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Abstract: Achieving a supply chain that is resilient to potential unforeseen disruptions (e.g., strikes,
floods, tsunamis, etc.) remains one of the vital concerns of decision makers (DMs). To build up a
reactive supply chain plan towards resilience, the purchasing department needs to pay the strictest
attention to sourcing decisions. This study contributes to the literature through developing an
efficient resilient supplier selection approach based on a new holistic framework that enables the
identification of key resilience pillars (RPs) and traditional business criteria (TBC) in light of a
thorough literature review and experts’ opinions. To this end, the relative importance of TBC/RP
was measured by applying the DEMATEL (D) method. This was followed by the application of
MABAC-OCRA-TOPSIS-VIKOR (MOTV) methods to verify the suppliers’ ranking. Furthermore,
the Spearman rank correlation coefficient (SRCC) approach was used to investigate the correlation
among the suppliers’ ranking, revealed via the four methods. In this work, a real sourcing problem of
scrap metal for a steel manufacturing company was solved to prove the applicability of the proposed
approach. The research outcome revealed that the TBC of “trust” is the most important criterion,
followed by the “cost”, leaving the “geographical location” criterion as the least important one. In
this context, the RP of “flexibility” attained the highest relative weight compared to “agility”, which
secured the lowest weight. The results also showed “absolute” correlation among MABAC, VIKOR,
and OCRA compared to “very strong” correlation between TOPSIS and the others. This research can
support supply chain managers to achieve supply chain systems that reduce not only sourcing costs,
but also potential losses because of disrupting threats, by building resilient supply chains.

Keywords: multi-criteria decision making; resilient sourcing pillars; supply chain resilience; supplier
selection; hybrid decision making tool

1. Introduction

A typical supply chain network consists of suppliers, factories, materials and finished
goods, warehouses, distribution centers, and retailers that work to buy, make, move, sell,
and service products to customers. Hence, supply chain management refers to efficient
and smooth management and coordination of material, financial, and information flows
throughout the supply network towards the ultimate goal of maximizing profits and
customer satisfaction.

Business globalization and strategic sourcing have made supply chain networks more
vulnerable to disruptions that are attributable to unforeseen events, natural or manmade.
These disruptive events could be technological attacks, strikes, tsunamis, earthquakes, or
fires. Svensson [1] defines the unforeseen events as “unplanned events that may occur in the
supply chain which might affect the normal or expected flow of materials and components”.
The disruptive effect of these catastrophes on the supply chain network could lead to sales
and competitiveness loss, production stoppage, or customer dissatisfaction for supply
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chain partners. For instance, the 2011 Japan earthquake heavily affected Apple’s iPad 2
production as a result of shortages of flash memories and super thin batteries [2]. The
same disaster forced a part of the automotive industry to suspend production and caused
disruptions to retail supply chains in the UK ([3]. Similarly, US supply chains were
massively disrupted following Hurricane Sandy [4]. Thus, there is growing interest in
supply chain resilience to enhance businesses’ proactive and reactive capabilities against
shortages and disruptions [5]. Christopher and Peck [6] present supply chain resilience
as “the ability of a [supply chain] to return to its original state or move to a new, more
desirable state after being disturbed”. It was also defined by Ponomarov and Holcomb [7]
as “the adaptive capability of the supply chain to prepare for unexpected events, respond to
disruptions, and recover from them by maintaining continuity of operations at the desired
level of connectedness and control over structure and function”. Table 1 presents further
definitions for the concept.

Table 1. A number of resilience definitions from the literature.

Author(s) Definition

Holling [8] “The measure of the persistence of systems and of the ability to absorb change and disturbance and
still maintain the same relationships between state variables”

Gunderson [9] “The magnitude of disturbance that a system can absorb before its structure is redefined by changing
the variables and processes that control behavior”

Carpenter et al. [10] “Resilience is the ability of an organization to return to “normal” operations”

Hamel and Valikangas [11] “Organizational Resilience refers to the capacity for continuous reconstruction Physical systems”

Kendra and Wachtendorf [12]
“A fundamental quality of individuals, groups, organizations, and systems as a whole to respond

productively to significant change that disrupts the expected pattern of events without engaging in
an extended period of regressive behaviour”

Boss [13] and
Aburn et al. [14]

“Resilience is a term that is increasingly being used to describe and explain the complexities of
individual and group responses to traumatic and challenging situations”

Sheffi [15] “Resilience is the company’s ability to, and speed at which they can, return to their normal
performance level (e.g., inventory, capacity, service rate) following a disruptive event”

Jackson et al. [16] “Resilience is the ability to positively adjust to adversity”

Pettit et al. [17] and
Zhang et al. [18]

Supply chain resiliency is the capability to absorb instabilities and protect basic functionality
against disruptions

Jüttner and Maklan [19] “The apparent ability of some supply chain to recover from inevitable risk events more effectively
than others, based on the underlying assumption that not all risk events can be prevented”

Yao and Meurier [20] “The ability of an individual or organisation to expeditiously design and implement positive adaptive
behaviours matched to the immediate situation, while enduring minimal stress”

Southwick et al. [21] “Resilience is the ability to bend but not break, bounce back, and perhaps even grow in the face of
adverse experiences”

Wang et al. [22]

“A resilient system is a system with an objective to survive and maintain function even during the
course of disruptions, provided with a capability to predict and assess the damage of possible

disruptions, and enhanced by the strong awareness of its ever-changing environment and knowledge
of the past events, thereby utilizing resilient strategies for defence against the disruptions”

Fiksel [23], Fiksel et al. [24] “Resilience is the capacity for an enterprise or set of business entities to survive, adapt and grow in
the face of turbulent change”

Elleuch et al. [25] “Resilience is the ability of a system to return to its original state or a more favourable condition,
after being disturbed”

Um and Han [26] “Resilience is the ability to survive, adapt and grow in the face of turbulent change in sourcing,
manufacturing and delivery of product and service”

The supplier selection process (SSP) is one of the key activities towards achieving
a competitive supply chain, which further becomes a challenge for decision makers
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(DMs) within today’s business framework, dominated by globalization and strategic
sourcing [27,28]. As such, supplier selection is crucial for improving organizational com-
petitiveness and future development [29,30].

SSP refers to the selection of the right supplier(s) to source raw materials or units from.
SSP includes four subprocesses, namely defining the problem, identifying the evaluation
criteria, pre-qualifying potential suppliers, and selecting the best supplier(s) [31,32]. The
optimality of the final selection depends largely on the accuracy of each step of the evalua-
tion process, though the selected supplier remains subject to a regular evaluation, termed as
“monitoring suppliers” or “application feedback”. Over the last two decades, the process
of evaluating and selecting suppliers has gained more complexity due, certainly, to the
emergence of more quantitative and qualitative factors, in addition to the traditional ones
(e.g., price and quality). Accordingly, one the contributions of the present study definitely
strengthens the SSP literature with a new approach that includes resilience criteria over the
assessment process. Indeed, the proposed methodology is part of a collaboration project
with a steel manufacturer, aiming at improving its purchasing strategy towards resilience.
As such, a user-friendly decision-making tool is conceptualized and developed, theorizing
and proposing to support the purchasing department in evaluating and selecting the best
vendors (suppliers) among potential alternatives based on a number of traditional and
resilience performance criteria.

The SSP is a multi-criteria decision making (MCDM) problem; instead of restricting
its investigation to a specific MCDM approach, as in the related literature, another major
contribution of this study consists of employing several techniques to better evaluate the
robustness of the decision process and perceive possible discrepancies among the outcomes
of the most commonly used MCDM approaches.

A thorough review of the literature is conducted to develop a new conceptual frame-
work for the resilience pillars (RPs). The traditional business criteria (TBC)/RP are iden-
tified based on the literature as well as the opinion of experts (DMs from the purchasing
department). The decision-making trial and evaluation laboratory (DEMATEL) method
is proposed to quantify the relative importance of TBC/RP, prior to the implementation
of four MCDM methods (MOTV) to validate the evaluation and ranking orders of the
suppliers. Correlation among the four methods is duly assessed.

The proposed approach can be used by DMs to enforce business efficiency and re-
silience by considering TBC and RPs. Specifically, the new methodology will help the
purchasing department (e.g., buyers and purchasing managers) to easily evaluate and rank
multiple suppliers by simultaneously considering efficiency and resilience. Furthermore,
the sets of TBC and RPs that are identified throughout the present study can serve as a
reliable guide to suppliers, in view of improving their performance.

The remainder of this paper unfolds as follows: In Section 2, a thorough literature
review is conducted on supply chain resilience, resilient suppliers, and criteria/techniques
for supplier selection. In Section 3, the proposed resilient sourcing D-MOTV approach is
presented. This includes a problem statement and steps to apply the approach, in addition
to relative mathematical preliminaries. In Section 4, the application and evaluation of the
D-MOTV approach on a real case study (steel factory) is presented, followed by potential
managerial implications. Conclusions and future development are discussed in Section 5.

