated to each model (see Table 9). According to the model
we propose, forecasting models with a higher CC are preferred, which results from the
association of great negative distances d−j to small positive distances. In Table 9, the positive
distances contribute more to the turn of Prophet over Holt–Winters than the negative
distances. Nevertheless, ARIMA has a significant distance to the negative ideal solution,
its distance to the ideal solution is not sufficient to overcome Holt–Winters and Prophet.

Table 9. Total distances and closeness coefficient for each forecasting model.

HW RFR KNN SVR Prophet ARIMA
d+ 450.6284 509.4003 466.2830 476.2906 405.4136 461.7832
d- 392.9327 340.9680 359.4671 321.0382 387.8993 392.4330

CCj 0.4658 0.4010 0.4353 0.4026 0.4890 0.4594

The application of the metric and the input data can be found in the Supplemental File.

4. Results and Discussion

To evaluate the proposed similarity metric, we first calculate the Mean Absolute Error
(MAE) for each model according to the six categories illustrated in Sections 3.1 and 3.3. We
also calculate the overall MAE for all models, as it is commonly found in the literature.

As we may observe in Figure 13, Holt–Winters is the model with better overall
performance according to MAE. It is the model with the best performance after changes
since it has the smallest MAE for the categories Stability Start and Decreasing Start and
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holds the second-best performance for Increasing Start. Moreover, according to MAE,
Holt–Winters is also the best model during Increasing, the second-best model during
Stability and Decreasing. In the radio chart of Figure 13, Holt–Winters seems to have
the smallest area, with an advantage over the second and third best models, RGR and
KNN. These results are not surprising since Holt–Winters has shown good forecasting
performance, especially for short-term forecastings and even against fashioned models,
such as machine learning models [39,78–80]. In an overall manner, Prophet and ARIMA
are the worst models, displaying higher MAE values.

We can also calculate the Weighted Mean Absolute Error (WMAE) by taking as weights
the crisp values correspondent to the linguistic variable assigned by the decision-makers
in Table 2. As observed in Figure 14, Holt–Winters still is the best overall model, but it
loses performance, especially during periods of Decreasing, where Prophet has the best
performance. In fact, with this approach, Prophet improves its overall performance since
periods of decreasing accounts for 33% of all observations in the fluctuating testing/training
set. Notice how the polar graph goes almost to zero for the effect of some chunks of data
related to some categories over the overall result, such as cSS, cIS, and cDS. It happens due
to the smaller weights given to starting periods and the number of observations that fall
into those categories.

   

     

  

     

  
 

 
 

 
 

 
 

 
 

 

 
 

 

 
 

 

  

   

   

   

       

     

Categories HW RFR KNN SVR Prophet ARIMA

Css 52.10 53.34 78.76 120.22 132.29 95.11

Cs 73.79 71.48 97.06 108.00 105.48 87.37

Cis 60.61 68.09 36.77 66.69 90.66 64.56

Ci 104.77 119.24 138.03 144.34 159.77 124.17

Cds 78.55 80.45 88.77 146.65 102.55 115.99

Cd 90.05 120.55 83.50 118.35 77.64 102.35

MAE 82.76 94.66 96.20 119.74 106.41 100.15

Figure 13. Mean Average Error for each category.

   

     

  

     

              

  

   

   

   

       

     

Categories HW RFR KNN SVR Prophet ARIMA

Css 3.42 3.50 5.17 7.89 8.68 6.24

Cs 26.29 25.46 34.58 38.47 37.58 31.13

Cis 1.33 1.49 0.80 1.46 1.98 1.41

Cis 17.03 19.38 22.43 23.45 25.96 20.18

Cds 5.15 5.28 5.83 9.62 6.73 7.61

Cd 29.55 39.55 27.40 38.83 25.47 33.58

WMAE 87.50 103.18 100.35 126.02 112.86 106.51

Figure 14. Weighted Mean Average Error for each category.

However, both MAE and WMAE consider only averages, and high volatilities in the
data are not considered. For example, by looking at Figure 15, we notice how volatile
Holt–Winters is when compared to Prophet. The first presents a much more significant
difference between the lower and upper values computed to the fuzzy numbers than the
latter; however, Holt–Winters medium values are closer to the target values.
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Figure 15. Variability in Holt–Winters and Prophet.

