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Abstract: In recent years, with the rapid development of urban transportation network in China,
many problems have been exposed, especially in the Beijing–Tianjin–Hebei (BTH) region. Under
the call of sustainable development, it is of great significance to evaluate the economic, social,
and ecological (ESE) impact of transportation network in BTH urban agglomeration for promoting
the sustainable development of transportation ESE in BTH urban agglomeration. In this paper,
12 indicators in the field of transportation are selected to build the evaluation index system of ESE
effects of transportation network in BTH urban agglomeration. By using entropy weight TOPSIS
(Technique for Order Preference by Similarity to Ideal Solution) model and the Jenks natural breaks
classification method, the ESE impacts of transportation network in 13 cities of BTH from 2013 to
2017 are analyzed from the temporal and spatial dimensions. The research shows that: (1) From
2013 to 2017, the economic impact degree of traffic network shows an annual fluctuation trend, the
social impact degree increases year by year, and the ecological impact degree decreases year by
year; (2) For the cities of BTH, the ESE impact assessment results of transportation network from
2013 to 2017 can be divided into seven clusters. Except Handan City, the ESE impact assessment
categories of other cities’ transportation network have been improved, but the proportion of cities in
the transition period is still large, especially the “Low-Low-Low” cities. The types of cities in the
transitional period need to be focused. It is still a heavy burden to realize the ESE coordination and
sustainable development of BTH urban agglomeration transportation network.

Keywords: Beijing–Tianjin–Hebei urban agglomeration; traffic network; economic society and
ecology; Entropy-TOPSIS

1. Introduction

As the basic regional unit for the country to participate in global competition and
international division of labor, the development of urban agglomerations is inseparable
from the support of transportation network, which establishes the spatial-temporal rela-
tionship between cities in urban agglomerations and promotes the flow of information and
material [1]. As the largest urban group in northern China, with the rapid development of
transportation infrastructure, the impact of the transportation network on the economy
and society of BTH and the ecological and environmental problems is increasingly ap-
parent. Against the background of sustainable development of urban agglomeration, it
is of great significance to evaluate the ESE impact of the transportation network of BTH
urban agglomeration and understand the differences in the development of different urban
transportation networks, to promote the sustainable development of the transportation
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ESE of BTH urban agglomeration and realize the transportation integration of BTH urban
agglomeration as soon as possible.

The relationship between transportation and urban development has always been
the focus of academic circles. In recent years, the research on the relationship between
transportation and urban development mainly focuses on the impact of transportation in-
frastructure on urban development and the evaluation of urban transportation sustainable
development. The impact of transportation infrastructure on urban development mainly
involves its ESE impact [2]. In the aspect of economic impact, it focuses on the spatial
spillover effect of urban development on economic growth and the coupling coordination
between urban development and economic development [3–6]; In terms of social impact,
it focuses on the analysis of regional industrial structure, urbanization level, population
structure and employment [7]; In the aspect of ecological impact, scholars pay attention to
the research of air pollution, noise pollution and biodiversity [8–10]. The sustainability of
urban transportation network needs to be sustainable in many aspects such as economy,
society, and ecology. The research on the sustainability of urban transportation network
includes the research on the evaluation index system of sustainable development and
the research on the evaluation methods. Considering the different statistical standards of
different countries and the conflicting natures of indicators, developing an overall evalua-
tion index system of traffic sustainable development as a difficult but required task [11].
A handful of researchers have put forward a variety of indicators, but generally from
the ESE indicators for specific areas [12–14], such as economic indicators include trans-
portation added value, transportation freight intensity, transportation costs, etc.; social
indicators include urban traffic accident rate, transportation employees, etc.; ecological indi-
cators include mean value of transportation trunk noise, traffic pollution gas emissions [1],
road greening rate, etc. There are many methods to evaluate the sustainability of urban
transportation network [11,15–18], including the system dynamics model (describing the
relationships among the elements of the system by examining time-varying flows and feed-
back mechanisms), data analysis method, fuzzy comprehensive evaluation method and
multi-criteria decision analysis (MCDA) methods, etc. MCDA methods are probably the
most common approaches used for sustainability evaluation in the transportation field [19].
The attributes are summarized by TOPSIS (Technique for Order Preference by Similarity to
Ideal Solution), VIKOR (Vise Kriterijumska Optimizacija Kompromisno Resenje), COPRAS
(Complex Proportional Assessment) and PROMETHEE (Preference Ranking Organization
Method for Enrichment Evaluation) methods, and the most appropriate method is selected
according to the data and ranking type [15,20–23]. Table 1 provides the main information
of these methods [21]. In these methods, TOPSIS and VIKOR methods, based on the
distance from the ideal solution, have become very popular in the MCDA field. TOPSIS
takes into consideration both the positive (i.e., best) and the negative (i.e., worst) solutions,
and easy to compute and implement procedure. Its basic principle has to do with the
fact that the chosen alternative should have the shortest distance from the positive ideal
solution and the farthest from the negative ideal solution, compared to the others [13]. The
weakness of the TOPSIS is that being not able to deal with decisionmakers’ ambiguities
and uncertainties in determining weights of criterion and sub criterion, this weakness is
overcome by estimation of criterion weights using an entropy approach (Entropy weight
method) [15,24]. In recent years, this method has been applied to the study of sustainability
evaluation. For example, to evaluate urban sustainable development in China [13]; to eval-
uate sustainable road rating systems in Hungary [20]; to evaluate sustainable forest and air
quality management in Europe [18]. The VIKOR method, similarly to the TOPSIS method,
is based on distance measurements. In this approach a compromise solution is sought [23].
However, it focuses on ranking and selecting from a set of alternatives in the presence of
conflicting criteria. VIKOR also requires the determination of criterion weight coefficient
and criterion value, which is difficult to achieve in actual decision making. In Table A1,
which shows that we can obtained very similar rankings using TOPSIS and VIKOR. In the
aspect of sustainable development evaluation of urban transportation network, because the
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influence of traffic network on urban agglomeration involves many factors, the best form
of sustainable development of transportation network is the level of ESE development and
traffic resource allocation of urban agglomeration, which is close to the optimal state and
far away from the worst state. TOPSIS is more suitable for the systematic analysis of the
gap between the economic, social, and ecological environmental status and the ideal state
caused by the traffic network, and truly reflects the impact of the traffic network on the
urban agglomeration.