2. Literature Review
2.1. Supply Chain Resilience

Resilience is a multi-dimensional concept applied in various fields, such as economics,
manufacturing, architecture, environmental, and social sciences. This term, from a broader
point of view, relates to sustainable development, risk and disaster management, emergency
reactions, and supply chain disruption contexts. Resilient supply chain focuses on risk-
based perspectives of supply chain. Jüttner and Maklan [19] defined supply chain resilience
as related to supply chain vulnerability and supply chain risk management (SCRM). In a
study on supply chain risks, Mensah and Merkuryev [33] analyzed the resilience of the
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supply chain and proposed procedures to maintain a strategic distance from forthcoming
risks. The authors believe that supply chain resilience contributes to the effective recovery
of the standard conditions. The adaptation of resilience concepts to a supply chain allows
the system to dynamically react and fulfill the operational actions in unpredicted conditions,
such as disruptions and risks. This facilitates the recovery process in order to maintain
operations at the desired level [34]. Extensive reviews of the literature relating to resilient
supply chains can be found in Pettit et al. [35], Ribeiro and Barbosa-Povoa [5], Stone and
Rahimifard [36], Kamalahmadi and Parast [37], and Hohenstein et al. [38].

Companies, especially small and medium size enterprises (SMEs), are often the most
heavily affected within a supply network due to uncertainty and lack of information. Dif-
ferent coping strategies are adopted depending on the concerned supply chain operations
and functions. In a contextual setting where the supplier is globally important, finding
the most appropriate supplier becomes a crucial decision-making task due to its direct
influence on the supply chain resilience. Subsequently, the concept of resilient supplier
emerges as a key requirement towards enhancing companies’ performance. In the next
section, we review previous studies pertaining to resilient supplier selection.

2.2. Resilient Supplier Selection

Investigators of approaches for resilient supplier selection often look for models and
structures that not only increase the buyers’ economic potential but also fit to the existing
complex variables and elements to release optimal solutions that improve the performance
of both buyers and suppliers [39,40]. Christopher and Lee [41] report that there is a strong
collaborative relation between suppliers and creating resilient supply chains. In a resilient
context, supply managers are able to better act and control the whole network with higher
efficiency. While the classical systems for suppliers’ performance evaluation rely on factors
such as price, quality, and delivery conditions, the resilient approach goes beyond these
issues [42,43]. Rajesh and Ravi [44] state that resilient suppliers enable companies to
produce high quality products at an acceptable economy range in shorter lead times, with
lesser risks and enough flexibility to environmental concerns. Indeed, a well-designed
resilient supply chain reduces the likelihood of performance degradation and disruption
propagation, which may occur in the form of supply quantity losses, while ensuring the
supplier’s stability during risky situations [39]. On the other side, a resilient system allows
suppliers to more efficiently manage contingencies and interruptions, resulting in more
agility and flexibility for the supply chain [45].

Recent methods to assess suppliers’ resilience efficiency include an approach integrat-
ing data envelopment analysis (DEA) with the entropy concept [42] where, surprisingly,
the authors focus on mixed/combined and improved decision-making techniques. Hos-
seini et al. [39] developed a stochastic two-objective optimization model that may support
managers to build proactive and reactive strategies in sourcing decisions. However, with
the recognition of resource depletion, a wide range of companies need to consider the
environmental impact of their supply chain [39,46]. Parkouhi et al. [47] developed a re-
silient supplier segmentation by Grey DEMATEL and simple additive weighting tools. It
is realized that the selection of resilient providers in uncertain conditions is not a simple
operation and it is always counted as one of the main responsibilities of SC managers.
The literature claims that suppliers’ evaluation based on resilient factors has not been
sufficiently addressed. Kavilal et al. [48] proposed a fuzzy AHP-PROMETHEE approach
to rank resilient suppliers and claim that the supplier’s failure affects the expected total
cost more than supplier flexibility. Cavalcante et al. [49] suggested a hybrid approach
for resilient selection of suppliers by combining simulation and machine learning with
applications of data-driven decision-making supports. The results suggest that the pro-
posed approach improves the delivery reliability in the case of an accurate implementation.
Hosseini and Al Khaled [50] directed an analytical program using data mining, predictive
analytics models such as binomial logistics regression, classification, and regression trees,
and neural networks to predict the suppliers’ resilience value. Hasan et al. [51] proposed
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an MCDM-based Decision Support System to evaluate suppliers’ resiliency in the era of
logistics 4.0. Table 2 exhibits part of the abovementioned studies.

Table 2. Literature summary related to supply chain resilience and decision tools.

Reference The Method(s) Example/Application

Haldar et al. [52] AHP-QFD, TOPSIS Empirical example

Berle et al. [53] Monte Carlo simulation LNG transportation systems

Mohammed et al. [54] Fuzzy AHP, Fuzzy TOPSIS Numerical example

Rajesh and Ravi [44] Grey relational analysis Electronic supply chain

Rajesh and Ravi [55] Grey–DEMATEL Electronic supply chain

Thekdi and Santos [56] Input-Output modelling Port operations

Pramanik et al. [57] AHP-QFD-TOPSIS with fuzzy A computer manufacturing company

Mohammed et al. [46] AHP and Fuzzy TOPSIS A company in the UK producing thermal desorption

Kavilal et al. [48] Fuzzy AHP, PROMETHEE A mining equipment manufacturer in India

Parkouhi et al. [47] Grey DEMATEL, G-SAW Wood and paper industry

Cavalcante et al. [49] Big data, simulation, machine learning Numerical example

Hoseini et al. [39] AHP plastic raw material suppliers for a U.S.
based manufacturer

Hosseini and Al Khaled [50]
Predictive analytics, binomial logistics

regression, classification and regression trees,
and neural network

Numerical example

Hasan et al. [51] Multi-Choice Goal Programming and TOPSIS An illustration case

Pramanik et al. [58] Fuzzy analytic hierarchy process and fuzzy
additive ratio assessment Automotive manufacturing organization

Davoudabadi et al. [42] DEA and PCA A practical case study

The SSP literature that includes sustainability criteria is broader. An interesting review
can be found in, for example, [59]. In general, the literature returns a wide scope of con-
sideration for resilience criteria. For instance, reductions in uncertainty, agility, visibility,
integration, structure and knowledge, flexibility/redundancy, complexity, re-engineering
collaboration, transparency, and operational capabilities were presented by Ponomarov
and Holcomb [7] as the main resilience pillars. However, Carvalho et al. [60] argued
that redundancy and flexibility are resilience criteria or pillars, which was supported by
Purvis et al. [61] and highlighted in the recent work of Mohammed [43] where agility
and visibility were duly added. Rajesh and Ravi [44] evaluated resilience in suppliers’
performance based on feeling of trust, flexibility, safety, and level of collaboration. Hosseini
and Al Khaled [50] evaluated suppliers’ resilience performance vis-à-vis surplus inven-
tory, location separation, backup supplier contracting, robustness, reliability, rerouting,
reorganization, and restoration.

The RPs adopted for the present work are based on the RPs found in the literature
along with those derived from experts’ opinion, in addition to the TBC (e.g., cost, quality,
on time delivery, lead time, and work environment), as shown in the framework presented
in Section 5).

2.3. MCDM Methods in Supplier Selection

The supplier selection problem is fundamentally tied up with multi-criteria decision-
making models and their logical extensions. Supply chain experts can trust the utilization
and configuration of MCDMs in applications relating to supplier selection, classification,
and evaluation. This is due to the user-friendly, easy computation, robustness, validation,
and high acceptability of MCDMs [62–64]. A selection of techniques is implemented to
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analyze the suppliers’ performance and declare a ranked list. One of these methods is
ANP, which is an extended and most convenient version of AHP. In the automotive indus-
try in Pakistan, Dweiri et al. [65] proposed a comprehensive supplier selection method
using AHP. The latter was coupled with Fuzzy Cognitive Maps to explore the impact of
offshore locational decision on building a resilient supply chain [66]. By using a grey-based
ANP decision approach, Rajesh [67] investigated resilience strategies for electronic supply
chains, in which correlations between potential risk enablers and strategies were taken.
Parkouhi and Ghadikolaei [40] integrated ANP with VIKOR to assess and select suppliers
based on their resilient capabilities. Pramanik et al. [57] integrated AHP, quality function
deployment (QFD), and fuzzy TOPSIS to list optimal and resilient suppliers. The authors
analyzed suppliers with regard to criteria such as quality, reliability, and processing time;
responsiveness and re-engineering; and manufacturers. Wang et al. [68] conducted a
supplier selection study for a construction supply chain by using a combined approach
that includes AHP and grey relational analysis (GRA). Kaur et al. [45] used a fuzzy-based
MCDM approach to build a resilient sourcing strategy that includes supplier selection and
order size quantification. Foroozesh et al. [69] developed a novel MCDM and possibilistic
statistical group decision approach to improve resilience in selecting suppliers. To the same
end, Mari et al. [70] proposed a fuzzy multi-objective programming approach aiming at re-
vealing a trade-off between economic and resilience aspects. Chen et al. [71] demonstrated
the application of six-sigma indicators to improve quality levels and construct a green sup-
plier fuzzy selection model. The authors stated that the fuzzy evaluation model analyzes
the consistency of data collection methods. This study was carried out in the Taiwanese
electronic industry. In the same line, Gao et al. [72] proposed a consensus decision-making
approach to select green suppliers in electronics manufacturing enterprises. Mohammed
et al. [73] focused on a sustainable supplier selection program using Fuzzy AHP–fuzzy
TOPSIS to rank suppliers and a fuzzy Multi-Objective Optimization Model (MOOM) to
deliver optimal order quantity. To solve a multi-objective problem by the Pareto method,
ε-constraint and LP-metrics approaches were operated. Mavi et al. [74] proposed a fuzzy
Stepwise Weight Assessment Ratio Analysis (SWARA) and MOORA for the evaluation and
optimal selection of logistic providers in the plastic industry under risky conditions. They
have concluded that quality, recycling, health, and safety were the most important criteria
and operational risk was found to have the highest weight among risk factors. In order
to aid managers and practitioners to effectively analyze suppliers’ performance, Junior
et al. [75] compared fuzzy TOPSIS and fuzzy AHP based on a set of seven criteria. The
paper supports the idea that both methods are suitable for the problem of supplier selection,
particularly in-group and fuzzy modes. In a case study of an automotive company in India,
the experts adopted 22 sustainable criteria and utilized AHP and VIKOR to find the best
suppliers [76]. The authors reported that environmental costs, quality of the product, price
of the product, occupational health and safety systems, and environmental competencies
are among the top five sustainable criteria. Yazdani et al. [77] constructed a combined
analytical framework comprising QFD and DEMATEL to evaluate suppliers’ criteria with
respect to customers’ attitudes and COPRAS for final supplier prioritization. A group of
authors investigated a green supplier selection model through a group decision analysis
within the context of interval type-2 fuzzy sets (IT2FSs) of Interactive and Multi-Criteria
Decision-Making (TODIM) [78].

