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Abstract: Today, the automotive and transportation sector is undergoing a transformation process to
meet the requirements of sustainable and efficient operations. This transformation mainly reveals
itself by electric vehicles, hybrid electric vehicles, and electric vehicle sharing. One significant,
and the most expensive, component in electric vehicles is the batteries, and the management of
batteries is crucial. It is essential to perform constant monitoring of behavior changes for operational
purposes and quickly adjust components and operations to these changes. Thus, to address these
challenges, we propose a knowledge graph-based data integration framework for simplifying access
and analysis of data accumulated through the operations of vehicles and related transportation
systems. The proposed framework aims to enable the effortless analysis and navigation of integrated
knowledge and the creation of additional data sets from this knowledge to use during the application
of data analysis and machine learning. The knowledge graph serves as a significant component
to simplify the extraction, enrichment, exploration, and generation of data in this framework. We
have developed it according to the human-centered design, and various roles of the data science
and machine learning life cycle can use it. Its main objective is to streamline the exploration and
interaction with the integrated data to maximize human productivity. Finally, we present a battery
use case to show the feasibility and benefits of the proposed framework. The use case illustrates the
usage of the framework to extract knowledge from raw data, navigate and enrich it with additional
knowledge, and generate data sets.

Keywords: anomaly detection; battery data management; data integration; data analysis; intelligent
transport systems; knowledge graphs; machine learning techniques

1. Introduction

In today’s world, one of the prime directives is the pursuit of sustainable opera-
tions and efficiency. Especially the automotive and the transportation sector, in general,
is undergoing a transformation process from the perspective of power-train technologies,
driving assistance systems, as well as the whole concept of personal mobility and logis-
tics. To achieve sustainable and efficient operations, technological components have to
be engineered in a way that enables them to continuously adapt during their life cycle.
More precisely, we need to ensure that they can stay deployed as long as possible and
perform optimally.

Electric vehicles (EV) and hybrid electric vehicles (HEV) are the key drivers in this
transformation process [1] with fuel cell (hybrid) electric vehicles (FCHEV) being around
the corner [2]. A critical component of these vehicles is the batteries that are used to power
them. They are one of the most expensive components [3]. The most important limitations
of the commercialization of conventional battery-based EVs are the high cost and cycle
life of batteries, complications of chargers, and the lack of a charging infrastructure [4].
Furthermore, battery chargers can produce harmful harmonic currents in distribution
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systems [5]. The most critical non-technical factor in achieving mass-market status for
a battery-based vehicle is its relative cost [6]. Despite this, EVs and HEVs promise vital
results in a world where road transport is likely to remain a significant contributor to
air pollution in cities [7] and is the most significant factor with nearly three-quarters of
the transport-related GHG emissions [8]. Eventually, to achieve climate neutrality, a 90%
reduction is necessary by 2050 in all modes of transport emission, and achieving sustainable
transport means putting users first and providing them with more affordable, accessible,
healthier, and cleaner alternatives to their current mobility habits [9].

Additionally, EV sharing is embraced by many cities worldwide as a flexible and
sustainable means of urban transit [10]. In this respect, the appearance of transportation as a
service provider is another crucial innovation driver. From a fleet management perspective,
it is critical that a vehicle stays deployed as long as possible and fulfills the required
tasks [11]. A significant challenge for the operators is to charge the fleet because of limited
or costly access to charging facilities [10]. The information of the current battery status in
the fleet can help the fleet management system to arrange the deployed vehicles according
to the range that they are expected to drive. In this case, vehicles with the battery could
serve customers living outside of cities, where the driving range requirement is typically
higher and vehicles with a more worn-out battery would be moved to the city centers
because the expected driving distance is shorter [12]. That is just one example of how to
extend the life cycle of a deployed unit and contribute to more sustainable operations in
modern transportation concepts.