Table 1. Comparison of multi-criteria decision analysis (MCDA) methods.

TOPSIS VIKOR COPRAS PROMETHEE

Inputs Indel and anti-ideal
option weights

Best and worst
option weights

Best and worst
option weights

Indifference and preference
thresholds weights

Outputs

Complete ranking with
closeness score to ideal

and distance to
anti-ideal

Complete ranking with
closeness score to

best option
Complete ranking Partial and

complete ranking

Preference function Distance metric Distance metric Min Max Linear
Ranking scale 0~1 Positive values Positive values −1~1

Best alternative Max value Min value Max value Max value

Suitability

It requires minimal
input data and results
are easy to understand
and it is with shortest

geometrical distance to
ideal result

It focuses on ranking
and selecting from a set

of alternatives in the
presence of

conflicting criteria

It takes into account
performance of the

alternatives with best
and worst values which

affect the result

It is based on the
computation of

preference degrees
and it shows which

alternative would be more
appropriate to solve the

problem and how criteria
weight impact

alternative position

In addition, due to the differences in the measurement units, internal attributes and
orders of magnitude of each index, it cannot be used directly. Therefore, in order to unify
the standard and eliminate the dimensional impact, data normalization is the key link in
the sustainable development evaluation. The most common normalization methods in
MCDA methods include the minimum-maximum method, the vector method, the sum
method, the maximum method, and the minimum method [25–27]. However, in much
of the literature, there is no clear assignment to which decisionmakers’ methods of data
normalization are used. This situation poses a problem, as it is necessary to consider the
influence of particular normalizations on the result [28].

However, because the influence of traffic network on urban agglomeration involves
many factors, the best form of sustainable development of transportation network is the
level of ESE development and traffic resource allocation of urban agglomeration, which is
close to the optimal state and far away from the worst state. TOPSIS (Technique for Order
Preference by Similarity to Ideal Solution) is a comprehensive analysis method, which
makes a ranking through a positive ideal solution and a negative ideal solution [15,20]. It is
suitable for the systematic analysis of the gap between the economic, social, and ecological
environmental status and the ideal state caused by the traffic network, and truly reflects
the impact of the traffic network on the urban agglomeration. The entropy weight method
is an objective weighting method, which can avoid the influence of subjective factors on
index weight [13].

In this paper, we take the transportation network of BTH urban agglomeration as
the research object, 12 indicators in the field of transportation are selected from the three
levels of economy, society, and ecology. Then, implements the ESE impact assessment
of the transportation network of the urban agglomeration based on the Entropy weight
TOPSIS model, and uses the Jenks natural breaks classification method to divide the city
categories, then we can understand the ESE sustainable development status of different
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urban transportation networks in BTH from 2013 to 2017, to serve the transportation
integration and coordinated development of BTH urban agglomeration.

The rest of this paper is organized as follows. Section 2 introduces the study area,
data sources and methodology. Section 3 analyzes the results and provides a discussion.
Section 4 presents the conclusions and suggestions.

2. Study Area, Data Sources and Methodology
2.1. Study Area and Data Sources

The BTH region (36◦01′–42◦37′ N, 113◦04′–119◦53′ E) is located in the center of Bohai
economic circle, which is an important node area connecting northwest, northeast and
North China. The region includes Beijing and Tianjin, as well as Shijiazhuang, Tangshan,
Qinhuangdao, Chengde, Langfang, Handan, Xingtai, Cangzhou, Baoding, Zhangjiakou,
Hengshui and other cities in Hebei Province, with a total area of 215,400 km2. The terrain
is high in the northwest and low in the southeast. According to the traffic network spatial
distribution data of BTH urban agglomeration in 2017, the road network in the core area of
Beijing and Tianjin is dense, while the road network in the northern and southeastern edge
areas of Hebei Province is sparse (Figure 1). The urban transportation network construction
level had significant regional difference.
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Figure 1. The location of study area. On the right of the figure is the superposition data of DEM (Digital Elevation Model)
and road network in the study area, in which the road network includes expressways, first−class highways and trunk line
(national and provincial roads).

