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Abstract: Environmental managers and policymakers increasingly discuss trade-offs between ecosys-
tem services (ESs). However, few studies have used nonlinear models to provide scenario-specific
land-use planning. This study determined the effects of different future land use/land cover (LULC)
scenarios on ESs in the Yili River Valley, China, and analyzed the trade-offs and synergistic response
characteristics. We simulated land-use changes in the Yili River Valley during 2020–2030 under
three different scenarios using a patch-generating land-use simulation (PLUS) model—business
as usual (BAU), economic development (ED), and ecological conservation (EC). Subsequently, we
evaluated the water yield (WY), carbon storage (CS), soil retention (SR), and nutrient export (NE)
ESs by combining the PLUS and integrated valuation of ecosystem services and trade-offs (InVEST)
models, thus exploring multiple trade-offs among these four ESs at a regional scale. For the BAU
scenario, there are some synergistic effects between WY and SR in the Yili River Valley, in addition to
significant trade-off effects between CS and NE. For the ED scenario, the rapid expansion of cropland
and constructed land is at the expense of forested grassland, leading to a significant decline in ESs.
For the EC scenario, the model predicted that the cumulative regional net future carbon storage,
cumulative water retention, and cumulative soil conservation would all increase due to ecological
engineering and the revegetation of riparian zones and that formerly steep agricultural land can be
effective in improving ESs. Meanwhile, the trade-off effect would be significantly weakened between
CS and NE. These results can inform decision makers on specific sites where ecological engineering
is implemented. Our findings can enhance stakeholders’ understanding of the interactions between
ESs indicators in different scenarios.
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1. Introduction

Ecosystem services (ESs) are the direct or indirect contributions of an ecosystem to
human welfare [1,2]. Many studies have quantified and investigated the trade-offs of
ecosystem resources since ESs were first proposed. With global population growth and
rapid societal development, human demands on ecosystems continue to increase [3–6].
Studies have shown that land use/land cover (LULC) has a critical impact on ESs [7,8].
In recent years, human activities such as cropland expansion and urbanization have
led to increased ecosystem sensitivities, decreased carbon sequestration capacities, and
aggravated soil erosion [9–11]. Future land-use planning should therefore meet the needs
of environmental protection policies, and the characteristics of the impacts of changes in
land use on ESs are essential for ecological planning and management [12,13].
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The interactions between ecosystems should be understood to achieve sound ecologi-
cal management strategies in China [14,15]. The interactions between ESs are often reflected
in trade-offs and synergies [7]. Recent reports have evaluated ESs trade-off analyses under
land-use changes. For example, a study of the Miyun Reservoir in Beijing found significant
trade-offs between water production, water purification, and nitrogen export [8]. A study
of Lake Taihu, China, evaluated the impacts of seven ESs, and a trade-off analysis demon-
strated a significant synergistic relationship between carbon storage and soil retention [16].
On the Sanjiang Plain in China, various trade-offs and synergistic responses were found
between ESs, with a significant negative relationship between water yields and carbon
stocks (trade-off) [17]. Furthermore, ecosystem trade-off analyses help determine the best
locations to implement ecological engineering to balance human needs and the benefits
to the ecosystem [7]. However, the abovementioned studies had some limitations. They
failed to analyze the ESs trade-offs in different future scenarios and only assessed the
present ESs trade-offs, failing to provide stakeholders with future ESs dynamics. Therefore,
understanding the interactions among ESs is a major area of interest in the field to achieve
rational ecological management [18–20].