Furthermore, a deployed battery in an electric vehicle will change its behavior over
time, controlled by its on-board battery management system (BMS). These changes over
time will lead to the necessity of constant monitoring of the battery for operational purposes.
It is also necessary to present decision-makers a complete profile of knowledge of the effects,
both financial and extra-financial, that projects (or products) are expected to produce [13,14].
Additionally, a holistic view of the transport system and all available drive technologies
can provide realistic and feasible solutions and also show their ecological, economic, and
social effects at a significant level, namely, for an entire urban region [15]. For example,
the improvements (including cell design, factory, materials, and vehicle integration) made
by the Tesla company that result in halving the cost per kWh shows us the importance of
collecting data about battery efficiency and dealing with the issue from all aspects [16].
Eventually, this cost reduction helps the company to produce more affordable electric
vehicles, to broaden its market to include additional buyers, and thereby reducing the
number of gas-powered vehicles on the road [16].

The logical consequence of continuous monitoring is the accumulation of a large
amount of data. Tanizawa et al. [17] present a cloud-connected BMS to reduce emissions by
providing a data cloud that aids in battery replacement. Recently, Li et al. expand on this
idea to a digital twin system with seamless data transmission [18]. Both examples work
based on accumulating data in a database that is not specified in detail. Only owning and
accumulating even more data does not ensure effective decision-making or any engineering
advantage. What is required is a map that guides one in the vast data landscapes generated
in the development process and over the entire life cycle. Knowledge graphs can act as
such maps, and they can bridge different data points easily in this manner.

Constant data collection requires data integration. Data integration [19–23] can be
considered as the process of combining different data that are stored in a set of separate
data sources into a single unified view. However, information integration is generally
understood to be the process of assembling a coherent view of the distributed heteroge-
neous information and information processing resources [24]. The aim of integration is
generally to consolidate information wisely, free of redundancy, processed and operated
by the right business logic to deliver the proper and condensed answer, and offer simple
access to the end user, thereby eliminating the need for knowledge about the underlying
data structures [25]. Integration also provides a way of standardizing data, improving
accuracy and productivity, and greater flexibility and agility [26]. Therefore, this process is
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known to be challenging in many different ways. Moreover, the challenges vary depending
on the environment, and this environment typically includes a broad mix of sources, which
can be either structured or unstructured [27]. Many technical factors, such as the structural
and semantic heterogeneity of data sources, and the incompatibility of underlying systems
in which the data sources reside, make the process more challenging [28]. In addition to
this, specific non-technical challenges such as access authorization or data anonymity could
be crucial in domains such as law or medicine.

The application of knowledge graphs and data integration in environmentally sus-
tainable systems is gaining popularity in recent years due to the shift from fossil fuels
to renewable energy sources. This shift requires sophisticated information systems that
enable the management of those new energy sources to be reliable and cost-effective. One
of those approaches is the energy internet, which was proposed by American economic and
social theorist Jeremy Rifkin. The energy internet seeks to connect renewable distributed
energy sources with the internet for fair access to distributed power, as well as sustainable
production and consumption [29]. It is a complex network formed based on the internet
and other cutting-edge information technologies. It takes distributed renewable energy as
the primary energy source and is tightly coupled with natural gas networks, transportation
networks, and other systems. This complex structure poses severe challenges for energy
management [30–33], including complex context modeling, heterogeneous data analysis,
distributed nodes integration, and dynamic controlling. The great achievement of semantic
technologies obtained in the area of energy management verified the advantages of knowl-
edge engineering in complex system scheduling and controlling. Consequently, as an
improved form of knowledge representation, the knowledge graph pose a big potential in
complex energy management, which consists of a large number of interconnected concepts,
entities, and events [34].

Another important aspect today is the diversity of roles in data science (DS) and
machine learning (ML) teams, who are working in different stages of the DS/ML life cycle.
However, there are not enough DS/ML professionals to fill the job demands, and 80% of
their time is generally spent on low-level activities [35] such as tweaking data [36] or trying
out various algorithmic options and model tuning [37]. These two challenges have stirred
artificial intelligence (AI) researchers and system builders to explore an automated solution
for DS/ML work, which is called Automated Data Science (AutoML). Thus, several DS/ML
algorithms and systems have been built to automate the various stages of the DS/ML life
cycle [35,37].