The review of the literature on supplier selection reveals that related decision-making
methodologies are applied as individual models, as integrated approaches, or as extended
versions with fuzzy sets, among others. It is also understood that the performance of these
approaches depends largely upon the reliability and trustworthiness of the results they
produce. As such, finding a concrete solution in an MCDM context is a real process that
is often handled through comparing techniques, such as TOPSIS [79], MABAC [80,81]
OCRA [82], and VIKOR [83,84]. Among the latter approaches, OCRA is the least known.
OCRA (Operational Competitiveness Rating) [85] is a convenient method for relative per-
formance measurement based on a nonparametric structure. This method is recommended
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for comparing and monitoring the performance of decision units over time in different
sectors. It can produce efficiency measurements of decision units using similar inputs
to produce similar outputs. Its applicability is demonstrated in several sectors, such as
banking investment, service buildings of public institutions, industrial enterprises, hotels,
and food production facilities [82].

The contribution of the present study consists of developing a new framework for
evaluating suppliers’ resilience that emerges through three aspects: (1) Unlike most research
studies, the resilience pillars that are adopted are identified based on both the literature
and experts’ opinions to simultaneously reflect academic and managerial perspectives.
(2) Furthermore, the evaluation process is quantitatively conducted using four different
performance evaluation techniques rather than a single approach. (3) In addition, the study
explores the correlation coefficient among these four commonly used methods.

3. Resilient Purchasing: D-MOTV Approach
3.1. Problem Statement

Supply chain resilience demonstrates the network’s capability to sense, resist, absorb,
and retrieve its normal state after disruptions to sustaining its business. This research
is based on a project conducted in collaboration with the purchasing department of a
steel manufacturing company (Company S, henceforth) aiming to develop a resilient and
green (i.e., environmental consideration) purchasing strategy. The focus of this research
study is restricted to the resilience aspect; it is concerned with devising a user-friendly
decision-making tool that can be used by buyers to evaluate and select the best suppliers
among available alternatives considering a number of criteria.

Company S is a medium-sized company (SME) in the Middle East that produces
high-quality steel products (e.g., reinforcement and flat bars, angles) by recycling scrap
metal, as a primary raw material, using an electric arc furnace. The molten (liquid) steel
undergoes rolling and refining operations before being shaped into various types of steel
products. Figure 1 depicts the supply chain of company S, which includes a number of
vendors, a materials warehouse, a plant warehouse, and a steel plant. Company S sources
scrap metal from various local vendors to store it in the warehouse prior to its transfer into
the production unit in the steel plant. The end products are stored in a plant warehouse
ready for distribution to customers.
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This work conceptualizes and proposes an approach that can support the purchasing
department throughout the evaluation and selection of the best vendors (suppliers) based
on their traditional and resilience performance. We intend to evaluate six key suppliers.
Supplier 1 (S1) has 120 employees including permanent and part time. S1’s experience in the
metal and steel sector exceeds 15 years. Suppliers S2 and S3 are known as big- and medium-
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sized holding companies that serve Northern and Southern parts of the country. They
have both more than 18 years’ experience and employ 350 workers including engineers,
technicians, operators, managers, etc., under a collaborative scheme. Supplier A4 is located
in the Eastern part of the country and operates on behalf of a bigger brand in Germany. The
company in Germany has more than 450 workers and almost 40 years dedicated to metal
and steel production. Supplier A5 has a production plant in the center, that has produced
and distributed different types of steel products all around the Middle East for 20 years.
Supplier A6 is a global scale exporter owning two assembly and production facilities.

As depicted in Figures 2 and 3, the evaluation of these suppliers is achieved through
the following three steps:

Step 1: Developing a holistic framework that presents the traditional business criteria
(TBC) and resilience pillars (RPs) as shown in Figure 2. These TBC/RP are identified based
on the review of the literature followed by a filtering with the purchasing team of company
S. As shown in Figure 2, TBC include seven criteria: purchasing cost, scrap quality, delivery
reliability, lead time, operating capacity, trust, and geographical location. The latter was
added by the purchasing department because the company prefers close vendors to reduce
the environmental impact.

Step 2: Quantifying the relative importance of TBC/RP shown in Figure 2. This step
relies entirely on DMs’ opinions (e.g., purchasing manager and buyers). To this end, the
DEMATEL method was applied.

Step 3: Evaluating and selecting the best performing vendors based on TBC/RPs by using
the MABAC method. Three other methods, namely OCRA, TOPSIS, and VIKOR, are also
applied to validate MABAC’s outcome and prove the rationality of the MCDM methods to
the purchasing department.

Step 4: The SRCC method was finally used to explore possible correlation among the
four methods.

Sustainability 2021, 13, 2695 9 of 32 
 

Step 1: Developing a holistic framework that presents the traditional business criteria 
(TBC) and resilience pillars (RPs) as shown in Figure 2. These TBC/RP are identified based 
on the review of the literature followed by a filtering with the purchasing team of com-
pany S. As shown in Figure 2, TBC include seven criteria: purchasing cost, scrap quality, 
delivery reliability, lead time, operating capacity, trust, and geographical location. The 
latter was added by the purchasing department because the company prefers close ven-
dors to reduce the environmental impact. 

Step 2: Quantifying the relative importance of TBC/RP shown in Figure 2. This step relies 
entirely on DMs’ opinions (e.g., purchasing manager and buyers). To this end, the DE-
MATEL method was applied.  

Step 3: Evaluating and selecting the best performing vendors based on TBC/RPs by using 
the MABAC method. Three other methods, namely OCRA, TOPSIS, and VIKOR, are also 
applied to validate MABAC’s outcome and prove the rationality of the MCDM methods 
to the purchasing department.  

Step 4: The SRCC method was finally used to explore possible correlation among the four 
methods. 

 
Figure 2. TBC/RP framework. TBC—traditional business criteria; RP—resilience pillars. Figure 2. TBC/RP framework. TBC—traditional business criteria; RP—resilience pillars.



Sustainability 2021, 13, 2695 9 of 30Sustainability 2021, 13, 2695 10 of 32 
 

 
Figure 3. Methodological framework for the resilient supplier selection. 

3.2. DEMATEL: Quantifying the importance of TBC/RP  
The United States Bastille laboratory proposed Decision Making Trial and Evaluation 

Laboratory (DEMATEL) in 1971. It has been widely used since then to reveal the influence 
level among criteria. Unlike the AHP method, this technique synthesizes the opinions or 
experience of experts by quantifying the influence level of each criterion. Through a series 
of calculations, the DEMATEL results are able to verify the interdependence among all 
the selected criteria and develop a holistic causes–effects diagram. The application of the 
DEMATEL method is as follows [86,87]: 

Step 1: Generate the direct relation matrix C (Equation (1)) via a pairwise comparison 
between criteria using the influence scale presented in Table 3.  

Table 3. Influence scale related to DEMATEL. 

Linguistic Variable Scale 
No influence (NI) 0 
Low influence (LI) 1 

Medium influence (MI) 2 

Figure 3. Methodological framework for the resilient supplier selection.

3.2. DEMATEL: Quantifying the Importance of TBC/RP

The United States Bastille laboratory proposed Decision Making Trial and Evaluation
Laboratory (DEMATEL) in 1971. It has been widely used since then to reveal the influence
level among criteria. Unlike the AHP method, this technique synthesizes the opinions or
experience of experts by quantifying the influence level of each criterion. Through a series
of calculations, the DEMATEL results are able to verify the interdependence among all
the selected criteria and develop a holistic causes–effects diagram. The application of the
DEMATEL method is as follows [86,87]:

Step 1: Generate the direct relation matrix C (Equation (1)) via a pairwise comparison
between criteria using the influence scale presented in Table 3.

Table 3. Influence scale related to DEMATEL.

Linguistic Variable Scale

No influence (NI) 0

Low influence (LI) 1

Medium influence (MI) 2

High influence (HI) 3

Very high influence (VHI) 4
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C =
C1 + C2 + . . . + Cm

m
=



0 c12 . . . c1i . . . c1n
c21 0 . . . c2i . . . c2n
. . . . . . . . . . . . . . . . . .
ci1 . . . . . . . . . . . . cin
. . . . . . . . . . . . . . . . . .
cn1 cn2 . . . cni . . . 0

 (1)

where C1, C2, and Cm refer to the number of direct relation matrices based on the number
of participants (m) in the evaluation of criteria (n).

Step 2: Compute the normalized direct relation matrix N by using Equations (2) and (3).