Scenario analysis is currently one of the most established approaches in future ESs
trade-off and synergy research [7]. By developing different land-use scenarios to analyze
the effects of changes and internal interactions between ESs, recommendations can be
made for land-use planning scenarios [15,21]. However, some limitations exist in previous
studies. First, many researchers have failed to refer to policy guidelines in their scenarios,
which typically leads to various results [22,23]. Second, ecosystem functions provide people
with multiple levels of service, and the interconnection of these services has become an
important challenge when discerning ecosystem management methods [24,25]. In addition,
previous studies have mostly considered current interactions between ESs, but they have
not studied multiple interactions between ESs in future scenarios; therefore, they cannot
satisfy the needs of stakeholders [26,27]. Third, most of the land-use models used for future
LULC scenario planning, including the FLUS, CA-Markov, and CLUE-S models [6,28,29],
have deficiencies. These models are insufficient for determining the underlying drivers of
land-use changes [30] and are unable to spatiotemporally capture the evolution of multi-
land use patches, particularly for the patch evolution of natural land use [31,32]. However,
the patch-level land-use simulation (PLUS) model can accurately simulate the non-linear
relationships behind LULC using a patch-level land-use simulation model, which allows for
a more accurate representation of the effects of LULC on potential ESs under different future
policy scenarios [33]. Therefore, under a future scenario of intensifying land succession,
research that accurately simulates the potential for future LULC development is required.
It can be accurately quantified and evaluated for subsequent ESs and then to analyze the
trade-offs and synergistic effects to achieve the optimal development scenarios for ESs
under different scenarios [34,35].

To narrow these research gaps, this study focused on the Yili River Valley, which is a
relatively intact ecological service area on the northern slopes of the Tianshan Mountains
in China and is an important national ecological and environmental protection barrier.
In recent years, owing to socio-economic development, the rapid expansion of urban
construction land in the Yili River Valley, excessive deforestation, and forest and grassland
conversions to agricultural land have led to an overall decline in ESs [36]. As a key junction
of China’s overland Silk Road, the ecological quality of the Yili River Valley is directly
related to the comprehensive benefits of the Yili River Valley and the ecological security of
downstream neighboring Kazakhstan. Studies on ESs under different scenarios of land-use
changes in the Yili River Valley should be urgently conducted to address many terrestrial
ecosystem problems. Hence, this study analyzed three aspects of particular interest—(1)
present a science-policy framework for ESs assessments that is applicable to the Yili River
Valley in 2030, (2) quantify the evolution of ESs for different scenarios in the Yili River
Valley, and (3) evaluate and analyze the trade-offs and synergy between the interactions of
multiple ESs indicators.
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2. Materials and Methods
2.1. Study Area

The Yili River Valley (42◦15′–44◦50′ N, 80◦10′–84◦56′ E) is located in the western part
of the Tianshan Mountains of China (Figure 1). The valley covers an area of approximately
5.53 × 104 km2 and has a temperate climate, with an average annual temperature of
6.68 ◦C and overall average annual precipitation of 332.69 mm. The mountainous areas
of the river valley have an average annual precipitation of 300–900 mm and a temperate
continental climate. With a large temperature difference between day and night, the
river valley is the wettest region in Xinjiang. The eastern summit of the Yili River Valley
is the confluence of the Tekesi and the Gongnaisi rivers, and the western lower edge
is toward the border between China and Kazakhstan, providing this region an overall
eastern-high and western-low topographic profile. The study region has distinct climatic
differences, complex geologic environments, and large elevation gradients, which provide
an appreciable representation of the response relationships between terrestrial ESs in
complex environments [36].
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Figure 1. Digital elevation model of the study area.

2.2. Data Sources

The datasets used to simulate different land-use scenarios in 2030 mainly included
(1) 30-m resolution LULC data from 2010, 2018, and 2020, which were obtained from
the Chinese Academy of Sciences Resource and Environmental Science Data Center
(http://www.resdc.cn). Among these data, the 2020 LULC data were updated by vi-
sually interpreting the 2018 LULC data using remote sensing images, and the total accuracy
of this interpretation reached over 90% by combining field surveys, visual interpretations,
and confusion matrix judgments. Croplands, forests, grasslands, water, constructed, and
bare lands were classified according to China’s primary land-use classification system [37];
(2) annual mean temperature accumulation data were used to determine the suitability
conditions for different land types and were obtained from the CAS Resource and En-
vironmental Science Data Center (http://www.resdc.cn). Average annual precipitation
was spatially interpolated to 30-m resolution raster data based on cumulative multi-year
averages from weather stations; (3) digital elevation model (DEM), slopes, and ground-
water data for the natural environmental factors driving land-use changes were obtained
from the Geospatial Data Cloud (http://www.gscloud.cn); (4) socio-economic data that
drive land-use changes, mainly containing spatial distributions of the population and gross
domestic product (GDP) raster data were obtained from the CAS Resource and Environ-
ment Science Data Center (http://www.resdc.cn); and (5) raster data for road networks,
river systems, etc. were obtained from the National Catalogue Service for Geographic
Information (http://www.webmap.cn). Data with a pixel size of 30 m× 30 m were applied