In this respect, we propose a framework based on knowledge graph-based data inte-
gration to ease the extraction, enrichment, generation, and exploration of data sets. It aims
to simplify the exploration and querying, data sets creation, and algorithm application over
these generated data sets. Streamlining the exploration and interaction with the acquired
data is key to maximize human productivity in the field of data science [38]. The framework
is developed to address the obstacles to sustainability in the automotive and transportation
sector. Therefore, the focus of the framework is on the data readiness, preprocessing,
cleaning, feature engineering, model building and training, and model refinement stages
of the DS/ML life cycle.

The remainder of this paper is organized as follows. We present the proposed frame-
work in Section 2; we describe the battery use case in Section 3; and finally, we conclude
the paper in Section 4 with discussions, conclusions, and future work.

2. Methodology: Knowledge Graph-Based Data Integration Framework

In this section, we describe our knowledge graph-based data integration framework
that addresses the needs of various systems utilizing data science and machine learning
techniques. The main objective of the framework is to enable the users to access and
navigate the data seamlessly and to apply data science and machine learning techniques
without any difficulty. We eventually want to standardize the data, improve accuracy and
productivity, and provide greater flexibility and agility coherent to the aims of integration.
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From the user perspective, we want to create transparent and unified access to diverse and
heterogeneous data sources.

In this respect, we store domain knowledge in a schema-free Neo4j graph database [39]
as a knowledge graph, which is accessible through a single access layer to ensure the
achievement of these goals.

We describe the proposed framework in a logical bottom-up direction, starting from
data intake and ending with the user interaction with it. In this regard, our framework
consists of different components (Figure 1) to meet the requirements explained above. We
will describe each of these components individually in the following sections following
this bottom-up narrative.

Navigator

Graph 
Processor

Algorithm 
Execu�on

Engine

Algorith
ms

Adapters

Neo4j

Knowledge Graph

Datasets

JupyterHub
Notebooks

Raw Data

Context Data

Business LayerData Layer

Presenta�on Layer

Figure 1. Components of the proposed framework and their communication.

2.1. Storing the Data: Knowledge Graph

A Knowledge Graph (KG) is a self-descriptive knowledge base where data and its
schema are stored in a graph format, and the relations between data are first-class citi-
zens [40]. It consists of a set of interconnected typed entities and their attributes [41]. They
are distinguished from other knowledge-oriented information systems by their particular
combination of [42]

(i) knowledge representation structures and reasoning, such as languages, schemas,
standard vocabularies, and hierarchies among concepts;

(ii) information management processes (how information is ingested, transformed into
a knowledge graph); and

(iii) accessing and processing patterns, such as querying mechanisms, search algorithms,
and pre- and postprocessing techniques.

It is known as a triple-based data model or a property model [43] and various modern
applications widely use the KGs to virtually integrate data from diverse sources on a single
database [33]. Algorithms that run on top of KGs include inference, recommendations, ma-
chine learning, and text understanding, to name a few [40]. Eventually, there is increasing
usage of KGs in different applications because of these reasons. Our main reason is to
benefit the integrating various sources into a single view and easily accessible database.
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We employ the labeled property graph [44] approach using the Neo4j Graph Database.
The purpose of using a graph database originates from the performance, flexibility, and
agility advantages of them [39]. Graph databases have become an important solution to
consider in the management of large datasets [45]. Using them to manage graph-structured
data presents many benefits such as explicit support for modeling graph data, native index-
ing and storage for fast graph traversal operations, built-in support for graph algorithms
(e.g., Page Rank and subgraph matching), and the provision of graph languages, allowing
users to express complex pattern-matching operations [46,47]. The main characteristic of
a graph database is that the data are conceptually modeled and presented to the user as
a graph [48]. The data structures (data and/or schema) are represented by graphs, or by
data structures generalizing the notion of the graph (e.g., hypergraphs or hyper nodes).
One of the main features of a graph structure is the simplicity to model unstructured data.
Therefore, in graph models, the separation between schema and data is less explicit than
the classical relational model.