This variation can be better perceived by looking at the difference between the fuzzy
residuals from Holt–Winters and Prophet and the positive ideal solutions, FPIS = (0, 0, 0).
When Holt–Winters has more significant residuals than Prophet, the difference is positive.
On the other hand, when Prophet has greater residuals than Holt–Winters, the difference
is negative. In Figure 16, we calculate the differences between the residuals of Holt–
Winters and Prophet. The residuals are calculated between the target variable and the
medium values (which is also correspondent to the MAE values, See Figure 13) for both
models. Since we compute the difference between the residuals in Figure 16, for each
cross-validation run, only one model will present non-null values: positive values if Holt–
Winters has greater residuals, or negative values if Prophet is worst. As it can be noticed,
Holt–Winters displays a smaller area in general, but it already loses performance during
cD and in most recent observations.
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−200

−100
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100
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Figure 16. Comparison of residuals to the medium fuzzy number.

However, when we use the upper residual values, the results are far different (see
Figure 17). Thus, the extremes in the predicted values are more evident. In this scenario,
Prophet displays better results than Holt–Winters, not only in the most important categories,
such as cD, but also where it lacked accuracy before, such as cS.

This new variability perspective, added to the perspective of the mean, explains the
results of Table 9 and the dominance of Prophet over the other models. Thus, despite
presenting the worst MAE compared to other models, it performs better in more critical
categories for the decision-makers and displays lesser variability in the predicted data
when we perform the moving forward validation.
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Figure 17. Comparison of residuals to the upper fuzzy number.

If classical TOPSIS were used instead of fuzzy-TOPSIS, the variability would not be
captured, and some weighted means would only form the final metric. With classical
TOPSIS, the ranking would be HW, KNN, RFR, ARIMA, Prophet, and SVR, which is the
same ranking provided by the WMAE in Figure 14. Table 10 summarizes the proposed
rankings from MAE, WMAE, TOPSIS similarity metric, and Fuzzy-TOPSIS similarity
metric. To MAE and WMAE, the smaller the ranking, the better the results. To TOPSIS and
Fuzzy-TOPSIS, the greater the results, the better.

Table 10. Rankings from MAE, WMAE, TOPSIS, and Fuzzy-TOPSIS.

Forecasting Model MAE WMAE Fuzzy-TOPSIS TOPSIS

HW 82.76 87.50 0.465 0.593
RFR 94.66 103.18 0.401 0.546
KNN 96.20 100.35 0.435 0.567
SVR 119.74 126.02 0.402 0.367

Prophet 106.41 112.86 0.489 0.452
ARIMA 100.15 106.51 0.459 0.471

For the sake of comprehension, the results of Table 10 are normalized in Table 11. The
greater the value, the better for all ranking approaches. According to the four ranking
approaches, the normalized values also allow us to better notice the distance between
the models.

Table 11. Normalized rankings from MAE, WMAE, TOPSIS, and Fuzzy-TOPSIS.

Forecasting Model MAE WMAE Fuzzy-TOPSIS TOPSIS

HW 0.1988 0.1996 0.1754 0.1979
RFR 0.1738 0.1692 0.1513 0.1822
KNN 0.1710 0.1740 0.1641 0.1893
SVR 0.1374 0.1386 0.1516 0.1225

Prophet 0.1546 0.1547 0.1845 0.1509
ARIMA 0.1643 0.1639 0.1731 0.1572

As noted, while WMAE and classic TOPSIS are able to capture heterogeneous fitting
expectations, they do not penalize models with greater volatility. Thus, their ranks are
similar to those obtained with MAE. This way, the volatility treatment brought by the usage
of fuzzy numbers is the biggest game-changer of the model we propose, at least for the
data we explored.