http://www.resdc.cn
http://www.resdc.cn
http://www.gscloud.cn
http://www.resdc.cn
http://www.webmap.cn
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in the Yili River Valley to account for different planning policies in the PLUS model. Due
to large amount of data, all layers in the InVEST model were re-sampled to 100 m × 100 m.

2.3. PLUS Model

Previous land-use simulation models are linear, numerically based, and do not include
all processes of land-use change [28,38]. In this study, the coupled Markov chain and PLUS
models were applied to simulate land-use changes, which improves the ability to predict
land use in the future. The Markov chain model is a stochastic progression that measures
the need for land use under various conditions by changing the transfer matrix’s likelihood
of analyzing the potential LULC over time [39]. The PLUS model uses the land extension
analysis strategy (LEAS) and a cellular automata (CA) model based on multi-type random
seeds (CARS). Compared to other models, the PLUS model can determine the drivers of
land expansion and project landscape dynamics [40,41].

To predict the patch evolution for various land-use type scenarios, a multi-type
random patch seeding mechanism based on threshold descent was used in the PLUS
model. By applying a Monte Carlo approach, the probability surface (P1

i,k) for each land-use
type is determined when the neighborhood’s effect of land use k is 0,

OP1,t
i,k =

{
P1

i,k × (r× µk)× Dt
k i f Ωt

i,k = 0 and r < P1
i,k

P1
i,k ×Ωt

i,k × Dt
k all others

(1)

where r is a random value in the range 0–1 and µk is the threshold value for producing new
land-use patches. In order to create new land-use patches, the land-use type k may be used.
Seeds can create new forms of land use and expand into a series of new patches. If the new
land-use type wins in a round, a declining threshold τ is used to determine the candidate
land-use type c chosen by the roulette wheel as follows [33]:

I f
N

∑
k=1

∣∣∣Gt−1
c

∣∣∣− N

∑
k=1

∣∣Gt
c
∣∣ < Step Then, d = d + 1 (2)

{
Change P1

i,c > τ and TMk,c = 1
Unchange P1

i,c ≤ τ or TMk,c = 0
τ = δd × r (3)

where “Step” is the step size needed to simulate the land use, δ is the factor of attenuation,
r is a stochastic value distributed with a mean of 1, and d is the number of attenuation steps.
Furthermore TMk,c is the transformation matrix for deciding when type k is permitted to
be transformed to type c for land use. The driving factors of the PLUS model are shown
in Table 1. Furthermore, the specific variables of the PLUS model were set as follows: the
number of regression tree: 50, sampling rate: 0.01, and mTry: 10. The abovementioned
parameter settings were taken obtained from the model manual.

2.4. Land-Use Scenarios Modeling

This research provides three alternate possible possibilities for land-use transition,
namely, business as normal (BAU), economic growth (ED), and ecological conservation
(EC). The principles and aims of these scenarios were as follows:

(1) The BAU scenario assumes that past patterns of land-use transition are sustained and
that land demand for 2020–2030 is calculated based on the transition probability of
shifting the Markov chain model for 2010–2020;

(2) The ED scenario is based on a policy of rapid development of urban construction land
in the Xinjiang Uygur Autonomous Region Land Use Master Plan. A linear regression
module of the PLUS model was used to input 2000, 2010, and 2020 land-use datasets
to analyze the land-use demands in 2030. The transfer transition matrix analyzed
the probability of transferring croplands and construction lands in 2000–2020. This
matrix showed that cropland was mainly transformed from grassland, development
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land, and bare land, while cropland, grassland, and water were mainly converted to
construction land. By combining the thresholds set by previous studies with expert
opinions, we assumed that the ED scenario increased the conversion rates of grassland,
construction land, and bare land to cropland by 50%, and the conversion rates of
cropland, grassland, and water to construction land also increased by 50% [6,42];