Both the notion of Property Graphs (PG) and the Resource Description Framework
(RDF) are commonly used models for representing graph-shaped data [49]. However, we
specifically focus on labeled property graphs because we have decided to use Neo4j as
the graph database. Informally, a property graph is a directed labeled multi-graph with
the special characteristic that each node or edge could maintain a set (possibly empty) of
property–value pairs [48].

• The labeled property graph [39] contains nodes, relationships, properties, and labels.
• Nodes contain properties. It is possible to tag nodes with one or more labels. Labels

indicate the roles that nodes play within the data set.
• Relationships connect nodes and structure the graph. They are named, directed, and

always have a start and an end node. Name and direction provide semantic clarity to
the structure.

• Relationships also contain properties, which is useful to provide additional metadata
for graph algorithms, adding additional semantics, and for constraining queries
at run-time.

• Properties are in the form of arbitrary key–value pairs. Keys are usually strings, and
values are arbitrary data types.

Consequently, Neo4j can be used as a high-performance replacement for relational
databases, especially when handling highly interconnected data [50]. We use the Cypher
query language, which was specific to the Neo4j graph database, but currently, many other
different commercial products are also using it [46]. It is a well-established declarative
language for querying and updating property graph databases [47]. It is an expressive lan-
guage for property graphs and is designed to be easily read and understood by developers
and database professionals. SQL influenced the design of Cypher, but how the language
operates is relatively different from SQL [51]. A Cypher statement is a sequence of clauses:
the next clause will take its input from the result of the previous clause. It is also possible to
freely combine static and dynamic features. One can start with a pattern-matching clause,
then update a database based on the matched patterns, and then proceed with another
pattern-matching clause on the updated database—all in one single statement [51]. For
these advantages, we are storing the domain-specific data as a KG in the Neo4j.

The proposed framework aims the modularity as much as possible and each com-
ponent in the architecture aims to meet this. It provides the users to access the domain
data through the KG, which consists of the processed data in the Neo4j and raw data likely
possibly stored in other data sources such as file system.

2.2. Managing and Accessing the Domain-Specific Data: Graph Processor

The central component in the architecture is the Graph Processor, which essentially
deals with accessing the KG that the Neo4j graph database stores without a particular
schema. This component acts as the back end and exclusive interface for accessing the KG.

This central component implements the following tasks for the framework:
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• processes the raw domain data and imports the necessary parts into the KG using the
specific adapter,

• acts as the back end and provides access of different components to the KG,
• acts as the back end for triggering algorithm execution engine (Section 2.3).

The main task of this component is creating the KG using adapters, which transforms
the raw data into the Neo4j graph database. In this regard, adapters are essential to store
the data in the graph and to support access to the data sets. Adapters facilitate the loading
of different data sets into the KG smoothly. They provide the general means of supporting
any domain data without changing anything specific in the framework. They also provide
the means to access files and/or data that are not stored in the KG directly for storage and
performance reasons. These files can be in the file system, and the specific data adapter
provides access to them. Expert users must develop the adapters required to create the KG.
Then, these adapters are stored in the framework to be loaded with parameters when they
are needed. They are loaded during run-time by the request of users and they are linked
during run-time rather than compilation [52].

We provide some standard adapters (such as JSON, CSV, and relational database)
with the implementation. We assume that expert users, who know the domain data, can
develop additional custom adapters.

2.3. Executing the Algorithms: Algorithm Execution Engine

The Algorithm Execution Engine (AEE) component (Figure 2) provides the means of
running different algorithm modules that are provided by users. The spawned notebook
server of the user and remote workers that are provided with the deployment of the
framework constitute the AEE. Users can easily upload or develop algorithm modules in
their server, run them in the notebook server during development to test and improve, and
finally can send these to a provided remote worker for asynchronous execution.

Graph
Processor

Algorithms

Neo4j

Knowledge Graph

Datasets

User’s 
Notebook

Server

Raw Data

Context Data

Navigator

Remote
Workers

Figure 2. The Algorithm Execution Engine consists of user’s notebook server and remote workers to
run algorithms.

The algorithm modules provided by the user can perform different tasks:

• executing enrichment algorithms to extend the KG from different public–private APIs,
such as weather, geographic position, map, point of interest;

• executing various data analysis techniques; and
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• executing various machine learning techniques.