N = x·C (2)

where

x = min

[
1

max ∑n
i=1 cij

,
1

max ∑n
j=1 cij

]
(i, j = 1, 2, . . . , n) (3)

Step 3: Generate the total relation matrix T via Equation (4). This matrix depicts the total
relationship including direct influence and indirect influence between each pair of criteria.

T = N(I−N)−1 (4)

Step 4: Divide the criteria into causes and effects groups by computing the Dk + Rk
value called “prominence” and Dk − Rk value called “relation” for each criterion. The
Dk and Rk are the sums of the rows and the columns of matrix (T), as presented in
Equations (5) and (6), respectively.

Di =
n

∑
j=1

tij(i = 1, 2, . . . , n) (5)

Rj =
n

∑
i=1

tij(j = 1, 2, . . . , n) (6)

Any criterion would be categorized as (i) a cause when its “relation” value (i.e.,
Dk − Rk) is positive; and (ii) and an effect when its “relation” value is negative.

Step 5: Develop a causes and effects diagram according to the threshold value. The setting
of the threshold value (α) would be quite helpful for a DM to develop the causes and
effects diagram. For example, when the value of total relationship between criterion i and
criterion j in the matrix (T) is greater than the threshold value (i.e., tij > α), it means that
criterion j is caused by criterion i, where the arrow begins from criterion i to criterion j and
verse vice. The threshold value (α) could be computed by Equation (7), where num means
the number of elements of the total relation matrix (T).

α =
1
N

n

∑
i=1

m

∑
j=1

[
tij
]

(7)

3.3. MOTV: Evaluation of Supplier Performance

In this work, four MCDM methods are applied to validate the evaluation and the right
selection of suppliers.

3.3.1. MABAC

The Multi-Attributive Border Approximation area Comparison (MABAC) method
was developed by Pamucar and Cirovic [81]. MABAC is based on ranking an alternative
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based on its distance of criteria function from the border approximate area. The MABAC is
applied as follows [81]:

Step 1. Building the decision matrix D (see Equation (8)) using the evaluation scale
presented in Table 4. The DMs hereby need to evaluate vendors vis-à-vis each TBC/RP.

D = D1+D2+...+Dk
k =

[
dij
]

nxm =



0 d12 . . . d1i . . . d1n
d21 0 . . . d2i . . . d2n
. . . . . . . . . . . . . . . . . .
di1 . . . . . . . . . . . . din
. . . . . . . . . . . . . . . . . .
dm1 dm2 . . . dmi . . . dnm


i = 1, 2, . . . , m; j = 1, 2, . . . , n

(8)

where D1, D2, and Dm refer to the number of decision matrices to be built by the number
of DMs (k) for the evaluation of criteria (n).

Table 4. Scales used for evaluating resilience performance.

Linguistic Variable Scale

Very low (VL) 1
Low (L) 3

Medium (M) 5
High (H) 7

Very high (VH) 9

Step 2. Building the normalized decision matrix Nij as follows:

Nij =
[
nij
]

nxm; i = 1, 2, . . . , m; j = 1, 2, . . . , n (9)

where elements (nij) in Equation (9) can be determined as follows:
For beneficial criteria (e.g., scrap quality),

nij =
dij − d−i
d+i − d−i

(10)

For non-beneficial criteria (e.g., purchasing cost),

nij =
dij − d+i

d+i
(11)

where d+i = max (x1, x2, . . . , xm ) and refers to the maximum values of the observed criterion
by vendors.

Step 3. Building the weighted normalized decision matrix Wij as follows:

Wij =
[
yij
]

nxm; i = 1, 2, . . . , m; j = 1, 2, . . . , n (12)

yij = wj nij +wj, where wj refers to the criteria weight to be revealed via DEMATEL.

Step 4. Measuring of border approximate area matrix Gij for each TBC/RP as follows:

gi =

(
m

∏
j=1

wij

)1/m

(13)

Gij =
[

gj1
1 gj2

2 . . . gjn
n

]
(14)
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Step 5. Measuring the distance matrix Q of vendors from the border approximate area (G)
as follows:

Q = Wij − Gij (15)

Finally, vendors are ranked based on their Q values, in which the highest value refers
to the best vendor.

3.3.2. OCRA

The operational competitiveness rating analysis (OCRA) method was developed by
Parkan [87]. It is a nonparametric technique that is used to assess the performance of
alternatives and productivity analysis. It has been applied in several research studies
because of its simplicity and ease of application in addition to its ability to evaluate and
diagnose the efficiency of a decision unit over time [88]. The OCRA method is applied as
follows [87,88]:

Step 1. Building the decision matrix D as in Equation (16).

D = D1+D2+...+Dk
k =

[
dij
]

nxm

=



0 d12 . . . d1i . . . d1n
d21 0 . . . d2i . . . d2n
. . . . . . . . . . . . . . . . . .
di1 . . . . . . . . . . . . din
. . . . . . . . . . . . . . . . . .
dm1 dm2 . . . dmi . . . dnm


i = 1, 2, . . . , m; j = 1, 2, . . . , n

(16)

where D1, D2, and Dm refer to the number of decision matrices to be built by the number
of DMs (k) and dij refers to the performance of vendor i vis-à-vis criterion j.

Step 2. Determining preference ratings with respect to non-beneficial criteria (e.g., purchas-
ing cost). In this step, only the non-beneficial criteria, which are desired to be minimized,
are considered. Equation (17) can be used to calculate the total performance of vendors
vis-à-vis non-beneficial criteria as follows:

Ii =
g

∑
j=1

wj
max

(
xij
)
− xij

min
(

xij
) ; i = 1, 2, . . . , m; j = 1, 2, . . . , g (17)

Ii corresponding performance of vendor i;
xij performance score of vendor i vis-à-vis non-beneficial criteria;
g number of non-beneficial criteria;
wj relative importance of criterion i.

Step 3. Calculating the total preference rating score for each vendor with respect to non-
beneficial criteria, as in Equation (18).

I = Ii + min
(

Ii
)

(18)

where I refers to the total preference rating score for vendor i with respect to non-beneficial
criteria.

Step 4. Determining the preference rating scores vis-à-vis beneficial criteria (e.g., scrap
quality) as follows:

Oi =
n

∑
j=g+1

wj
xij −min

(
xij
)

min
(

xij
) ; i = 1, 2, . . . , m; j = g + 1, g + 2, . . . , n (19)

N—g number of beneficial TBC/RP;
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wj—relative weight of beneficial criterion j.
Additionally, it should be noted that the summation of beneficial and non-beneficial

criteria weights must equal to one.

Step 5. Calculating the total preference rating score
(

O
)

for beneficial criteria as follows:

O = Oi + min
(
Oi
)

(20)

Step 6. Calculating the total preference score Pi for each vendor via Equation (21). The
least preferable vendor will take the value of zero.

Pi =
(

I + O
)
−min

(
I + O

)
; i = 1, 2, . . . , m (21)

Now, vendors are ranked according to their Pi, where the highest Pi refers to the best
vendor performance.

3.3.3. TOPSIS

Hwang and Yoon [89] developed TOPSIS to evaluate alternatives based on their
distance from the worst/ideal solutions. Since then, TOPSIS has proved efficient in deriving
a ranking of the proposed alternatives [90,91]. In this paper, TOPSIS was adopted to
evaluate suppliers’ performance against TBC/RP. TOPSIS was applied as follows [73,87]:

Step 1. Building the decision matrix D (see Equation (22)) using the evaluation scale
presented in Table 4.

D = D1+D2+...+Dm
m =

[
dij
]

nxm =



0 d12 . . . d1i . . . d1n
d21 0 . . . d2i . . . d2n
. . . . . . . . . . . . . . . . . .
di1 . . . . . . . . . . . . din
. . . . . . . . . . . . . . . . . .
dm1 dm2 . . . dmi . . . dnm


i = 1, 2, . . . , m; j = 1, 2, . . . , n

(22)

where D1, D2, and Dm refer to the number of decision matrices to be built by the number
of DMs (m) for the evaluation of criteria (n).

Step 2. Building the normalized decision matrix (N) via Equation (23).

Nij =

 dij√
∑n

i=1 d2
ij

; i = 1, 2, . . . , m; j = g + 1, g + 2, . . . , n (23)

Step 3. Multiplying matrix Nij by criteria weight wj (derived from DEMATEL) to build the
weighted normalized decision matrix W ij shown in Equation (24).

Wij = Nijwj (24)

Step 4. Measuring the distances that the positive and negative ideal solutions are from
each criterion for all suppliers by using Equations (25) and (26), respectively.

A
+
=
{

v+1 , v+2 , . . . , v+i
}

(25)

A
−
=
{

v−1 , v−2 , . . . , v−i
}

(26)
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Step 5. Measuring the distance from the positive ideal solution (d+i ) and from the negative
ideal solution (d−i ) for vendor “i”, as shown in Equation (27).

d+i = ∑
j∈n

d
(

vij, v+j
)

; d−i = ∑
j∈n

d
(

vij, v−j
)

; (27)

where v+j and v−j refer to the positive/negative ideal points for criterion “j”, respectively.

Step 6. Calculating the closeness coefficient (CC) value for each vendor by using Equation (15).
This value represents closeness from the ideal solution and furthermost from the negative
solution for each vendor with respect to all TBC/RP.

CC =
d−i

d+i + d−i
(28)

The CC value varies between 1 and 0. The highest CC value refers to the best perfor-
mance and vice versa.