(3) The EC scenario is based on the guidelines found in the Three-North Shelter Forest
Program (TNSFP) and in the Yili-Tianshan Mountains Western Section Ecological Func-
tion Reserve in China [43]. This scenario represents a local governmental policy that
strengthens the protection of forests, grasslands, and water sources, strictly controls
the growth of cropland and construction land, and encourages the conversion of crop-
land to forests, grasslands, and lakes. In this scenario, we modified the development
potential of the cropland layer, returned all cropland with slopes greater than 15◦ to
forests, and converted a 50 m wide buffer zone near a river to grassland [6,44].

Table 1. Driving factors data used in the patch-generating land-use simulation (PLUS) model.

Data Data Attributes Spatial Resolution Data Source

LULC — 30 m
Resources and Environment Data

Center, Chinese Academy of Sciences
http://www.resdc.cn/

Climate data
Annual mean temperature

Annual precipitation
Accumulated temperature

30 m China Meteorological Data Network
http://data.cma.cn

Environment data
DEM
Slope

Groundwater depth
30 m Geospatial data clouds

http://www.gscloud.cn/

Socioeconomic data

Population
GDP

Proximity to the river
Proximity to the road

30 m
Resources and Environment Data

Center, Chinese Academy of Sciences
http://www.resdc.cn/

2.5. Ecosystem Services Indicators

One key challenge when assessing ESs is selecting appropriate ESs indicators [45]. We
used three parameters in this report to assess the ESs markers for Yili River Valley—(1) indi-
cators in the Common International Classification of Ecosystem Services (CICESs) [46] and
the Millennium Ecosystem Assessment [47] classification frameworks; (2) indicators that
are closely monitored by local governments, such as those proposed by the Regulations on
Ecological and Environmental Protection of the Yili River Valley; and (3) indicators that are
closely related to human well-being and are easily quantifiable [45]. According to these
abovementioned criteria, the integrated valuation of ecosystem services and trade-offs
(InVEST) model was used to quantify the ESs in this study. Compared to other ecological
models, the InVEST model can realize ESs digitization and visualization with changing
regional land use and has been widely used in many countries and regions [34,48,49].
Based on the Regulations on Ecological and Environmental Protection of the Yili River
Valley, four key ESs indicators were selected—water yield (WY), carbon storage (CS), soil
retention (SR), and nutrient export (NE) [19,28,34,49].

2.6. Analysis of Trade-Offs and Synergies

The various services of an ecosystem tend to exhibit two kinds of relationships in
response to internal and external influences—trade-off and synergistic relationships [2].
A Spearman correlation analysis was applied to identify correlations between the land-
scape characteristic metrics and the ESs indicators over time (2020–2030 for the different
scenarios). A key step in the Spearman correlation analysis is to determine the correlations
of non-normally distributed characteristics to statistically analyze the significance and

http://www.resdc.cn/
http://data.cma.cn
http://www.gscloud.cn/
http://www.resdc.cn/
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trade-offs of the correlation coefficient (r) [50]. In this study, we generated 2500 random
points at the regional scale and extracted ESs (WY, CS, SR, and NE). Landscape characteris-
tic indicators were then aggregated for the correlation analysis to identify synergies and
trade-offs between the ecosystem service functions.

2.7. Model Validation

The accuracy of the land-use model simulation has a direct impact on the quantitative
ESs of the InVEST model. Therefore, this study used the PLUS model to verify the accuracy
of the LULC in the Yili River Valley in 2010 and 2020 based on the changes in LULC
landscape patterns and the actual LULC data from 2010 and 2020. The spatial allocation
results obtained from the simulations were verified by the overall accuracy and Kappa
coefficient, which is often used to assess the agreement between the two data images [51].
The value of the Kappa coefficient was between −1 and +1, where +1 indicates superior
performance and a value ≤0 indicates non-performance over the random results [52].
Finally, the optimal parameter set was selected to simulate LULC in 2030 for each of
the scenarios.