All algorithm modules can use the libraries provided in the custom Jupyter image
that is used to create the user’s Jupyter notebook server container and can use the complete
or a subset of KG as the data-set.

The AEE architecture allows the users to provide any kind of algorithm with ease
and simplifies the application of these algorithms to the KG. It is important to note that
the algorithms and adapters can be distributed and executed asynchronously using task
queues or remote workers (e.g., Celery, Redis Queue, Taskmaster, Dramatiq, IronWorker,
etc.). That is especially the case when they take a long time to run and/or a single computer
will not be enough as a computation resource. This mechanism also allows distributed and
cloud computing for scalability. These workers can run on different on-premise computers
or cloud providers when needed and algorithms can be distributed over these computing
resources with the help of AEE.

We assume that there are some standard algorithms (such as exploratory data analysis,
statistical analysis, simple aggregation, and analysis) that are provided with the implemen-
tation, and expert users that know the details can develop additional custom algorithms
for the users.

2.4. Interaction with the System: Notebooks and Navigator

The Notebooks component provides a JupyterHub server to allow the users to interact
and run different algorithms, adapters, and similar notebooks in separate Docker containers
by accessing the KG. JupyterHub [53] is a tool that aims to serve Jupyter notebook [54]
for multiple users. Jupyter is a free, open-source, and interactive web tool known as a
computational notebook. Researchers can use it to combine software code, computational
output, explanatory text, and multimedia resources in a single document. It has emerged as
a de facto standard for data scientists and aims to foster computational reproducibility by
simplifying the code reuse [55]. For these reasons, we are using JupyterHub as a multi-user
Hub to spawn, manage, and proxy multiple instances of the single-user Jupyter notebook
server. It consists of

(i) a Hub (tornado process) that is the heart of JupyterHub,
(ii) a configurable HTTP proxy that receives the requests from the client’s browser,
(iii) multiple single-user Jupyter notebook servers that are monitored by Spawners,
(iv) and an authentication class that manages how users can access the system.

We implemented a custom authentication system attached to use the same authoriza-
tion with the navigator component and we use DockerSpawner [56] to enable JupyterHub
to spawn independent single-user notebook servers in Docker containers. Our Jupyter-
Hub component takes an authenticated user and spawns a notebook server in a Docker
container for that authenticated user using a custom Jupyter notebook image extending
Jupyter Notebook Scientific Python Stack with Tensorflow [57]. The user can perform
operations in this notebook container over the KG accessed through GP. The container
allows the user to execute the algorithms with and without interaction either in remote
workers or in itself.

The final component is the Navigator component, which provides the means for data
navigation to the end-user. It is designed as a simple dashboard for the user to easily
navigate the KG, filter out required subsets to provide them to the notebook server of the
user for the algorithms.

2.5. Implementation

We have created a modular implementation, and each component is individually
implemented based on the concepts discussed previously. We keep them isolated and build
loosely coupled services deployed as Docker containers. Docker simplifies and accelerates
the workflow while giving the freedom to innovate with a custom choice of tools, applica-
tion stacks, and deployment environments for each [58]. By using Docker, components are
isolated from each other and bundle their software, libraries, and configuration files [58].
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The components communicate with each other through RESTful methods, which ensure
interoperability between them. Architectural constraints provided through REST empha-
sizes scalability of component interactions, the generality of interfaces, and independent
deployment of components [59].

As each component developed individually, we selected programming language and
tools that are suitable to the task of the component:

• Graph Processor (Section 2.2) implemented using Python programming language and
Flask web framework [60] with Flask-RESTful [61] extension to provide a RESTful API.

• Algorithm Execution Engine (Section 2.3) is implemented using Python programming
language to support open-source Celery asynchronous task queue [62]. However,
algorithms and adapters can be implemented using Python programming language
and other programming languages that are supported in the Jupyter notebook server
and the deployment.

• We developed our notebooks (Section 2.4) component by extending the default Jupyter-
Hub Docker image to use DockerSpawner, a custom authenticator, and the custom
Jupyter notebook image.