5. Conclusions

This paper proposed a novel forecasting metric, a fuzzy similarity metric, that, in
addition to averaging errors, can capture heterogeneous fitting expectations and volatility
in the forecasted values, especially when using cross-validation approaches. We tested
the metric to select the best model to predict future values for the number of COVID-19
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confirmed cases in Amapá, Brazil. Models that quickly respond to increases in the series
are preferred over others that tend to be more conservative under those situations. Besides
having a small mean error associated with each predicted observation, low volatility during
cross-validation is also desired since more steady models may lead to more expected
scenarios. The similarity metric proposed in this paper ranks Holt–Winters as a second
option to Prophet. Despite presenting a modest performance according to MAE, Prophet
presents low volatility in the forecasted data, meaning that its worst predictions are still
closer to the target variable than the worst predictions of Holt–Winters, for example.
Furthermore, when weighting the time series periods according to the decision-maker’s
preferences, Prophet has a good performance during periods of decreasing, which accounts
for almost 33% of the fluctuating testing/training set. Nevertheless, other metrics that may
capture heterogeneous fitting expectations also penalize Holt–Winters, such as WMAE or
even classical TOPSIS, but they still rank similarly to MAE. Thus, capturing volatility in the
data is the biggest game-changer to the case we presented. Since it is the first introduction
to a novel metric, future explorations must be performed to test it in other datasets and
under different time series perspectives. Our work is also limited to univariate time series,
and its response to multiple target variables is still unknown.
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46. Yeşilkanat, C.M. Spatio-temporal estimation of the daily cases of COVID-19 in worldwide using random forest machine learning

algorithm. Chaos Solitons Fractals 2020, 140, 110210. [CrossRef]
47. Tena, A.; Clarià Sancho, F.; Solsona Tehàs, F. Automated detection of COVID-19 cough. Biomed. Signal Process. Control 2022, 71,

103175. [CrossRef]
48. Rustam, F.; Reshi, A.A.; Mehmood, A.; Ullah, S.; On, B.; Aslam, W.; Choi, G.S. COVID-19 Future Forecasting Using Supervised

Machine Learning Models. IEEE Access 2020, 8, 101489–101499.
49. Herlawati, H. COVID-19 Spread Pattern Using Support Vector Regression. PIKSEL Penelit. Ilmu Komput. Sist. Embed. Log. 2020,

8, 67–74. [CrossRef]
50. Zhang, J.; Florita, A.; Hodge, B.M.; Lu, S.; Hamann, H.F.; Banunarayanan, V.; Brockway, A.M. A suite of metrics for assessing the

performance of solar power forecasting. Sol. Energy 2015, 111, 157–175. [CrossRef]
51. Chen, C.; Twycross, J.; Garibaldi, J.M. A new accuracy measure based on bounded relative error for time series forecasting. PLoS

ONE 2017, 12, e0174202. [CrossRef]

http://dx.doi.org/10.1016/j.eswa.2021.115190
http://www.ncbi.nlm.nih.gov/pubmed/34025047
https://escholarship.org/uc/item/5h97n884
https://escholarship.org/uc/item/5h97n884
http://dx.doi.org/10.1007/s00500-021-06133-1
http://www.ncbi.nlm.nih.gov/pubmed/34483720
http://dx.doi.org/10.1007/s11071-020-05743-y
http://dx.doi.org/10.3389/fpubh.2020.582706
http://www.ncbi.nlm.nih.gov/pubmed/33262969
http://dx.doi.org/10.1101/2020.03.16.20036939
http://dx.doi.org/10.1016/j.scitotenv.2020.138817
http://www.ncbi.nlm.nih.gov/pubmed/32360907
http://dx.doi.org/10.2196/19115
http://www.ncbi.nlm.nih.gov/pubmed/32391801
http://dx.doi.org/10.1016/j.chaos.2020.109850
http://dx.doi.org/10.1016/j.envres.2021.111990
http://dx.doi.org/10.1016/j.ijepes.2021.107369
http://dx.doi.org/10.1016/j.bspc.2021.102494
http://dx.doi.org/10.1002/jemt.23702
http://www.ncbi.nlm.nih.gov/pubmed/33522669
http://dx.doi.org/10.1101/2020.07.14.20153908
http://dx.doi.org/10.1371/journal.pone.0231236
http://dx.doi.org/10.1016/j.cie.2021.107598
http://dx.doi.org/10.1016/j.patrec.2021.07.027
http://dx.doi.org/10.1016/j.chaos.2020.110027
http://dx.doi.org/10.1016/j.cie.2021.107666
http://www.ncbi.nlm.nih.gov/pubmed/34511707
http://dx.doi.org/10.4018/IJEHMC.20211101.oa1
http://dx.doi.org/10.1016/j.chaos.2020.110210
http://dx.doi.org/10.1016/j.bspc.2021.103175
http://dx.doi.org/10.33558/piksel.v8i1.2024
http://dx.doi.org/10.1016/j.solener.2014.10.016
http://dx.doi.org/10.1371/journal.pone.0174202