3.3.4. VIKOR

Serafim Opricovic developed VIKOR as a compromise ranking MADM method [92].
It helps DMs to evaluate and rank alternatives based on their distances from the posi-
tive/negative ideal solution [93]. In this paper, VIKOR was adopted to evaluate suppliers’
performance vis-à-vis TBC/RP. VIKOR was applied as follows [92,93]:

Step 1. Building the decision matrix Aij as shown in Equation (29). Matrix Aij is built based
on decision maker experts using the evaluation scale presented in Table 4.

CC =
d−i

d+i + d−i
(29)

where i and j refer to the suppliers and criteria, respectively.

Step 2. Using Equation (30) to build the normalized decision matrix Nij.

nij =
rij(√
∑
i

r2
ij

) (30)

wnij = nijx wj (31)

Step 3. Using Equation (31) to build the weighted normalized decision matrix Wij, where
wi is the weight of TBC/RP derived from the DEMATEL method.

Step 4. Using Equations (32) and (33) to measure the positive ideal solution ( f ∗j ) and the
negative ideal solution ( f−j ).

f ∗j = maxwnij (32)

f−j = minwnij (33)

Step 5. Using Equation (34) to determine the values Si and Ri as follows:

SI = ∑
j∈J

wj( f ∗j − fij)/( f−i − fi) (34)

Ri = max
j

wj( f ∗j − fij)/( f−i − fi) (35)
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where wj refers to the weight of TBC/RP derived from DEMATEL, Si is the distance of the
supplier’s performance to the positive ideal solution, and Ri is the maximal regret of each
supplier.

Step 6. Using Equation (36) to determine the measuring index Qi.

Qi = v(
Si − S∗

S− − S∗
) + (1− v)(

Ri − R∗

R− − R∗
) (36)

where S∗ = min
i

Si and S* = 0; S− = max
i

Si and S- = 1; R∗ = min
i

Ri and R* = 0; R− = max
i

Ri

and R- = 1; and v is a weight for the strategy of maximum group utility, whereas 1 v is the
weight of the individual regret. Generally, v = 0.5 is assigned when the decision process
involves both maximum group utility and individual regret [92].

3.4. SRCC: Exploring Correlation among MOTV

The Spearman rank correlation coefficient (SRCC) approach is used to explore the
monotonic association between two sets of data obtained by using two different meth-
ods [94–96]. Mohammed et al. [83] applied SRCC to investigate the statistical measure
between data obtained by ELECTRE and TOPSIS. Chamodrakas et al. [97] applied SRCC
to obtain the correlation coefficient between sets of rankings obtained by TOPSIS and a
modified version of TOPSIS. Similar studies were presented by [98–100]. In this research,
the SRCC approach was proposed to explore the degree of correlation among MOTV that
reveal four rankings of suppliers as follows:

SRCC = 1−
6 ∑m

i=1 y2
i

X3 − x
; −1 ≤ SRCC ≤ 1 (37)

where the SRCC value refers to the correlation level among the four rankings obtained by
using MOTV; x is the number of suppliers; X is the total number of suppliers; and y is the
difference between two considered rankings. Thus, this approach is applied several times
to reveal the correlation value between two evaluation methods at a time.

The correlation value (SRCC) varies between −1.0 (an absolute negative correlation)
and 1.0 (an absolute positive correlation). Accordingly, it can be, verbally, categorized
as follows:

• 1
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4. The D-MOTV Approach: Results and Discussion

In this case study, we have designed, in collaboration with the purchasing manager, a
group decision-making platform involving five experts of various knowledge and experi-
ence backgrounds from the purchasing department. These include:

• The purchasing manager who has been working in the procurement field for 20 years;
• Two senior buyers with an average of 8 years’ experience in the purchasing department;
• A buyer with 3 years’ experience in production and purchasing;
• 1A junior buyer who joined the company 8 months ago (from the date of data collection).

These employees were met with twice: (1) as a group to discuss the methodology and
its application steps and required data, and (2) individually to collect the required data.
These meetings were held online and lasted around 1.5 h.
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4.1. Quantifying Criteria: DEMATEL

In this section, we adopt the DEMATEL tool. This is a method that generally computes
the weights of the decision factors and explores their influence, categorizing them into cause
and effect groups. We have defined RP as per each resilience pillar, including Flexibility,
Redundancy, Agility, Redundant supplier, Risk oversight, Cooperation, and Visibility. The
complete list of criteria is available in Table 5. The aggregated ratings for pairs of criteria
are shown in Table 6, which is obtained by Equation (1) as a reflection of the general form of
the decision matrix called the direct relation matrix. The normalized direct relation matrix
for RP, given in Table 7, is worked out through Equations (2) and (3). The next step is to
obtain the total relation matrix (T) that must be achieved using Equation (4). We performed
the (T) matrix and Table 8 releases the corresponding data. According to this table, the sum
of each row and column results in two vectors called D and R, respectively. The vectors
are computed using Equation (5). Table 9 offers evidence for this step. The information
provided represents (D + R) and (D – R), which are the degree of total influence levels
and the degree of net influence levels, respectively. Indeed, the positive values claim that
it will influence the other requirements more than any other requirement influences it.
The two categories of Cause and Effect are presented in Table 9. Based on the results, it
appears that RP1 and RP3 are the most effective and least important factors produced by
DEMATEL, respectively. The threshold value computed by Equation (7) is marked (*) in
Table 8; this states the interaction between the criteria. For example, in the case of RP1 and
RP2, the corresponding value is 0.335, which is higher than 0.2346. This means that RP2 is
affected by RP1. This can be very important for DMs for further analysis of the decision
environment. It must be mentioned that RP4 and RP5 are placed in the cause group, while
the rest of the pillars are classified as effects.

Table 5. Definitions of TBC/RP.

TBC/RP Definition

TBC

Purchasing cost (TBC1) Compare purchase cost per unit among alternatives

Scrap quality (TBC2) Contents of iron (as the main component) and non-ferrous admixtures

Delivery Reliability (TBC3) The ability to conform with a promised scheduled delivery plan consistently

Trust (TBC4) The gauge of positive historical collaborations

Turnover (TBC5) Vendors’ capability to satisfy company’s needs

Lead Time (TBC6) The duration of time from putting an order in to the receipt of the order

Operating capacity (TBC7) The asset within which a company hopes to operate—commonly during a
short-term period

Geographical location (TBC8) The distance from a vendor’s location to Company S’ location

RP

Flexibility (RP1) Vendors’ ability to react smoothly to turbulences in the supply chain with respect to
similar costs and lead times.

Redundancy (RP2) Vendors’ ability to absorb disruptions to materials within the supply chain via
redundant suppliers

Agility (RP3)
Vendors’ ability to respond quickly and efficiently to reasonably small business

opportunities in collaboration with a collaborator able to cope with
unanticipated/unpredictable demand

Redundant supplier (RP4) Vendors’ ability and willingness to collaborate with a new supplier to absorbs
disruptions to materials within the supply chain

Risk oversight (RP5) Vendors’ ability to stay tuned to potential disruptions outside its company

Cooperation (RP6) Vendors’ willingness to keep cooperation with their clients to develop proactive and
reactive plans towards resilience business

Visibility (RP7) Vendors’ willingness to share relevant information with their clients; this helps both
parties to see the light at the end of the resilience tunnel
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Table 6. The aggregated decision matrix for RP.

Pillars RP1 RP2 RP3 RP4 RP5 RP6 RP7

RP1 0 2 4 3 0 4 4

RP2 4 0 1 0 0 0 0

RP3 4 4 0 0 0 0 0

RP4 4 3 3 0 3 4 1

RP5 4 4 2 4 0 0 4

RP6 2 0 0 0 4 0 4

RP7 2 4 3 0 1 4 0

Table 7. The aggregated normalized decision matrix for RP.

Pillars RP1 RP2 RP3 RP4 RP5 RP6 RP7

RP1 0 0.1 0.2 0.15 0 0.2 0.2

RP2 0.2 0 0.05 0 0 0 0

RP3 0.2 0.2 0 0 0 0 0

RP4 0.2 0.15 0.15 0 0.15 0.2 0.05

RP5 0.2 0.2 0.1 0.2 0 0 0.2

RP6 0.1 0 0 0 0.2 0 0.2

RP7 0.1 0.2 0.15 0 0.05 0.2 0

Table 8. The total influence matrix (T) for RP (t∗ij > 0.2346).

Pillars RP1 RP2 RP3 RP4 RP5 RP6 RP7

RP1 0285* 0.335* 0.374* 0.218 0.126 0.374* 0.368*

RP2 0.273* 0.081 0.130 0.046 0.027 0.079 0.078

RP3 0.311* 0.283* 0.101 0.053 0.031 0.091 0.089

RP4 0.494* 0.398* 0.356* 0.126 0.259* 0.381* 0.283*

RP5 0.504* 0.462* 0.338* 0.298* 0.111 0.238 0.386*

RP6 0.292* 0.197 0.160 0.096 0.261* 0.147 0.345*

RP7 0.313* 0.355* 0.277* 0.073 0.130 0.308* 0.154

Table 9. Total influence and net influence levels for RP.