To ensure the accuracy of the output of the InVEST model, the results were validated
by combining the field validation datasets and the findings of previous studies. For the
CS and WY models, the parameters entered in the CS model for this study were the
actual carbon density data based on soil profiles in the Yili River Valley under different
land-use types. For the WY model, the input rainfall data were interpolated from the multi-
year average at meteorological stations. The final results were compared with relevant
literature [36] and the Water Resources Bulletin for validation. For the SR and NE models,
the annual mean values collected at 12 hydrological stations in the Yili River Valley were
validated by comparing them with average values obtained from relevant literature [53].

3. Results
3.1. Future Land-Use Plan

We used the PLUS model to simulate LULC spatiotemporal differentiation patterns in
the Yili River Valley in 2010 and 2020 and with the actual LULC accuracy verifications. The
Kappa coefficient was 0.9102 and the overall accuracy was 0.9481. The Kappa coefficients
were 0.9112, 0.8550, 0.96532, 0.9376, 0.9045, and 0.9727 for cropland, forest, grassland, water,
constructed, and bare land, respectively. The results indicate that the random-seeds based
on the PLUS model can achieve very high simulation precision and a more equivalent
landscape pattern [40]. Therefore, the PLUS model can more accurately reflect actual
variations in LULC in the Yili River Valley. We then used the PLUS model to select the
optimal parameter set and explore the three different 2030 scenarios.

We compared the land dynamic change rates of the BAU, ED, and EC scenarios in
2020 and 2030 (Table 2), and the compositions and landscape differentiation characteristics
in each of the different scenarios (Figure 2). The BAU scenario continued the urbanization
trend already present in the Yili River Valley (Figure 2a) and the main land-use changes
in this scenario included the expansion of cropland and construction land (Figure 2b).
Urban construction in the ED scenario expanded at an accelerated rate and urban patches
become more compact (Figure 2c). Compared to 2020, the ED scenario intensified cropland and
construction land expansions, which increased by 13.39% and 14.24%, respectively (Figure 2d). In
the 2030 ED scenario, the Yili River Valley shifted from 13.87% grassland to cropland and
construction land, at the expense of forests and grassland, to support the region’s urban
and rural construction and economic development needs. In the EC scenario, the forest
and grassland areas increased due to the implementation of policies that return land to
forests and ecological engineering. The increased forest and grassland areas were mainly
concentrated in the riparian buffer zone near the Tekesi and Yili river basins, where 13.04%
of the cropland was converted to forests and grassland, increasing the forest and grassland
areas by 7.61% and 2.98%, respectively.
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Table 2. Land use/land cover (LULC) and its dynamic index K (%) in the Yili River Valley for each of the 2020–2030 scenarios.

LULC Type
Areal Coverage (km2) LULC Dynamic Index K (%)

2020 BAU ED EC 2020–BAU 2020–ED 2020–EC

Cropland 9357.34 9875.87 10,610.93 8342.21 0.5541 1.3397 −1.0848
Forest 3603.01 3600.14 3591.90 3877.41 −0.0080 −0.0308 0.7616

Grassland 33,914.66 33,389.65 32,089.76 34,925.39 −0.1548 −0.5381 0.2980
Water 1358.50 1359.80 1356.62 1155.20 0.0096 −0.0138 −1.4965

Constructed 930.20 957.85 1062.71 947.90 0.2972 1.4245 0.1903
Bare land 6219.28 6199.68 6671.06 6143.90 −0.0315 0.7264 −0.1212Sustainability 2021, 13, x FOR PEER REVIEW 8 of 16 
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3.2. Ecosystem Services Changes