Sustainability 2021, 13, 13599 25 of 25

52. Sahoo, B.B.; Jha, R.; Singh, A.; Kumar, D. Long short-term memory (LSTM) recurrent neural network for low-flow hydrological
time series forecasting. Acta Geophys. 2019, 67, 1471–1481. [CrossRef]

53. Hyndman, R.J.; Athanasopoulos, G. Forecasting: Principles and Practice, 3rd ed.; OTexts: Melbourne, Australia. 2021. Available
online: https://otexts.com/fpp3/ (accessed on 18 October 2021).

54. Kim, S.; Kim, H. A new metric of absolute percentage error for intermittent demand forecasts. Int. J. Forecast. 2016, 32, 669–679.
[CrossRef]

55. Yang, E.; Park, H.W.; Choi, Y.H.; Kim, J.; Munkhdalai, L.; Musa, I.; Ryu, K.H. A simulation-based study on the comparison of
statistical and time series forecasting methods for early detection of infectious disease outbreaks. Int. J. Environ. Res. Public Health
2018, 15, 966. [CrossRef]

56. Chai, T.; Draxler, R.R. Root mean square error (RMSE) or mean absolute error (MAE)?–Arguments against avoiding RMSE in the
literature. Geosci. Model Dev. 2014, 7, 1247–1250. [CrossRef]

57. Willmott, C.J.; Matsuura, K. Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing
average model performance. Clim. Res. 2005, 30, 79–82. [CrossRef]

58. de Souza, D.G.B.; dos Santos, E.A.; Soma, N.Y.; da Silva, C.E.S. MCDM-Based R&D Project Selection: A Systematic Literature
Review. Sustainability 2021, 13, 11626. [CrossRef]

59. Hwang, C.L.; Yoon, K. Methods for multiple attribute decision making. In Multiple Attribute Decision Making; Springer:
Berlin/Heidelberg, Germany, 1981; pp. 58–191. [CrossRef]

60. Dehdasht, G.; Ferwati, M.S.; Zin, R.M.; Abidin, N.Z. A hybrid approach using entropy and TOPSIS to select key drivers for a
successful and sustainable lean construction implementation. PLoS ONE 2020, 15, e0228746. [CrossRef]

61. Zhao, Q.; Chen, J.; Li, F.; Li, A.; Li, Q. An integrated model for evaluation of maternal health care in China. PLoS ONE 2021,
16, e0245300. [CrossRef] [PubMed]

62. Bi, Q.P.; Li, Y.C.; Shen, C. Screening of Evaluation Index and Construction of Evaluation Index System for Mine Ventilation
System. Sustainability 2021, 13, 11810. [CrossRef]

63. Chen, C.T. Extensions of the TOPSIS for group decision-making under fuzzy environment. Fuzzy Sets Syst. 2000, 114, 1–9.
[CrossRef]

64. Chen, C.T.; Lin, C.T.; Huang, S.F. A fuzzy approach for supplier evaluation and selection in supply chain management. Int. J.
Prod. Econ. 2006, 102, 289–301. [CrossRef]

65. Mizumoto, M.; Tanaka, K. Fuzzy sets and their operations. Inf. Control 1981, 48, 30–48. [CrossRef]
66. Souza, D.G.; Silva, C.E.; Soma, N.Y. Selecting projects on the Brazilian R&D energy sector: A fuzzy-based approach for criteria

selection. IEEE Access 2020, 8, 50209–50226.
67. Van Laarhoven, P.J.; Pedrycz, W. A fuzzy extension of Saaty’s priority theory. Fuzzy Sets Syst. 1983, 11, 229–241. [CrossRef]
68. Liu, Y.; Eckert, C.M.; Earl, C. A review of fuzzy AHP methods for decision-making with subjective judgements. Expert Syst. Appl.

2020, 161, 113738. [CrossRef]
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