The data used in this study are from Beijing Municipal Bureau of statistics [29], Beijing
Municipal Bureau of ecological environment [30], Tianjin Bureau of Statistics [31], Tianjin
Ecological Environment Bureau [32], Hebei Provincial Bureau of Statistics [33] and De-
partment of ecological environment of Hebei Province [34] Including Beijing Statistical
Yearbooks (2014–2018), Beijing Environmental Status Bulletin (2013–2017); Tianjin Statisti-
cal Yearbooks (2014–2018), Tianjin Environmental Status Bulletin (2013–2017); Statistical
Yearbooks of Hebei Province (2014–2018), Environmental Status Bulletin of Hebei Province
(2013–2017). In this study, the weight of each indicator was calculated by programming
in python language. All spatial analysis and mapping were made by the software of
ArcGIS 10.2.
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2.2. Methodology Specification
2.2.1. Construction of the Indicator System

Urban traffic indicators are variables which used to reflect the development and
influence of urban traffic network. Therefore, indicators selection is the first step in traffic
network impact assessment. This study refers to the relevant indicators in the field of
transportation in the past, the indicators are screened from three aspects of transportation
network ESE. However, the indicators in the past research literature are not fully applicable,
and the selection of indicators also needs some criteria (Table 2). Screening by selection
criteria, 12 indicators of transportation network ESE of BTH urban agglomeration are
determined (Table 3).

Table 2. Criteria for indicators selection [12].

Criteria Description

Relevance Each indicator must properly hold the definition of traffic network.
Maturity The indicator system should contain ESE aspects of traffic network.

Data availability Needed data must be available easily and at a reasonable cost.
Quantifiable Indicators must be quantifiable.
Independent Indicators should be independent of each other.

Predictability As indicators can be used to model future policy impacts, it is
essential that indicators values can be forecasted for the future.

Table 3. Evaluation indices system of ESE effects of urban agglomeration transportation network.

Evaluation Object Indicators Weight Indicator
Direction Literature Support

Economic impact
assessment of

transportation network
(EC)

EC1 Fixed assets investment in transport,
storage, and post (100 million yuan) 0.171 + [14,35] *

EC2 Gross output value of transport, storage,
and post industry (100 million yuan) 0.240 + [36] *

EC3 Passenger traffic (10 thousand persons) 0.405 + [15,36–38] *

EC4 Freight traffic (10 thousand ton) 0.184 + [36,37,39]

Society impact
assessment of

transportation network
(SC)

SC1 Population density (person/km2) 0.164 + [13,35,38–40] *

SC2 Employment in transportation
industry(person) 0.460 + [35,38]

SC3 Per capita length of roads (km/10
thousand person) 0.150 + [13,14,38] *

SC4 Urbanization rate (%) 0.226 + [36,41]

Ecology impact
assessment of

transportation network
(EL)

EL1 Mean value of transportation trunk
noise (dB) 0.127 - [14,35,39,42]

EL2 ρ(PM10) (mg/m3) 0.440 - [12,35,39,43]

EL3 ρ(SO2) (mg/m3) 0.168 - [12,39]

EL4 ρ(NO2) (mg/m3) 0.265 - [12,35,39]

Explain: This type of indicator is used in the above references. * Represents a similar indicator.

The economic indicators are marked as EC, including fixed assets investment in
transport, storage, and post (EC1); gross output value of transport, storage, and post
industry (EC2); passenger traffic (EC3) and freight traffic (EC4). These indicators can well
reflect the economic development level of urban transportation network. EC1 represents the
asset investment of the transportation industry, which is mainly used for the development
of regional transportation infrastructure. EC2 represents the GDP of the transportation
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industry and reflects the contribution capacity of regional transportation economy. EC3
and EC4 reflect the regional transport capacity of passenger and freight.

Social indicators marked as SC, including population density (SC1); employment in
transportation industry (SC2); per capita length of roads (SC3); urbanization rate (SC4).
These indicators can well reflect the social development of transportation network. SC1
reflects the size of the city. SC2 reflects the contribution of transportation industry to urban
employment. SC3 reflects the construction of urban transportation infrastructure. Traffic
construction affects population flow. SC4 is the ratio of urban population to the total
population. The higher the ratio is, the higher the urbanization level is. Traffic construction
affects population movement, it indirectly reflects the development of urban traffic.

The ecological indicators are marked as EL. They include mean value of transportation
trunk noise (EL1), average concentration of PM10 in traffic environment (EL2), average
concentration of SO2 (EL3) and average concentration of NO2 (EL4). The damage of traffic
infrastructure to urban ecological environment is mainly reflected in noise pollution and
air pollution. EL1 reflects the noise pollution along the traffic network. EL2, EL3 and EL4
are the main traffic air pollutants.