Pillars D R D+R D-R Weights Group

RP1 2.079 2.472 4.551 −0.393 0.197999 effect

RP2 0.714 2.110 2.824 −1.397 0.122863 effect

RP3 0.959 1.736 2.695 −0.778 0.11725 effect

RP4 2.297 0.910 3.207 1.387 0.139526 cause

RP5 2.336 0.945 3.281 1.391 0.142745 cause

RP6 1.497 1.617 3.114 −0.120 0.13548 effect

RP7 1.611 1.702 3.313 −0.092 0.144137 effect

In the second level for DEMATEL computation, we followed a similar procedure.
We assumed that the Traditional Business criteria (TBC) include Purchasing cost (TBC1),
Scrap Quality (TBC2), Delivery reliability (TBC3), Trust (TBC4), Turnover (TBC5), Lead
time (TBC6), Operating capacity (TBC7), and Geographical location (TBC8). Similar to the
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previous calculations, the aggregated opinion of experts for TBC is observable in Table 10.
Next, it is necessary to release the normalized decision (Table 11).

Table 10. The aggregated decision matrix for TBC.

Criteria TBC1 TBC2 TBC3 TBC4 TBC5 TBC6 TBC7 TBC8

TBC1 0 4 2 1 1 2 0 0

TBC2 4 0 3 4 2 2 0 0

TBC3 0 1 0 4 0 4 0 1

TBC4 4 1 1 0 0 4 0 0

TBC5 2 2 0 2 0 0 4 0

TBC6 0 0 1 4 0 0 1 0

TBC7 4 0 0 4 2 0 0 0

TBC8 3 0 3 0 0 3 0 0

Table 11. The normalized decision matrix for TBC.

Criteria TBC1 TBC2 TBC3 TBC4 TBC5 TBC6 TBC7 TBC8

TBC1 0 0.211 0.105 0.053 0.053 0.105 0 0

TBC2 0.211 0 0.158 0.211 0.105 0.105 0 0

TBC3 0 0.053 0 0.211 0 0.211 0 0.053

TBC4 0.211 0.053 0.053 0 0 0.211 0 0

TBC5 0.105 0.105 0 0.105 0 0 0.211 0

TBC6 0 0 0.053 0.211 0 0 0.053 0

TBC7 0.211 0 0 0.211 0.105 0 0 10

TBC8 0.158 0 0.158 0 0 0.158 0 0

To compute the total influence matrix for TBC based on DEMATEL formulation, we
used Equation (4) and the results are given in Table 12. This matrix declares how the total
relation of factors was realized by the expert’s attitude. For the next step of DEMATEL, we
sum each row and each column of Table 12 to build the new decision (Table 13). In this
group of criteria, TBC4 (trust) is named as the best criterion while TBC8 is identified as the
least important. In addition, five criteria belong to the effects group and there are three
cause-related criteria.

Table 12. The total influence matrix (T) for TBC.

Criteria TBC1 TBC2 TBC3 TBC4 TBC5 TBC6 TBC7 TBC8

TBC1 0.120 0.267 0.185 0.219 0.090 0.233 0.031 0.010

TBC2 0.345 0.121 0.252 0.393 0.141 0.292 0.045 0.013

TBC3 0.104 0.097 0.069 0.326 0.018 0.324 0.021 0.056

TBC4 0.276 0.128 0.127 0.142 0.030 0.311 0.023 0.007

TBC5 0.251 0.181 0.075 0.250 0.056 0.115 0.228 0.004

TBC6 0.081 0.037 0.087 0.274 0.015 0.089 0.060 0.005

TBC7 0.320 0.102 0.074 0.313 0.137 0.126 0.035 0.004

TBC8 0.206 0.063 0.212 0.129 0.019 0.260 0.018 0.011
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Table 13. Total influence and net influence levels for TBC.

Criteria Di Ri Di+Ri Di-Ri Group Weights

TBC1 1.1547 1.7032 2.8580 −0.5485 effect 0.165

TBC2 1.6028 0.9975 2.6003 0.6053 cause 0.150

TBC3 1.0150 1.0801 2.0951 −0.0651 effect 0.121

TBC4 1.0435 2.0458 3.0893 −1.0023 cause 0.178

TBC5 1.1604 0.5064 1.6668 0.6540 effect 0.096

TBC6 0.6474 1.7491 2.3965 −1.1018 cause 0.138

TBC7 1.1112 0.4618 1.5731 0.6494 effect 0.091

TBC8 0.9185 0.1095 1.0280 0.8090 effect 0.059

The complete list of 15 evaluation factors is presented in Table 14. We used the data of
this table for the main decision matrix where the ranking-based methods are directed to
supplier performance assessment.

Table 14. Weight of TBC/RP via DEMATEL.

Aspect Criteria/Pillars Weight Ranking

TBC

TBC1 0.1651 2

TBC2 0.1502 3

TBC3 0.1211 5

TBC4 0.1785 1

TBC5 0.0963 6

TBC6 0.1385 4

TBC7 0.0909 7

TBC8 0.0594 8

RP

RP1 0.1980 1

RP2 0.1230 6

RP3 0.1170 7

RP4 0.1400 4

RP5 0.1430 3

RP6 0.1350 5

RP7 0.1440 2

4.2. Comparing the Performance of Suppliers (MOTV)

This section is devoted to evaluating and selecting the best vendors (suppliers) based
on TBC/RP using the MABAC and analytical comparison to OCRA, TOPSIS, and VIKOR.
In this way, we can examine the applicability of the different MCDM methods and deliver
the results to the purchasing department.

4.2.1. MABAC

The first ranking method is MABAC, as in Section 3.3.1. As mentioned, the primary
matrix is formed using Equation (8). Then, the normalized decision matrix in Table 15 is
obtained by Equations (9)–(11). The weighted normalized matrix and the distance measures
from Q values are also shown in Table 15. The weighted normalized matrix and the
distance Q from the border approximate area are computed using Equations (12) and (15),
respectively. The higher the Q values, the better the ranking, as shown in Table 16. Based
on the results of the MABAC, supplier S1 is selected as the best option.
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Table 15. Results related to MABAC application.

Normalized DM

TBC1 TBC2 TBC3 TBC4 TBC5 TBC6 TBC7 TBC8 RP1 RP2 RP3 RP4 RP5 RP6 RP7

S1 1 1 0.50 0.83 0 0.25 0.50 0.50 1 0.33 1 1 1 0.83 1

S2 0.73 1 0 0 0 0 0 1 0.50 0 0 0 0.50 0.33 0

S3 0.73 0 0 0.50 1 0.50 0 0 0 0.33 0.33 0 0 0 0.33

S4 0.36 1 0.50 1 0 1 0 0.50 1 1 1 0.50 0.50 1 0.67

S5 0.73 0 0 0.33 0 0.50 1 1 0 0.33 0.33 0 0.50 0.67 0.67

S6 0 1 1 1 0 0.50 0.50 0.75 1 0.67 0.67 0.25 0.50 0.83 0.83

Weight normalized DM

TBC1 TBC2 TBC3 TBC4 TBC5 TBC6 TBC7 TBC8 RP1 RP2 RP3 RP4 RP5 RP6 RP7

S1 0.33 0.30 0.18 0.33 0.10 0.17 0.14 0.09 0.40 0.16 0.23 0.28 0.29 0.25 0.29

S2 0.29 0.30 0.12 0.18 0.10 0.14 0.09 0.12 0.30 0.12 0.12 0.14 0.21 0.18 0.14

S3 0.29 0.15 0.12 0.27 0.19 0.21 0.09 0.06 0.20 0.16 0.16 0.14 0.14 0.14 0.19

S4 0.23 0.30 0.18 0.36 0.10 0.28 0.09 0.09 0.40 0.25 0.23 0.21 0.21 0.27 0.24

S5 0.29 0.15 0.12 0.24 0.10 0.21 0.18 0.12 0.20 0.16 0.16 0.14 0.21 0.23 0.24

S6 0.17 0.30 0.24 0.36 0.10 0.21 0.14 0.10 0.40 0.20 0.20 0.17 0.21 0.25 0.26

G 0.26 0.24 0.16 0.28 0.11 0.20 0.12 0.09 0.30 0.17 0.18 0.17 0.21 0.21 0.22

Distance from Q

TBC1 TBC2 TBC3 TBC4 TBC5 TBC6 TBC7 TBC8 RP1 RP2 RP3 RP4 RP5 RP6 RP7

S1 0.07 0.06 0.03 0.05 −0.01 −0.02 0.02 0 0.10 −0.01 0.06 0.11 0.08 0.04 0.07

S2 0.03 0.06 −0.03 −0.10 −0.01 −0.06 −0.03 0.02 0 −0.05 −0.06 −0.03 0 −0.03 −0.08

S3 0.03 −0.09 −0.03 −0.01 0.08 0.01 −0.03 −0.03 −0.10 −0.01 −0.02 −0.03 −0.07 −0.08 −0.03

S4 −0.03 0.06 0.03 0.08 −0.01 0.08 −0.03 0 0.10 0.07 0.06 0.04 0 0.06 0.02

S5 0.03 −0.09 −0.03 −0.04 −0.01 0.01 0.06 0.02 −0.10 −0.01 −0.02 −0.03 0 0.01 0.02

S6 −0.09 0.06 0.09 0.08 −0.01 0.01 0.02 0.01 0.10 0.03 0.02 0 0 0.04 0.04

G 0.07 0.06 0.03 0.05 −0.01 −0.02 0.02 0 0.10 −0.01 0.06 0.11 0.08 0.04 0.07

Table 16. Q value for the six suppliers related to MABAC.

Supplier Q

S1 0.6144

S2 −0.3702

S3 −0.4125

S4 0.5128

S5 −0.1785

S6 0.3909

4.2.2. OCRA

OCRA is the next method used to evaluate the vendors’ performances. Using Equa-
tions (17)–(20), we compute the preference ratings with respect to beneficial and non-
beneficial criteria, as shown in Table 17. Next, we use Equation (21) to evaluate the overall
preference for each supplier and identify the list of preferred suppliers. As shown in
Table 18, the results reveal that OCRA, like MABAC, selects S1 as the best supplier.
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Table 17. Results related to OCRA application.