We used the InVEST model to quantify four ecosystem service functions in the Yili
River Valley in the different scenarios (Figure 3). In the 2030 BAU scenario, WY increased,
but CS and SR decreased, with the decline in CS and SR mainly occurring in the southern
and northern high mountain forest grasslands of the study area (Figure 4). We estimated
a significant expansion of cropland and construction land in the ED scenario, resulting
in a drastic downward trend in ESs metrics for the region. In this scenario, a net loss of
2.04× 107 t of carbon, a reduction of 5.17× 107 m3 of water production, and an exacerbation
of 6.37 × 105 t of soil erosion were expected. Due to the significant increase in arable land,
NE tended to increase slightly, but the higher the nitrogen export, the poorer the water
purification capacity [6]. The EC scenario predicted upward trends in CS, WY, and SR,
given that ecological policy implementation contributed to enhanced carbon sequestration
and water retention in forests and grasslands. In this scenario, the cumulative net increase
in carbon stocks was 1.66 × 107 t, water retention was 2.26 × 107 m3, and soil retention
was 9 × 104 t [53]. The most significant ESs improvements in the Yili River Valley occurred
in the EC scenario, and the main goal of future planning should be to enhance ecosystem
functions through land restoration.
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3.3. Impact of LULC on Synergies and Trade-Offs among ESs

From the perspective of the study area as a whole unit, Figure 5 shows the different
relationships between ESs. In the ED and EC scenarios, the increased forest and grassland
areas had significant effects on ESs (Figure 2). At the nodes in the upper and middle reaches
of the Yili River, ESs were significantly enhanced by returning cropland to forests and by
implementing ecological engineering policies (Figure 5A3). In the EC scenario, in Zhaosu
County, located in the Tekesi River basin, large areas of cultivated land were returned to
forests, resulting in a significant improvement in the ecological quality of the farming zone
on the plain near the basin (Figure 5B3).
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We also found strong correlations between the four ESs indicators in the different
scenarios (Spearman correlation; df = 2457, p < 0.01) [49]. In the BAU scenario, CS and
NE exhibited significant trade-off effects (df = 2457, p < 0.01), while WY and SR exhib-
ited significant synergistic effects (df = 2457, p < 0.01). In the ED scenario, the trade-off
effects between WY and NE were stronger than in the BAU scenario, likely due to the
significant increase in nitrogen output from the expanded cropland area, producing a
trade-off effect. In the EC scenario, significant synergistic effects occurred between WY
and CS (df = 2457, p < 0.01), while significant trade-off effects occurred between SR and
NE (df = 2457, p < 0.01). Thus, WY and CS are connected by synergistic relationships with
complementary strengths and weaknesses, while SR and NE are connected by trade-offs
with complementary strengths and weaknesses [8].
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4. Discussion
4.1. Land-Use Impacts on Ecosystem Services

This study is the first to link the PLUS and InVEST models to predict and quantitatively
assess ESs (four indicators) for different future scenarios in the Yili River Valley and to
analyze the trade-offs and synergies between ESs. This study indicates that grasslands
account for more than 58% of the total Yili River Valley and that farmland and construction
land are located near the Yili River basin. Because of the flat landscape, dense soil layers,
and good drainage conditions in the plains of the watershed area, the vicinity of the Yili
and Turks river watersheds are often reclaimed for cultivated and construction land [36].
In the 2030 BAU scenario, there was a minor expansion of cropland and construction land,
which is consistent with the findings of previous studies [54]. The increase in construction
led to an increase in regional impervious surface area, which further led to an increasing
trend in regional WY (Figure 3).

The analyses indicate that there were rapid expansions of both cropland and construc-
tion land in the ED scenario. In many studies, an increase in cultivated and construction
lands is mainly caused by the conversion of forests and grassland, which is consistent
with the findings of this study [23,55,56]. In the ED scenario, a large amount of forested
grassland was cleared, resulting in a significant decline in ESs (Figure 5). If economic
development policies are implemented in this situation, the ecological recovery is slower
and with smaller patches [57–59].

In the EC scenario, the forest, vegetation, and water ecosystems in the study area are
restored due to ecological engineering and environmental protection policies. In order to
further analyze the land-use changes in each of the scenarios, we selected several key areas
as case studies. Area A in Figure 5 shows the Yammadu, which is the confluence of the
upper and middle reaches of the Yili River. The Yili River is a transboundary river, and
approximately 75% of its volume flows out of China [60]. If the EC scenario is implemented,
the sustainable economic development and ecological protection of the Yili River basin
are affected, and the downstream neighboring country can also achieve a high-quality
ecological environment in the basin, thereby promoting the ecological security of both
China and Kazakhstan. In the EC scenario, owing to the implementation of returning
farmland to forests and ecological protection policies, the ESs functions are restored. This
is in agreement with the findings of Fu et al. [6], indicating that the multiple effects of ESs
are spatially heterogeneous in the BAU, ED, and EC scenarios.