2.2.2. Entropy Weight TOPSIS Method

Entropy weight method is an objective weighting method, which can clearly reveal
the utility of each index and avoid the interference of subjective factors. Nowadays, this
method is widely used in the research of index system evaluation [13]. TOPSIS model is a
comprehensive evaluation method based on distance, which was first proposed by Hwang
and Yoon in 1981. The model can objectively and comprehensively reflect the degree of ESE
impact of transportation network by calculating the closeness degree between evaluation
value and ideal solution, and is widely used in MCDA [15,20]. Therefore, this paper
calculates the index weight and evaluates the ESE effects of transportation network based
on the entropy weight TOPSIS method, as follows:

Step 1. Traffic indicators contain different types of information so there might be some
inconsistency in units among indicators. Therefore, after the completion of the original
data collection, the data normalization process is necessary. In Tables A2 and A3, this paper
uses Spearman rank correlation coefficient to compare results from different normalization
of entropy weight TOPSIS [28]. Finally, the minimum–maximum method is selected as the
data normalization method. In this paper, all indicators are normalized to [0,1] based on
minimum-maximum method [13].

rij = (xij −mini)/(maxi −mini), (1)

where rij is the standardized value of each index, rij ∈ [0, 1]; xij is the evaluation index
of each city in different years; mini is the minimum value of the index; and maxi is the
maximum value of the index.

Step 2. To calculate the value of entropy:

pij = rij/
N

∑
i=1

rij (i = 1, 2 . . . , N; j = 1, 2 . . . , T), (2)

ei = −
T

∑
j=1

pij × ln pij/ln T (i = 1, 2 . . . , N; j = 1, 2 . . . , T), (3)

where ei is the entropy value; pij is the proportion of the index value of item i of j city
in different years; T is the total number of evaluation objects; N is the total number of
evaluation indexes.

Step 3. To calculate the index weight wi:

wi = (1− ei)/
N

∑
i=1

(1− ei) (i = 1, 2 . . . , N), (4)
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Step 4. To establish a standardized decision matrix V:

V =
(
vij
)

N×T , vij = wirij (i = 1, 2 . . . , N; j = 1, 2 . . . , T), (5)

Step 5. To determine the positive and negative ideal solutions:

V+
i = max

j

(
vij , j = 1, 2, . . . , T

)
, (6)

V−i = min
j

(
vij , j = 1, 2, . . . , T

)
, (7)

Step 6. To calculate the distance between the positive and negative ideal solutions for
each city in different years:

D+
j =

√√√√ N

∑
i=1

(
vij −V+

i
)2

, (8)

D−j =

√√√√ N

∑
i=1

(
vij −V−i

)2

, (9)

where D+
j and D−j are the distances of the positive and negative ideal solutions, respectively.

Step 7. To calculate the score of comprehensive evaluation:

Cj = D−j /
(

D+
j + D−j

)
, (10)

where Cj is the closeness of the evaluated target object and the optimal solution.

2.2.3. The Jenks Natural Breaks Classification Method

The Jenks natural breaks classification method, also called the Jenks optimization, is
one of the standard classification methods of a calculation. It can identify the classification
interval, and can group the most appropriate similar values, and maximize the difference
between each class. The grouping method divides the data into several classes, and
for these classes, the boundary is set at the position where the data values are relatively
different [44,45]. In this paper, the method is used to determine the ESE evaluation threshold
of transportation network, and to divide the high and low score categories. The principle
is as follows.

Step 1. The sum of squared deviations (SDAM) is calculated for the array of a certain
class in the classification result:

SDAM = ∑
(
Xi − X

)2, (11)

where X represents the mean array.
Step 2. For the combination of each range in the classification results, the sum of

squares of total class deviations (SDCM) is calculated, select the smallest SDCM.

SDCM = ∑ ∑
(
Xi − Zc

)2, (12)

Step 3. Calculate the gradient of each classification GVF (goodness of variance fit) to
test of the combination value of termination on Natural Break:

GVF = SDAM− SDCM/SDAM, (13)

Range of values between 0 (worst fit) to 1 (perfect fit). GFV value close to 1 then the
better the classification.
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3. Results and Discussion

In this paper, the entropy weight TOPSIS method is used to calculate the ESE impact
value of the traffic network of the BTH urban agglomeration from 2013 to 2017. The impact
of the traffic network on the ESE of the BTH urban agglomeration is evaluated from the
overall situation and regional differences. The analysis is as follows.

3.1. Analysis on the General Situation of Economic, Social and Ecological Impact of Traffic
Network in Beijing–Tianjin–Hebei Urban Agglomeration

It can be seen from the average change of ESE impact index of traffic network in
BTH urban agglomeration from 2013 to 2017 (Figure 2). In the past five years, the average
annual change of economic impact degree of traffic network in BTH urban agglomeration
shows a fluctuating pattern, with a decrease of 15.77% in 2017 year compared with that in
2013 year, indicating that the driving role of transportation network on the overall economic
development of BTH urban agglomeration has been weakened and its sustainability has
been reduced; In terms of social impact, the average social impact degree of traffic network
in BTH urban agglomeration shows a steady upward trend in recent five years, with an
increase of 11.02% in 2017 years compared with that in 2013 years, and the interannual
change rate is stable, indicating that the traffic network has played a stable role in driving
the overall social development of BTH urban agglomeration in the past five years; In terms
of ecological impact degree, the average ecological impact degree has continued to decline
in the past five years, with a decrease of 40.95% in 2017 compared with 2013. In 2013, the
Ministry of environmental protection issued the detailed rules for the implementation of
the action plan for the prevention and control of air pollution in BTH and its surrounding
areas to jointly rectify the air pollution problem; In 2014, the government put forward the
policy of “integration of BTH”; In 2015, it deliberated and passed the outline of the plan
for coordinated development of BTH, and required the development of BTH to focus on
traffic and environmental protection. Under the promotion of a number of policies of the
party and the government, the traffic network construction and ecological protection of
BTH urban agglomeration have achieved obvious results, especially the ecological impact
change value from 2014 to 2015 accounted for 53.85% of the total five-year change value.
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Figure 2. Average change trend of ESE impact index of transportation network in Beijing–Tianjin–
Hebei (BTH) urban agglomeration from 2013 to 2017; (a) Interannual variation of economic impact
index of transportation network; (b) Interannual variation of social impact index of transportation
network; (c) Interannual variation of traffic network ecological impact index.
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3.2. Analysis on Regional Differences of Economic, Social and Ecological Impacts of Traffic
Network in Beijing–Tianjin–Hebei Urban Agglomeration