• Navigator (Section 2.4) is implemented using open-source JavaScript library React [63].
React is a library for developing composable user interfaces and promotes the creation
of reusable user interface (UI) components, which present data changes over time [64].
It is designed to enhance interactive UI development by making it easier to update the
view when the data changes [63]. The view is divided into smaller components, that
can be composed to create complex UIs. Components are built-in JavaScript instead
of templates, enabling an easy flow of data [63].

Eventually, the proposed architecture and its implementation meet the requirements
of having a modular architecture and address some important design principles:

• Each component respects the separation of concerns principle and focus on tasks
related to that specific concern they are dealing with. Therefore, the proposed archi-
tecture conforms to modularity as a paradigm of separation of concerns.

• Components are loosely coupled and communicate through standardized interfaces
via RESTful APIs.

• The deployment is simplified because of using individual Docker containers for each
component.

• System as a whole hides the details from end-user while distinguishing between
expert users that develop the adapters and algorithms, and end users that interact
with the system directly through the presentation layer only.

3. Results: Using the Framework in a Battery Use Case

In this section, we describe the battery use case to demonstrate and validate the
feasibility and applicability of the proposed knowledge graph-based data integration
framework (Section 2). With this use case, we aim to illustrate the feasibility of the frame-
work in various scenarios, spanning different knowledge domains. We specifically focus
on providing an anomaly detection component, which is utilized directly during the graph
enrichment process. Therefore, first, we describe the battery use case (Section 3.1), and
then we present the usage of the framework for this use case step by step to validate the
feasibility and applicability of the proposed framework (Section 3.2).

3.1. Battery Use Case

During the battery charge/discharge cycles, data is collected on various sensory
observations such as capacity, current, temperature, loading difference, etc. Some of the
collected sensory readings could potentially exhibit anomalous behavior, indicating either
problem with the telemetry collection process or problems with the tested battery cells.

An example of such anomalous behavior is the detection of temperature spikes during
discharge cycles. In that case, we pose the following hypothesis:
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Hypothesis 1. Slight temperature fluctuations during a battery discharge process may exist,
but the bigger fluctuations with extreme temperature spikes could be anomalous.

Example 1. During experiments at room temperature, it was observed that the battery tempera-
ture during the discharge process was around 25 ◦C on average.

Remark 1. Therefore, an observed temperature spike, i.e., a local maximum in the temperature
measurement data, towards 50 ◦C or more can be considered anomalous.

The solution for the anomaly detector consisted of conducting an exploratory data
analysis (EDA) and executing the following steps:

1. Detect discharge cycles.
2. Detect potential anomalous temperature spikes.
3. Extract temperature spikes and interval data.

Exploratory data analysis includes steps to identify fluctuations in the data, possible
missing values, or breaks in the data, ensuring that the data is in proper format and
available for subsequent analysis.

After data ingestion, the anomaly detection algorithm identifies the potentially anoma-
lous temperature spikes using relative extrema identifying approach with a fixed window
for comparison. The technique serves to identify and record the local temperature max-
ima, i.e., temperature spikes. The threshold for the identified spikes is defined as one
being more than ten standard deviations above the mean temperature of the data sample
(ti ≥ t + 10 ∗ σ, where t is temperature), thus ensuring a relative measure in regards to
possible changes in testing conditions.

After detecting and filtering the potentially anomalous spikes, the interval boundaries
for discharge cycles where the spikes occur are calculated using Algorithm 1.

Upon identification of intervals and temperature spikes, the extracted data is used to
enrich the data samples in the KG.

3.2. Extract, Enrich, Explore, and Generate

A two-stage process is required to generate an enriched knowledge graph (KG) from
the time-series data that are stored in a relational database.

In the first stage, the relational schema of the SQL database, which contains the
raw measurement data, serves as the basis for the initial KG generation (Figure 3). The
dedicated adapter for relational databases can extract the nodes and properties based on
the database schema together with the defined foreign key constraints, which constitute
the relationships between the extracted nodes.