Preference Ratings with respect to non-Beneficial Criteria

TBC1 TBC2 TBC3 TBC4 TBC5 TBC6 TBC7 TBC8 RP1 RP2 RP3 RP4 RP5 RP6 RP7

S1 0.26 0 0 0 0 0 0 0 0 0 0 0 0 0 0

S2 0.19 0 0 0 0 0 0 0 0 0 0 0 0 0 0

S3 0.19 0 0 0 0 0 0 0 0 0 0 0 0 0 0

S4 0.09 0 0 0 0 0 0 0 0 0 0 0 0 0 0

S5 0.19 0 0 0 0 0 0 0 0 0 0 0 0 0 0

S6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Preference Ratings with respect to Beneficial Criteria

TBC1 TBC2 TBC3 TBC4 TBC5 TBC6 TBC7 TBC8 RP1 RP2 RP3 RP4 RP5 RP6 RP7

S1 0 0.06 0.05 0.30 0 0.03 0.04 0.04 0.26 0.08 0.09 1.12 0.57 0.23 0.29

S2 0 0.06 0 0 0 0 0 0.08 0.13 0 0 0 0.29 0.09 0

S3 0 0 0 0.18 0.02 0.06 0 0 0 0.08 0.03 0 0 0 0.10

S4 0 0.06 0.05 0.36 0 0.11 0 0.04 0.26 0.25 0.09 0.56 0.29 0.27 0.19

S5 0 0 0 0.12 0 0.06 0.07 0.08 0 0.08 0.03 0 0.29 0.18 0.19

S6 0 0.06 0.10 0.36 0 0.06 0.04 0.06 0.26 0.16 0.06 0.28 0.29 0.23 0.24

Table 18. Overall Preference (P) for the six suppliers related to OCRA.

Supplier I I O O I + O Overall Preference (P)

S1 0.259 0.259 3.145 2.684 2.944 2.755

S2 0.189 0.189 0.647 0.187 0.375 0.187

S3 0.189 0.189 0.46 0 0.189 0

S4 0.094 0.094 2.52 2.06 2.154 1.965

S5 0.189 0.189 1.096 0.635 0.824 0.635

S6 0 0 2.182 1.722 1.722 1.533

4.2.3. TOPSIS

TOPSIS is amongst the most applied decision-making tools with multiple
variables. On hand, the decision matrices reflecting the suppliers and relevant factors,
Equations (23) and (24), are used to produce, respectively, the normalized and the weighted
normalized matrices for suppliers’ evaluation, as shown in Table 19. Once the ideal and the
non-ideal solutions are identified, the distances to the best (ideal) and the worst solutions
are found. The maximum distances from the worst solution and the minimum distances
from the best solution are reported in Table 20 along with the corresponding closeness
coefficient measure of each supplier. The latter results indicate that TOPSIS elects S4 as the
best supplier and S1 as the second-best.

4.2.4. VIKOR

The application of VIKOR requires the calculating of the normalized and weighted
normalized matrices using Equations (30) and (31), respectively, followed by the positive
and negative ideal solutions, which are obtained via Equations (32) and (33), respectively.
The results are presented in Table 21. Next, the distance of the supplier’s performance
to the positive ideal solution Si and the maximal regret of each supplier Ri are computed
through Equations (34) and (35). The corresponding results are shown in Table 22. VIKOR
claims that S1 is the best supplier among other candidates, which supports the results of
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OCRA and MABAC. Table 23 confirms the stability of the proposed case study and its
computational accuracy.

Table 19. Results related to TOPSIS application.

TOPSIS Performance Rating

TBC1 TBC2 TBC3 TBC4 TBC5 TBC6 TBC7 TBC8 RP1 RP2 RP3 RP4 RP5 RP6 RP7

S1 3.5 7 7 8 5 6 7 5 7 5 7 9 5 8 9

S2 5 7 5 3 5 5 5 7 5 3 4 1 3 5 3

S3 5 5 5 6 6 7 5 3 3 5 5 1 1 3 5

S4 7 7 7 9 5 9 5 5 7 9 7 5 3 9 7

S5 5 5 5 5 5 7 9 7 3 5 5 1 3 7 7

S6 9 7 9 9 5 7 7 6 7 7 6 3 3 8 8

Normalized DM

TBC1 TBC2 TBC3 TBC4 TBC5 TBC6 TBC7 TBC8 RP1 RP2 RP3 RP4 RP5 RP6 RP7

S1 0.60 1.14 1.14 1.26 0.90 0.94 1.14 0.87 1.24 0.86 1.2 2.01 1.18 1.26 1.44

S2 0.85 1.14 0.81 0.47 0.9 0.78 0.81 1.22 0.88 0.51 0.69 0.22 0.71 0.79 0.48

S3 0.85 0.81 0.81 0.95 1.08 1.09 0.81 0.52 0.53 0.86 0.86 0.22 0.24 0.47 0.8

S4 1.19 1.14 1.14 1.42 0.9 1.41 0.81 0.87 1.24 1.54 1.2 1.12 0.71 1.42 1.12

S5 0.85 0.81 0.81 0.79 0.9 1.09 1.46 1.22 0.53 0.86 0.86 0.22 0.71 1.11 1.12

S6 1.53 1.14 1.46 1.42 0.9 1.09 1.14 1.04 1.24 1.20 1.03 0.67 0.71 1.26 1.28

Weight normalized DM

TBC1 TBC2 TBC3 TBC4 TBC5 TBC6 TBC7 TBC8 RP1 RP2 RP3 RP4 RP5 RP6 RP7

S1 0.1 0.17 0.14 0.23 0.09 0.13 0.1 0.05 0.25 0.11 0.14 0.28 0.17 0.17 0.21

S2 0.14 0.17 0.1 0.08 0.09 0.11 0.07 0.07 0.18 0.06 0.08 0.03 0.10 0.11 0.07

S3 0.14 0.12 0.1 0.17 0.1 0.15 0.07 0.03 0.11 0.11 0.10 0.03 0.03 0.06 0.12

S4 0.20 0.17 0.14 0.25 0.09 0.19 0.07 0.05 0.25 0.19 0.14 0.16 0.10 0.19 0.16

S5 0.14 0.12 0.1 0.14 0.09 0.15 0.13 0.07 0.11 0.11 0.10 0.03 0.10 0.15 0.16

S6 0.25 0.17 0.18 0.25 0.09 0.15 0.1 0.06 0.25 0.15 0.12 0.09 0.10 0.17 0.18

Distance to ideal

TBC1 TBC2 TBC3 TBC4 TBC5 TBC6 TBC7 TBC8 RP1 RP2 RP3 RP4 RP5 RP6 RP7

S1 0.15 0 0.04 0.03 0.02 0.06 0.03 0.02 0 0.08 0 0 0 0.02 0

S2 0.11 0 0.08 0.17 0.02 0.09 0.06 0 0.07 0.13 0.06 0.25 0.07 0.09 0.14

S3 0.11 0.05 0.08 0.08 0 0.04 0.06 0.04 0.14 0.08 0.04 0.25 0.13 0.13 0.09

S4 0.06 0 0.04 0 0.02 0 0.06 0.02 0 0 0 0.12 0.07 0 0.05

S5 0.11 0.05 0.08 0.11 0.02 0.04 0 0 0.14 0.08 0.04 0.25 0.07 0.04 0.05

S6 0 0 0 0 0.02 0.04 0.03 0.01 0 0.04 0.02 0.19 0.07 0.02 0.02

Distance to worst

TBC1 TBC2 TBC3 TBC4 TBC5 TBC6 TBC7 TBC8 RP1 RP2 RP3 RP4 RP5 RP6 RP7

S1 0 0.05 0.04 0.14 0 0.02 0.03 0.02 0.14 0.04 0.06 0.25 0.13 0.11 0.14

S2 0.04 0.05 0 0 0 0 0 0.04 0.07 0 0 0 0.07 0.04 0

S3 0.04 0 0 0.08 0.02 0.04 0 0 0 0.04 0.02 0 0 0 0.05

S4 0.10 0.05 0.04 0.17 0 0.09 0 0.02 0.14 0.13 0.06 0.12 0.07 0.13 0.09

S5 0.04 0 0 0.06 0 0.04 0.06 0.04 0 0.04 0.02 0 0.07 0.09 0.09

S6 0.15 0.05 0.08 0.17 0 0.04 0.03 0.03 0.14 0.08 0.04 0.06 0.07 0.11 0.12
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Table 20. TOPSIS closeness coefficient values for the six suppliers.

Supplier Di
+ Di

- CC

S1 0.199 0.402 0.669

S2 0.420 0.131 0.237

S3 0.411 0.124 0.232

S4 0.176 0.367 0.675

S5 0.368 0.186 0.336

S6 0.214 0.355 0.624

Table 21. Results related to VIKOR application.