Due to the differences in the size, functional orientation, geographical location [46]
and political and economic status of each city in the BTH urban agglomeration, the impact
of the transportation network on the ESE of each city will also be different. In this paper,
the Jenks natural breaks classification method in ArcGIS10.2 is used to evaluate the ESE
impact scores of the traffic network in the BTH urban agglomeration from 2013 to 2017.
Then, based on the division results of the Jenks natural breaks, the cities in different periods
of BTH urban agglomeration are divided into seven categories. Finally, according to the
classification results, the spatial and temporal differences of ESE impacts of urban traffic
networks are analyzed in depth.

3.2.1. Economic, Social, and Ecological Impact Assessment of Urban Traffic Network in
Beijing–Tianjin–Hebei Urban Agglomeration

According to the constructed traffic network ESE index system, the entropy weight
TOPSIS method was used to obtain the traffic network ESE impact assessment scores of
13 cities in BTH from 2013 to 2017. The specific results are shown in Tables A4–A6. Then,
the Jenks natural breaks classification method in ArcGIS10.2 is used to grade the evaluation
results (Table 4).

Table 4. Determining the score threshold of ESE by the Jenks natural breaks.

Classification EC Range SC Range EL Range

Demarcation
lines

Low 0.0152–0.1860 0.1198–0.3209 0.1613–0.3691
High 0.1861–0.7663 0.3210–0.7811 0.3692–0.7765

According to Table 4, the threshold value of economic impact assessment score of
BTH urban agglomeration is 0.1860. If the score is greater than 0.1860, the economic
impact of transportation network is relatively high, and the sustainable development
level of transportation network is relatively good; if the score is less than or equal to
0.1860, the economic impact of transportation network is relatively low, and the sustainable
development level of transportation network is relatively poor. It can be seen from Figure 3
that from 2013 to 2015, there were 5 cities with high score in traffic network economic impact
assessment, namely Beijing, Tianjin, Tangshan, Shijiazhuang, and Handan, accounting for
38.46% of the cities studied in BTH; From 2016 to 2017, the number of cities with high
score in traffic network economic impact assessment was reduced to 4, and the score of
traffic network economic impact assessment in Handan decreased significantly. In terms
of spatial distribution, the cities with low score in the economic impact assessment of
the transportation network of BTH urban agglomeration are generally distributed in the
surrounding areas around Beijing–Tianjin–Tangshan, such as Qinhuangdao, Chengde,
Zhangjiakou, etc. These cities are generally small in scale, with relatively weak economic
and transportation infrastructure.

According to Table 4, the threshold of social impact assessment score of BTH urban
agglomeration transportation network is 0.3209. If the score is greater than 0.3209, the
social impact degree of transportation network is relatively high, and the social sustainable
development level of transportation network is relatively good; if the score is less than or
equal to 0.3209, the social impact degree of transportation network is relatively low, and
the social sustainable development level of transportation network is relatively low poor.
It can be seen from Figure 4 that in 2013, there were only three cities with high scores in the
social impact assessment of transportation network, namely Beijing, Tianjin and Handan,
accounting for 23.07% of the cities studied in BTH; from 2014 to 2017, there were four cities
with high scores in the social impact assessment of transportation network, and one new
city was Tangshan. According to the change of social impact degree of traffic network of
BTH urban agglomeration in recent five years, we can see that the level of social sustainable
development of BTH urban agglomeration is generally low, and there is a large space for
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improvement. In terms of spatial distribution, the cities with high score in social impact
assessment of transportation network are mainly distributed in the central core area and
the southernmost part of BTH.
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According to Table 4, the threshold of ecological impact assessment score of BTH
urban agglomeration transportation network is 0.3691. If the score is greater than 0.3691,
the ecological impact degree of transportation network is relatively high and the ecological
sustainable development level of transportation network is relatively poor. If the score
is less than or equal to 0.3691, the ecological impact degree of transportation network is
relatively low and the ecological sustainable development level of transportation network
is relatively high. It can be seen from Figure 5 that from 2013 to 2014, there were seven
cities with high score in traffic network ecological impact assessment, five cities in 2015,
four cities in 2016, and only one city in 2016. During these five years, the number of cities
with high score in traffic network ecological impact assessment decreased significantly,
indicating that the effect of traffic network ecological environment governance of BTH
urban agglomeration was significant. From the perspective of spatial distribution, the cities
with high ecological evaluation scores of transportation network are mainly distributed
in the southern part of BTH urban agglomeration, which are mainly located on the main
traffic roads connecting north and south, and the traffic pollution is relatively serious.
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3.2.2. Spatial and Temporal Differences of Economic, Social, and Ecological Impacts of
Urban Transportation Network in Beijing–Tianjin–Hebei Urban Agglomeration