In the second stage of the process, the Algorithm Execution Engine (AEE) component
starts the work using the time-series data stored in the source relational database as input
(Figure 4). The AEE component can communicate with the relational adapter to retrieve the
required information to perform the data analysis steps explained in Section 3.1. AEE can
contain multiple implemented algorithms communicating with one or multiple installed
adapters in the system to perform individual tasks related to the enrichment of the graph.

We are focused on detecting possible temperature outliers during discharges in the
measured battery cells in the use case. The implemented algorithm identifies local temper-
ature maximums and the corresponding data points in the measurements that represent
the relevant context (Figure 5).

After the detection of local maximums, the algorithm extracts the potential tempera-
ture outliers and the relevant intervals (Figure 6). The identified intervals are translated
into new nodes that will be integrated into the initial KG. The newly generated nodes are
equipped with a label and relevant properties that represent the required information to
identify the particular data-points in the source data. This integration process of new nodes
represents the core of the enrichment process of the KG.
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Algorithm 1 Calculation of interval boundaries of discharge cycles

1: data: the data frame containing all records

2: lead: the number of data points

3: spikes: the list of temperature spikes

4:

5: procedure FIND-INTERVAL-START(data, lead, spikes)

6: intervalstart ← ∅ . find and store starting timestamps of intervals

7: for all spike ∈ spikes do

8: for all i ∈ [spike.index, 0) do

9:

10: dqsum ←
i

∑
k=i−lead

data[k].dq . dq: discharge quantity

11:

12: if dqsum = 0 then

13: intervalstart ← intervalstart ∪ {data[i].timestamp }

14: break

15: end if

16: end for

17: end for

18: return intervalstart

19: end procedure

20:

21: procedure FIND-INTERVAL-END(data, lead, spikes)

22: intervalend ← ∅ . find and store ending timestamps of intervals

23: for all spike ∈ spikes do

24: for all i ∈ [spike.index, data.length) do

25:

26: dqsum ←
i+lead

∑
k=i

data[k].dq

27:

28: if dqsum = 0 then

29: intervalend ← intervalend ∪ {data[i].timestamp}

30: break

31: end if

32: end for

33: end for

34: return intervalend

35: end procedure
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Figure 3. Representation of the workflow for extracting a base graph from the schema of the relational
database containing the raw measurement data.
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…

[Other installed adapters]

Figure 4. Adapter and Algorithm Execution Engine integration.

After the second stage, we will have a graph structure that contains the basic information
schema of the source data enriched with the outcomes of the algorithm execution performed
by the modules installed in the AEE component (Figure 7).

In our use case, the additional nodes represent the relevant temperature spikes during
discharges in the measured battery cells. The created nodes include the properties which
enable the graph processing engine and the adapter to retrieve the particular data point
with the corresponding context. The advantage of holding this data in a graph structure is
the ability for rapid exploration and analysis.
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Figure 5. Temperature plot with local maxima, which indicate the temperature spikes.
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Figure 6. Temperature (left y-Axis) and dq (right y-Axis) plot with local maxima outliers and discharge interval.
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Figure 7. Graph state after the enrichment process.
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Rapid exploration includes the possibility for the user to navigate the source data
with the support of the KG. The advantage of using a graph structure is the ability to
query for paths between individual data points. If we take the example from our use case
(Figure 3) we see that there is an indirect connection between a data point or record from
the Measurement and Experiment tables. With the traditional approach in the relational
database domain, the user needs to know all the tables and relationship definitions that are
required to traverse between these tables and create a Join. Storing this information in the
graph helps the adapter component to query the shortest path, get the required information,
and generate the shortest possible join or a navigation path that includes a particular set of
entities that should be included along the way. Based on the path information between
two data points in the graph, the adapter component can generate a corresponding SQL
query that can retrieve the actual data in a tabular format (Figure 8).

1. Node (Context)
Selec�on

4. Query Execu�on

3. Query Genera�on

2. Path Calcula�on

Graph Processor

Adapters

Rela�onal Database Adapter

PostgreSQL

(ENRICHED) Knowledge Graph

Project

Experiment Test

Cell

Measurement

LinearCap
Reference
Capacity

Spike
Spike1

…

Spike
SpikeN

Figure 8. Abstract interaction process between a KG and a client (user/machine).