4.2. Trade-Off Effects between ESs

Synergies and trade-offs on ESs quality change when assessing local ESs production
shifts (Figure 6) [61]. For the entire study area, we found that the spatial relationships of
ESs in the different scenarios had different corresponding characteristics (Figure 5). The
results indicate a significant negative correlation between CS and NE, namely, there is a
trade-off effect between CS and NE. The interpretation is that aboveground biomass is a
substantial source of soil carbon by litterfall. The conversion of litter biomass to soil carbon
has a certain turnover rate and presents a time gap between NE and CS [62]. In contrast, in
wetter areas, the time gap may be shorter due to the higher availability of water, which
promotes the decomposition of litter. Similarly, in addition to atmospheric N deposition
and N fixation by plant roots, the trade-off between NE and CS may be partially related to
the time lag between litterfall and the release of biomass nitrogen into the soil, as litter is a
major N source for the soil [63].



Sustainability 2021, 13, 1577 11 of 15

Sustainability 2021, 13, x FOR PEER REVIEW 12 of 16 
 

 

Figure 6. Correlation analysis between the ESs indicator pairs for each of the scenarios in the Yili 

River Valley. The significance level is denoted by stars on the upper right side of each correlation 

coefficient (No * means p ≥ 0.05; * means p < 0.05; ** means p < 0.01). 

This effect may also be related to the amount of nitrogen retained by the vegetation, 

which is consistent with the findings of Sun [48]. In this study, WY and SR were positively 

correlated with synergistic effects, which is consistent with the findings of Sun and Shi 

[54]. When forests are converted to grassland, farmland, and construction land, they have 

greater evapotranspiration, retention, and evaporation than grasses or crops, thus 

reducing water production [64]. Thus, clarifying the trade-offs between multiple ESs and 

the use of stakeholder feedback to determine the optimal ESs and their spatial 

distributions will help facilitate the implementation of interventions that produce 

beneficial effects across multiple dimensions [65]. 

4.3. Model Validation 

To ensure the accuracy of the study, we calibrated the input parameters and output 

results of the InVEST models using results from other studies in the Yili River Valley. For 

the WY model, the output result was verified using Water Resources Bulletin data, and 

the InVEST model yielded a value of is 1.56 × 1011 m3, while the Water Resources Bulletin 

had an annual average water yield of 1.59 × 1011 m3. For the CS model, the input value was 

the measured value, so the output result was more accurate. We found that by calculating 

the distribution areas of different soil types and soil carbon storage in the Yili River Valley, 

the total organic carbon storage of 0–60 cm soil in the Yili River Valley was 925 Tg C, 

which is consistent with the findings of Yang et al. [36]. For the SR model, this study and 

previous studies have calculated that the soil and water conservation volume of the Yili 

River Valley (based on actual measurements) was 2.64 × 108 tons [53], which is consistent 

with the value of 2.80 × 108 tons obtained in this study. For the NE model, we obtained 

data from 12 hydrological monitoring stations in the Yili River Valley and compared the 

nitrogen retentions. The measured nutrient retention values ranged from 0.63–2.49 t/km−2. 

Figure 6. Correlation analysis between the ESs indicator pairs for each of the scenarios in the Yili
River Valley. The significance level is denoted by stars on the upper right side of each correlation
coefficient (No * means p ≥ 0.05; * means p < 0.05; ** means p < 0.01).

This effect may also be related to the amount of nitrogen retained by the vegetation,
which is consistent with the findings of Sun [48]. In this study, WY and SR were positively
correlated with synergistic effects, which is consistent with the findings of Sun and Shi [54].
When forests are converted to grassland, farmland, and construction land, they have
greater evapotranspiration, retention, and evaporation than grasses or crops, thus reducing
water production [64]. Thus, clarifying the trade-offs between multiple ESs and the use
of stakeholder feedback to determine the optimal ESs and their spatial distributions will
help facilitate the implementation of interventions that produce beneficial effects across
multiple dimensions [65].