According to the results of ESE impact assessment of BTH urban agglomeration trans-
portation network from 2013 to 2017, this study divides the urban types in different periods
into seven categories (Table 5). They are “High-High-Low” cluster, “High-High-High”
cluster, “High-Low-Low” cluster, “High-Low-High” cluster, “Low-Low-Low” cluster,
“Low-High-High” cluster, and “Low-Low-High” cluster. Finally, this paper analyzes the
temporal and spatial evolution of different urban types in BTH.
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Table 5. Classification of cities in different periods of BTH.

Number Classification Introduction

1 High-High-Low Cluster
The score of economic and social impact of the transportation network is high,

and the score of ecological impact is low. The sustainability of urban
transportation network is the best.

2 High-High-High Cluster The sustainable level of economic and social development of urban
transportation network is good, but the ecological sustainable level is poor.

3 High-Low-Low Cluster The economic and ecological sustainability of transportation network is high,
but the social sustainability is low.

4 High-Low-High Cluster The sustainable development level of transportation network economy is high,
but the social and ecological sustainable development level is low.

5 Low-Low-Low Cluster The level of ecological sustainable development of transportation network is
high, but the level of economic and social sustainable development is low.

6 Low-High-High Cluster The level of social sustainable development of transportation network is high,
but the level of economic and ecological sustainable development is low.

7 Low-Low-High Cluster The economic, social, and ecological sustainability of urban transportation
network is low.

“High-High-Low” cluster city refers to the city with great contribution to the eco-
nomic and social development of transportation network and better ecological environment
management. This type of city follows the principle of sustainable development of trans-
portation, that is, with the rapid development of urban economy and society, the ecological
environment can also be well protected, so that the three can achieve coordination, it
belongs to the ultimate goal of urban traffic network construction. As shown in Figure 6,
this type of cities has increased in the past five years. By 2017, this type of cities include
Beijing, Tianjin and Tangshan. In the past five years, Beijing has been a “High-High-Low”
cluster city, indicating that Beijing’s transportation network construction pays attention to
the coordinated development of ESE; In 2013, Tianjin was classified as a “High-High-High”
cluster city, and the environmental problems caused by the transportation network scored
high in the BTH urban agglomeration. With the strengthening of governance, the city
classification of Tianjin became a “High-High-Low” cluster city after 2014. In 2013, Tang-
shan city was classified as a “High-Low-High” cluster city, with low social and ecological
sustainability of transportation network. With the increase of the permanent resident
population and the employment population in the transportation industry in Tangshan, the
driving role of the social development of the transportation network has been significantly
strengthened. In 2014, the city category of Tangshan city turned to the “High-High-High”
cluster. With the increase of environmental governance, after 2016, the city category of
Tangshan City has become “High-High-Low” cluster and the transportation network ESE
have reached coordination.

“High-High-High” cluster city, “High-Low-Low” cluster city, “High-Low-High” clus-
ter city, “Low-Low-Low” cluster city and “Low-High-High” cluster city belong to the
transitional stage of urban transportation network construction, which often have one or
two disadvantages in the sustainable development of ESE. There are two trends in the
development of transportation network in these cities. One is to solve the disadvantages
of transportation network development, while maintaining the advantages of its own
transportation network development, and develop towards the direction of transporta-
tion network sustainability, such as Tangshan. The other is that it does not solve the
disadvantages of its own transportation network development, and does not maintain the
advantages of its own transportation network development, leading to the unsustainable
development of transportation network, such as Handan. For cities in the transition stage
of transportation network construction, more attention should be paid to the planning of
their own transportation network development, to realize the comprehensive and sustain-
able development of transportation network in ESE. In 2017, the main urban type of ESE
impact of BTH transportation network was “Low-Low-Low” cluster, accounting for 61.54%
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of the total research cities in BTH. In terms of space, it was distributed around Beijing
Tianjin Tangshan.

“Low-Low-High” cluster city is the worst type of city, and its transportation network
of ESE sustainable development is at a low level. In Figure 6, this category of cities is mainly
concentrated in 2013–2016, especially Baoding and Xingtai. In 2017, with the improvement
of traffic environment, these cities transformed into “Low-Low-Low” cluster.
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4. Conclusions and Suggestions
4.1. Conclusions

In this paper, 12 indicators in the field of transportation are selected to build the evalua-
tion index system of ESE effects of transportation network in BTH urban agglomeration. By
using entropy weight TOPSIS model and the Jenks natural breaks classification method, the
ESE impacts of transportation network in 13 cities of BTH from 2013 to 2017 are analyzed
from the temporal and spatial dimensions. Some remarkable findings are that:

• Overall, the economic impact of BTH transportation network has declined in the past
five years, the social impact is increasing year by year, and the ecological impact is
decreasing year by year.