The client does not need detailed knowledge about the structure or schema of the data.
The knowledge of how entities in the data are related to each other is stored into the graph
via the two-staged import and enrichment process performed by the Relational Adapter,
Graph Processor, and Algorithm Execution Engine components. The manifestation of this
information in the graph database defines a KG. One potential client for using the KGs
and its ecosystem can be a human user. Usually, a data scientist or analyst is performing
different context selection (Figure 8) and extracting the required data from the raw database.

The second potential client could be another machine/information system that can
pull the data based on a predefined context/node selection (Figure 9). Both types of clients
will benefit from the graph structure as the context is resilient to structural changes. If a
particular path between two entities is changed (renamed, added, removed, etc.), a route
can still be calculated between two particular data points and the required information can
still be retrieved. That is true for cases where the client does not depend on the particular
information that was added as part of the route between data points. However, also in the
case where a structural change causes a certain calculated path and consequently a query
to be invalid, the investigation and resolution can be accelerated with the help of the use of
the knowledge graphs.
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1.3. Analysis

2.1. Context Selec�on

2.2. Data Retrieval

1.2. Data Retrieval
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Neo4j

UI
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Analy�cs Tools

Microso�
Excel

MATLAB Tableau Power BI
Apache 
Spark

3rd Party 
Informa�on Systems

…

Figure 9. Abstract interaction process between a knowledge-graph an a client (user/machine).

4. Discussion and Conclusions

Knowledge graphs and graph databases, in general, facilitate the relationship between
data points. They allow the user to pose queries that aim to link different data sets, which
could be related to each other. Additionally, they provide the means to navigate a data
warehouse smoothly. The knowledge part in a knowledge graph is added during the
Extract–Transform–Load (ETL) process where data is extracted from the source, trans-
formed and integrated into the available data based on rules, and finally loaded into graph
database [65]. The transformation and rule-based integration are the key mechanisms of
how to manifest a specific know-how/knowledge into a data structure accessible to other
users or systems. There is a particular lack of tooling and concepts in the area of data
exploration for a more traditional data warehouse or modern data lakes environments in
various domains [66–68]. With the growing data source diversity and schema complexity,
the ability to look at the data from different perspectives is essential. To achieve that, we
need to contextualize entities and data points [69]. Therefore, the knowledge graph, built
on a native graph database, serves as a crucial component by helping the user to navigate
over a particular set of directly or indirectly related data points, creating the possibility
of easier querying and smooth creation of data sets used in advanced data analysis and
machine learning use cases.

In this context, our proposed framework intends to provide the benefits of knowledge
graphs by providing clear means to analyze and navigate knowledge stored in KG. The
extraction, enrichment, exploration, and generation steps of the proposed framework
deliver a seamless platform to the users. We present a battery use case to show and validate
the feasibility and applicability of the proposed framework. It demonstrates how a user
can easily navigate the data that is extracted from the raw data source with the help of
KG and how they can enrich it with extra knowledge produced directly from raw data or
obtained from other sources. Finally, we demonstrate how users can generate additional
data sets to directly or indirectly use in the subsequent data analysis and machine learning
tasks. Consequently, our use case validates how users can employ the framework for
the application of data analysis and machine learning approaches in a clear, smooth, and
context-aware way.

Therefore, our proposed framework is an L1 Human-directed automation tool with
enrichment capabilities according to the theoretical framework for Human-in-the-Loop
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AutoML suggested by Wang et al. [35]. It is developed according to the human-centered
design and it is meant to be used by various roles, who are especially focused on Data Readi-
ness and Preparation, Feature Engineering, Model Building and Training, and Model Refinement
stages of the life cycle.

In the future, we want to implement additional components to cover and simplify
the Data Acquisition and Governance, Model Deployment, and Model Monitoring stages and
improve the support of multi-user communications and collaborations in every stage and
across different stages. Finally, as the relationship between user trust and AutoML systems
is crucial to ensure that these tools can be trustworthy enough to be adopted responsibly
by the public [70], we also plan to investigate the explainability and trust to allow the users
to understand the results and automation better.
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