Normalized DM
TBC1 TBC2 TBC3 TBC4 TBC5 TBC6 TBC7 TBC8 RP1 RP2 RP3 RP4 RP5 RP6 RP7

S1 0.24 0.45 0.44 0.46 0.39 0.35 0.44 0.36 0.51 0.34 0.49 0.83 0.64 0.47 0.54
S2 0.34 0.45 0.31 0.17 0.39 0.29 0.31 0.50 0.36 0.21 0.28 0.09 0.38 0.29 0.18
S3 0.34 0.32 0.31 0.35 0.47 0.41 0.31 0.22 0.22 0.34 0.35 0.09 0.13 0.18 0.30
S4 0.47 0.45 0.44 0.52 0.39 0.53 0.31 0.36 0.51 0.62 0.49 0.46 0.38 0.53 0.42
S5 0.34 0.32 0.31 0.29 0.39 0.41 0.56 0.50 0.22 0.34 0.35 0.09 0.38 0.41 0.42
S6 0.61 0.45 0.56 0.52 0.39 0.41 0.44 0.43 0.51 0.48 0.42 0.28 0.38 0.47 0.48

Weighted normalized DM
TBC1 TBC2 TBC3 TBC4 TBC5 TBC6 TBC7 TBC8 RP1 RP2 RP3 RP4 RP5 RP6 RP7

S1 0.04 0.07 0.05 0.08 0.04 0.05 0.04 0.02 0.10 0.04 0.06 0.12 0.09 0.06 0.08
S2 0.06 0.07 0.04 0.03 0.04 0.04 0.03 0.03 0.07 0.03 0.03 0.01 0.05 0.04 0.03
S3 0.06 0.05 0.04 0.06 0.05 0.06 0.03 0.01 0.04 0.04 0.04 0.01 0.02 0.02 0.04
S4 0.08 0.07 0.05 0.09 0.04 0.07 0.03 0.02 0.10 0.08 0.06 0.06 0.05 0.07 0.06
S5 0.06 0.05 0.04 0.05 0.04 0.06 0.05 0.03 0.04 0.04 0.04 0.01 0.05 0.06 0.06
S6 0.10 0.07 0.07 0.09 0.04 0.06 0.04 0.03 0.10 0.06 0.05 0.04 0.05 0.06 0.07

Values of w*(((f+)-fij)/(f+)-(f-))

TBC1 TBC2 TBC3 TBC4 TBC5 TBC6 TBC7 TBC8 RP1 RP2 RP3 RP4 RP5 RP6 RP7
S1 0 0 0.06 0.03 0.10 0.10 0.05 0.03 0 0.08 0 0 0 0.02 0
S2 0.05 0 0.12 0.18 0.10 0.14 0.09 0 0.10 0.12 0.12 0.14 0.07 0.09 0.14
S3 0.05 0.15 0.12 0.09 0 0.07 0.09 0.06 0.20 0.08 0.08 0.14 0.14 0.14 0.10
S4 0.11 0 0.06 0 0.10 0 0.09 0.03 0 0 0 0.07 0.07 0 0.05
S5 0.05 0.15 0.12 0.12 0.10 0.07 0 0 0.20 0.08 0.08 0.14 0.07 0.05 0.05
S6 0.17 0 0 0 0.10 0.07 0.05 0.01 0 0.04 0.04 0.10 0.07 0.02 0.02

Table 22. Si, Ri, and Qi values for the six suppliers related to VIKOR.

Supplier Si Ri Qi
Weight (Si+Ri+Qi)
(between 0 and 3)

S1 0.4701 0.1039 0 0.5739

S2 1.4547 0.1785 0.8758 2.5090

S3 1.4970 0.1980 1 2.6950

S4 0.5717 0.1051 0.0560 0.7328

S5 1.2631 0.1980 0.8861 2.3472

S6 0.6936 0.1651 0.4342 1.2930
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Table 23. Ranking of suppliers via MOTV.

Supplier MABAC OCRA TOPSIS VIKOR

S1 1 1 2 1

S2 5 5 5 5

S3 6 6 6 6

S4 2 2 1 2

S5 4 4 4 4

S6 3 3 3 3

Figure 4 depicts the supplier’s performance vis-à-vis resilience, traditional, and re-
silience/traditional criteria individually, as reflected through TOPSIS. Hence, in terms of
resilience dimensions, S1 is presented as the best supplier, followed by S4 and S6. As such,
the initial experts’ evaluation (see Table 20) showed partial, low traditional performance,
mainly for purchasing cost, turnover, and geographical location. Thus, these factors might
hurdle their way towards superiority vis-à-vis the traditional aspects. Meanwhile, it is
observed that S3 is the worst supplier with regard to the resilience approach, whereas S4 is
the best from the traditional business performance perspective. Therefore, it appears that
despite performing pretty well under traditional or resilience evaluations, some suppliers
may fail to be the best when considering both aspects.
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The last stage of the suppliers’ performance evaluation consists of comparing the
outcomes of the four methods using SRCC. The results in Table 24 reveal an absolute
correlation between OCRA, VIKOR, and MABAC, which produce the same rankings, as
shown earlier.

Table 24. Correlation type among MOTV.

MCDM Method SRCC Equation SRCC Value Correlation Type

TOPSIS and OCRA, VIKOR or
MABAC 1− 6∗2

(6)3−6
0.942 Very strong

Among OCRA, VIKOR and
MABAC 1− 6∗0

(6)3−0
1 Absolute

On the other hand, there is a strong correlation between TOPSIS and any of the latter
techniques due certainly to the fact that TOPSIS swaps the rank positions of the best and
the next best suppliers, in spite of a total agreement on the overall ranking.
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4.3. Managerial Implications

The research outcome of the proposed D-MOTV approach helped DMs in the purchasing
department to easily evaluate and rank suppliers’ performance. This research can support
supply chain managers in building resilient supply chains that reduce not only sourcing costs,
but also potential losses due to disruption threats. Furthermore, the D-MOTV approach can
be used as a guide to diagnose suppliers’ traditional/resilience healthiness. The practical
implications of such an approach are much more significant for manufacturers having an
integrated business with their suppliers towards common objectives.

5. Conclusions

Production organizations become growingly reliant on their suppliers due the increas-
ing complexity and global aspects of supply chain networks [101]. Specifically, globalization
renders supply chains more vulnerable to potential disruptions and emphasizes the need
for more inclusion of resilience into the evaluation of suppliers [102].

This work presents an approach to improve supply chain efficiency and resilience
with respect to suppliers’ evaluation and selection, considering traditional and resilience
criteria. Owing to the multiple criteria nature of the supplier selection process, the D-
MOTV approach is developed to improve strategic sourcing towards resilience, as a part
of an industry–academia collaboration project aiming to build a resilient business for a
steel manufacturer. First, supply chain resilience and its pillars were conceptualized and
presented in a holistic framework. The latter includes eight traditional business criteria (e.g.,
purchasing cost, scrap quality, and delivery reliability) and seven resilience pillars (e.g.,
flexibility, redundancy, and agility) identified based on the literature and DMs’ expertise.
The DMs were five members of the purchasing department. The DEMATEL method was
first applied to reveal relative weights of TBC/RP from DMs’ perspectives. Four MCDM
methods, namely MABAC, OCRA, TOPSIS, and VIKOR, were applied to evaluate and rank
suppliers based on their efficiency and resilience simultaneously. The outcomes proved the
validity of the proposed framework as all methods revealed almost the same ranking. This
has been duly corroborated through correlation among the four methods.

Despite the fact that this study solved a practical supplier selection problem consider-
ing efficiency and resilience aspects, it is limited by the equal weights given for all experts’
opinions—as instructed by the case company. However, different opinion weights might
help companies to further reflect employees’ experience into supplier evaluation. For
instance, senior buyers might have worked on building the relationship with a supplier
over years and would be more aware of its performance. Additionally, the evaluation
methodology did not consider the uncertain opinions of some of the experts regarding sup-
pliers’ performance. This limitation could be overcome by employing the fuzzy set theory.
However, it might make the data collection more challenging considering its complexity.

There are a number of directions for further work. This research was conducted on a
case study of one-tier supply—some industry sectors have two or more tiers of suppliers.
Thus, applying this approach to multi-tier supplier supply chains would be interesting
to investigate the potential conflict between DMs from different companies. Additionally,
this study can be extended to address the order allocation problem based on the selected
suppliers considering resilience and efficiency. Although this research problem has been
covered very well in the literature, the consideration of suppliers’ resilience profile into
the order size allocation would be worth further consideration. Disruptions can happen
due to transportation, and thus, this concern can be modelled as a stochastic programming
model with a number of disruption scenarios. It would also be worthwhile to consider
potential disruptions due to dynamic demand and late transportation. Finally, some
companies rely on one main supplier—the scenario of this work—and a backup supplier.
However, the majority of resilient supplier selection considers main suppliers lagging
behind the important role of 2nd or 3rd tier suppliers in a case of disruption. Thus, it would
also be important to consider resilience performance and possible disruption scenarios of
backup suppliers.



Sustainability 2021, 13, 2695 26 of 30

Author Contributions: Conceptualization, A.M.; methodology, A.M. and M.Y.; writing, A.M., M.Y.,
A.O. and E.D.R.S.G.; formal analysis, M.Y.; validation, M.Y. All authors have read and agreed to the
published version of the manuscript.

Funding: The research leading to these results has received Research Project Funding from The
Minister of Higher Education, Research and Innovation/ The Research Council (TRC) of the Sultanate
of Oman, under Commissioned Research Program, Contract NO. TRC/CRP/MU/COVID-19/20/15.
Research of Prof. Ernesto DR Santibanez Gonzalez has been partially funded by FONDECYT/ANID
Grant No. 1190559.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

AHP Analytic Hierarchy Process
ANP Analytic Network Process
CC Closeness Coefficient
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SRCC Spearman Rank Correlation Coefficient
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