• According to the ESE impact assessment results of the transportation network of
BTH urban agglomeration from 2013 to 2017, the city types can be divided into seven
categories: “High-High-Low” cluster, “High-High-High” cluster, “High-Low-Low”
cluster, “High-Low-High” cluster, “Low-Low-Low” cluster, “Low-High-High” cluster,
and “Low-Low-High” cluster. Except Handan City, the ESE impact assessment cate-
gories of other cities’ transportation network have been improved, but the proportion
of cities in the transition period is still large, especially the “Low-Low-Low” cities.
The types of cities in the transitional period need to be focused. It is still a heavy
burden to realize the ESE coordination and sustainable development of BTH urban
agglomeration transportation network.
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4.2. Suggestions

In view of the problems existing in the ESE development of the transportation network
of BTH urban agglomeration, this study puts forward some suggestions for the sustain-
able development of the future transportation network of different cities in BTH urban
agglomeration. For the cities around Beijing, Tianjin, and Tangshan, while ensuring the
regional ecological environment, it is necessary to strengthen the driving role of transporta-
tion network on regional economic and social development, speed up the construction of
transportation infrastructure, and create a convenient commuter circle around Beijing and
Tianjin. As the core of BTH urban agglomeration, Beijing and Tianjin need to strengthen the
radiation role of surrounding cities and transfer some urban functions to the surrounding
cities. For Shijiazhuang, the social impact of the transportation network is relatively weak,
so we need to focus on the function of the provincial capital, formulate and implement
the talent introduction policy, increase the employment in the transportation industry, and
promote the urbanization process. For Handan, we need to summarize the problems exist-
ing in the development of transportation network, strengthen environmental governance,
promote the revitalization of regional transportation industry, and revive regional economy.
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Appendix A

Table A1. Economic evaluation score and rank of different MCDA methods for traffic network of
BTH urban agglomeration in 2017.

Cities
TOPSIS VIKOR

Cj Rank Q Rank

Beijing 0.5311 1 0.000 1
Tianjin 0.4278 2 0.157 2

Shijiazhuang 0.3260 3 0.724 3
Tangshan 0.2872 4 0.783 4

Qinhuangdao 0.0532 9 0.972 10
Handan 0.1577 5 0.834 5
Xingtai 0.0391 10 0.946 9
Baoding 0.0803 8 0.862 6

Zhangjiakou 0.0302 11 0.988 12
Chengde 0.0277 12 0.975 11

Cangzhou 0.0995 7 0.885 7
Langfang 0.1040 6 0.918 8
Hengshui 0.0225 13 1.000 13

Spearman(r) 0.967 **
Note: ** means the significant level of correlation coefficient is 0.01.

https://github.com/wantime/Entropy-weight-TOPSIS-code-and-data.git
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Table A2. Economic evaluation score and rank of different normalization methods for traffic net-
work of BTH urban agglomeration in 2017, where r(A)-scoring and ranking by using TOPSIS with
minimum–maximum method; r(B)-scoring and ranking by using TOPSIS with vector method; r(C)-
scoring and ranking by using TOPSIS with sum method; r(D)-scoring and ranking by using TOPSIS
maximum method; r(E)-scoring and ranking by using TOPSIS minimum method.

Cities
r(A) r(B) r(C) r(D) r(E)

Cj Rank Cj Rank Cj Rank Cj Rank Cj Rank

Beijing 0.5311 1 0.3340 1 0.3814 1 0.5238 1 0.3732 1
Tianjin 0.4278 2 0.2532 2 0.2730 2 0.4197 2 0.2648 2

Shijiazhuang 0.3260 3 0.1340 3 0.1183 3 0.3166 3 0.0913 3
Tangshan 0.2872 4 0.1189 4 0.1004 4 0.2789 4 0.0781 4

Qinhuangdao 0.0532 9 0.0136 10 0.0215 10 0.0522 9 0.0224 9
Handan 0.1577 5 0.0680 5 0.0606 5 0.1532 5 0.0518 5
Xingtai 0.0391 10 0.0202 9 0.0237 9 0.0379 10 0.0204 10
Baoding 0.0803 8 0.0516 6 0.0484 7 0.0786 8 0.0464 7

Zhangjiakou 0.0302 11 0.0033 13 0.0144 11 0.0301 11 0.0167 11
Chengde 0.0277 12 0.0104 11 0.0142 12 0.0275 12 0.0158 12

Cangzhou 0.0995 7 0.0278 8 0.0498 6 0.0977 7 0.0494 6
Langfang 0.1040 6 0.0291 7 0.0415 8 0.1016 6 0.0396 8
Hengshui 0.0225 13 0.0087 12 0.0069 13 0.0217 13 0.0043 13

Table A3. Spearman coefficient values for all considered rankings, where r(A)-scoring and ranking
by using TOPSIS with minimum-maximum method; r(B)-scoring and ranking by using TOPSIS
with vector method; r(C)-scoring and ranking by using TOPSIS with sum method; r(D)-scoring and
ranking by using TOPSIS maximum method; r(E)-scoring and ranking by using TOPSIS minimum
method. R is the degree of compatibility. The higher the degree of compatibility, the more effective
the normalization method is.

r(A) r(B) r(C) r(D) r(E)

r(A) 1 0.962 ** 0.978 ** 1 0.984 **
r(B) 0.962 ** 1 0.967 ** 0.962 ** 0.962 **
r(C) 0.978 ** 0.967 ** 1 0.978 ** 0.995 **
r(D) 1 0.962 ** 0.978 ** 1 0.984 **
r(E) 0.984 ** 0.962 ** 0.995 ** 0.984 ** 1

R 0.981 0.963 0.979 0.981 0.981
Note: ** means the significant level of correlation coefficient is 0.01.