4.3. Model Validation

To ensure the accuracy of the study, we calibrated the input parameters and output
results of the InVEST models using results from other studies in the Yili River Valley.
For the WY model, the output result was verified using Water Resources Bulletin data,
and the InVEST model yielded a value of is 1.56 × 1011 m3, while the Water Resources
Bulletin had an annual average water yield of 1.59 × 1011 m3. For the CS model, the input
value was the measured value, so the output result was more accurate. We found that by
calculating the distribution areas of different soil types and soil carbon storage in the Yili
River Valley, the total organic carbon storage of 0–60 cm soil in the Yili River Valley was
925 Tg C, which is consistent with the findings of Yang et al. [36]. For the SR model, this
study and previous studies have calculated that the soil and water conservation volume
of the Yili River Valley (based on actual measurements) was 2.64 × 108 tons [53], which
is consistent with the value of 2.80 × 108 tons obtained in this study. For the NE model,
we obtained data from 12 hydrological monitoring stations in the Yili River Valley and
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compared the nitrogen retentions. The measured nutrient retention values ranged from
0.63–2.49 t/km−2. The estimate obtained in this study was 0.92 t/km−2, which falls within
the range of reported values.

4.4. Limitations and Further Research

Combining the PLUS and InVEST models overcomes the drawbacks of a single model
and fully exploits the advantages of both models in terms of quantity predictions and spatial
allocations. Previous studies have focused on the linear variations in LULC under different
future scenarios, while only a few studies have attempted to strengthen knowledge of
the non-linear relationships that drive transitions in LULC. The PLUS model can better
represent the LULC spatiotemporal distinction patterns in a land expansion analysis
strategy and using the CA model based on multi-type random patch seeds. In addition,
scenario planning allows the comparison of ESs differences between scenarios and the
realization of trade-offs between ESs under the different scenarios. This study plays a
critical role in subsequent assessments and quantification of ESs and helps to provide new
perspectives for decision makers.

This study used the PLUS model to portray only three different future LULC scenarios
through policy guidelines. However, these three alternatives are not representative of
all possible LULC realities. More comprehensive scenarios should be explored in future
studies to address the needs of multiple stakeholders for optimal land-use policies [1,66].
This will further improve the accuracy of land-use predictions, which in turn will help
analyze the quantitative results of the subsequent ESs. In addition, the InVEST model
should contain more field data to set the model parameters, thereby more accurately
determining the dynamic characteristics of ESs in the study area.

5. Conclusions

This study provides new insights, based on a combination of the PLUS and InVEST
models, to predict and evaluate ESs (WY, CS, SR, and NE) in the Yili River Valley in
2030. We quantified the ESs under regional land-use impacts and analyzed the trade-off
response relationships. The results indicate that the PLUS model can accurately depict
future generalized LULC patterns with sufficient accuracy to meet the requirements of the
study. In the 2030 BAU scenario, cropland and construction land demonstrated a small
expansion trend, leading to a decrease in WY and SR, and WY was projected to increase
by 2030. In this scenario, NE and CS are significant trade-offs (i.e., negatively correlated).
In the ED scenario, the rapid expansion of construction land led to a decrease in CS, SR,
and WY, with the decrease mainly located in urban centers. To improve environmental
benefits, policymakers in the Yili River Valley should pay attention to the intensive use
of construction land and the protection of forests, grasslands, and surface water bodies
with high environmental benefit values. In the EC scenario, CS, SR, and WY increased
due to the implementation of ecological engineering. Furthermore, the trade-off effect
between CS and NE is significantly weaker than that in BAU and ED scenarios. In addition,
although seldom used in China, our scenario analysis indicates that restoring vegetation in
riparian zones and on steep slopes can effectively improve ESs. To improve ESs trade-offs,
we suggest that policymakers in the Yili River Valley should pay attention to the use of
land for construction, and they must designate ecological red line areas to protect forests,
grassland, and surface water bodies with high ecological functions. In summary, this
study supports the use of ESs decision-making functions in urban planning, which can
help decision makers develop more comprehensive planning for more comprehensive
ecosystem conservation plans.
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