Table A4. Economic impact assessment scores of traffic network in BTH urban agglomeration from
2013 to 2017.

Cities
2013 2014 2015 2016 2017

Cj Rank Cj Rank Rank Cj Rank Cj Rank

Beijing 0.7663 1 0.4999 1 0.4951 1 0.5031 1 0.5311 1
Tianjin 0.3787 2 0.3871 2 0.4103 2 0.4143 2 0.4278 2

Shijiazhuang 0.2906 4 0.2762 4 0.2872 3 0.2951 3 0.3260 3
Tangshan 0.3174 3 0.2785 3 0.2762 4 0.2848 4 0.2872 4

Qinhuangdao 0.0240 13 0.0248 12 0.0335 11 0.0393 9 0.0532 9
Handan 0.2365 5 0.2478 5 0.2618 5 0.1498 5 0.1577 5
Xingtai 0.0530 10 0.0519 10 0.0522 10 0.0367 10 0.0391 10
Baoding 0.1860 6 0.1381 6 0.0712 8 0.0732 8 0.0803 8

Zhangjiakou 0.0453 11 0.0352 11 0.0261 12 0.0217 12 0.0302 11
Chengde 0.0790 9 0.0588 9 0.0586 9 0.0364 11 0.0277 12

Cangzhou 0.1041 7 0.1008 7 0.1056 6 0.0846 7 0.0995 7
Langfang 0.0864 8 0.0886 8 0.0888 7 0.0909 6 0.1040 6
Hengshui 0.0284 12 0.0259 13 0.0152 13 0.0184 13 0.0225 13
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Table A5. Social impact assessment scores of traffic network in BTH urban agglomeration from 2013
to 2017.

Cities
2013 2014 2015 2016 2017

Cj Rank Cj Rank Cj Rank Cj Rank Cj Rank

Beijing 0.7811 1 0.6820 1 0.6891 1 0.6819 1 0.6745 1
Tianjin 0.4013 3 0.3940 3 0.3983 3 0.3967 4 0.3929 4

Shijiazhuang 0.2089 6 0.2217 7 0.2282 7 0.2421 7 0.2545 7
Tangshan 0.2001 8 0.3903 4 0.3878 4 0.3983 3 0.3978 3

Qinhuangdao 0.1487 11 0.1581 10 0.1772 11 0.1769 11 0.1846 11
Handan 0.4708 2 0.4699 2 0.5811 2 0.4977 2 0.5559 2
Xingtai 0.2328 5 0.2378 6 0.2436 6 0.2641 6 0.2754 6
Baoding 0.1198 13 0.1206 13 0.1256 13 0.1335 13 0.1409 13

Zhangjiakou 0.1750 9 0.1821 11 0.1916 9 0.1998 9 0.2072 9
Chengde 0.2089 7 0.2128 8 0.2172 8 0.2243 8 0.2275 8

Cangzhou 0.3126 4 0.3209 5 0.2919 5 0.2888 5 0.2804 5
Langfang 0.1705 10 0.1786 9 0.1868 10 0.1958 10 0.2060 10
Hengshui 0.1331 12 0.1365 12 0.1429 12 0.1508 12 0.1578 12

Table A6. Evaluation scores of traffic network ecological impact of BTH urban agglomeration from
2013 to 2017.

Cities
2013 2014 2015 2016 2017

Cj Rank Cj Rank Cj Rank Cj Rank Cj Rank

Beijing 0.2825 10 0.2994 11 0.2372 9 0.2176 8 0.2031 9
Tianjin 0.3923 7 0.3350 8 0.2198 11 0.2071 11 0.1986 10

Shijiazhuang 0.7765 1 0.5671 3 0.3691 6 0.4134 1 0.3614 2
Tangshan 0.6104 4 0.4783 5 0.3811 4 0.3381 5 0.3149 5

Qinhuangdao 0.3070 8 0.3044 10 0.2344 10 0.2152 9 0.1931 11
Handan 0.7142 2 0.5084 4 0.4308 3 0.3953 2 0.3778 1
Xingtai 0.6857 3 0.6303 1 0.4601 2 0.3850 4 0.3541 3
Baoding 0.6019 5 0.5818 2 0.4709 1 0.3898 3 0.3335 4

Zhangjiakou 0.2291 11 0.2219 12 0.1634 12 0.1582 13 0.2091 8
Chengde 0.1985 13 0.2198 13 0.1613 13 0.1641 12 0.1626 13

Cangzhou 0.2142 12 0.3187 9 0.2831 7 0.2641 7 0.2513 6
Langfang 0.4242 6 0.4198 7 0.2591 8 0.2135 10 0.1772 12
Hengshui 0.2946 9 0.4274 6 0.3783 5 0.2902 6 0.2469 7
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