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Abstract: The current paper focuses on the development of an enhanced Mobile Journalism (MoJo)
model for soundscape heritage crowdsourcing, data-driven storytelling, and management in the era
of big data and the semantic web. Soundscapes and environmental sound semantics have a great
impact on cultural heritage, also affecting the quality of human life, from multiple perspectives. In
this view, context- and location-aware mobile services can be combined with state-of-the-art machine
and deep learning approaches to offer multilevel semantic analysis monitoring of sound-related
heritage. The targeted utilities can offer new insights toward sustainable growth of both urban
and rural areas. Much emphasis is also put on the multimodal preservation and auralization of
special soundscape areas and open ancient theaters with remarkable acoustic behavior, representing
important cultural artifacts. For this purpose, a pervasive computing architecture is deployed and
investigated, utilizing both client- and cloud-wise semantic analysis services, to implement and
evaluate the envisioned MoJo methodology. Elaborating on previous/baseline MoJo tools, research
hypotheses and questions are stated and put to test as part of the human-centered application
design and development process. In this setting, primary algorithmic backend services on sound
semantics are implemented and thoroughly validated, providing a convincing proof of concept of
the proposed model.

Keywords: soundscapes; audiovisual heritage; semantic audio; data-driven storytelling; cultural
heritage; content crowdsourcing; heritage management

1. Introduction

Cultural Heritage (CH) is considered very important from multiple perspectives of
everyday modern human life, including but not limited to education, history, cultivation of
cultural awareness, social engagement, entertainment, and well-being. The proliferation
of Information and Communication Technologies (ICTs) and especially digital mobile
devices has significantly propelled CH projects and associated featured services (websites,
multimedia/mobile apps, etc.). In this context, ordinary users can navigate and virtually
visit places and artifacts displaying cultural and heritage interests, literately, without time
or geographical restrictions. These services can be deployed at the change of attending a
physical environment with cultural value for augmenting the whole experience (before,
during, and after the visit) or general infotainment activities. Apart from the cases of
digital museums and exhibitions concerning artworks, historical buildings, monuments,
and other cultural items, intangible CH has flourished through the processes of information
capturing, documentation, and digital synthesis of CH storytelling experiences [1–7].

Among others, the audiovisual heritage associated with places, performances, and
events can benefit from this progress in recording, managing, and authoring data-driven
narratives [5–9]. In this context, average users can become active participants in the pro-
cesses of contributing and exploiting multimedia content by experiencing, evaluating,
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and reinforcing the associated services. For instance, previous works have proved that
applicable media assets can be quickly and massively crowdsourced, making use of the
inherent audiovisual capturing and networking capabilities that modern mobile devices
offer [10–12]. Apart from the data themself, useful context-, time-, and location-aware meta-
data can be extracted to facilitate semantic information management and retrieval [13–16].
Through social tagging, it is possible to gather information about emotionally pleasant
or unpleasant sounds in different urban areas [17]. However, as discussed in [10], not
many ICT tools and/or services have been developed to support people in contributing
audiovisual data, assisting toward the design of a CH framework.

Environments, either physical or artificial, bring together their own acoustic profiles.
Distinct sound languages can shape a recognizable identity offering an individual experi-
ence to the human’s sound perception [18]. The concept of the soundscape was introduced
as early as 1977 by R. Murray Schafer, making the first attempts to describe what exactly a
human ear hears or listens to, when in a particular and self-explained environment [19]. It
was in 2008 when the International Organization for Standardization (ISO) established the
working group ISO/TC 43/SC1/WG 54 “Perceptual assessment of soundscape quality.”
The objective of this group was to assist and promote consistency and compatibility be-
tween both theoretical and methodological approaches of soundscape studies and practice,
developing the following definition, as given in ISO 12913-1, Section 2.3 [20]:

“Soundscape is an acoustic environment as perceived or experienced and/or understood
by a person or people, in context.”

Therefore, when discussing soundscapes heritage, the key issue is to focus not only
on the meaning of sounds, but on their implicit impact on the everyday quality of life
and the opportunity to promote genuine acoustic sustainability. Besides, the interdisci-
plinary field of soundscape studying and research also lies in the conservation of acoustic
heritages [21,22].

Data-driven storytelling is related to the way of making stories through data, i.e.,
the captured audiovisual content and its associated semantic metadata. In this perspec-
tive, possible multisite monitoring (offered by multiple mobile users) can be deployed,
offering the option of selecting and/or augmenting the preferred viewpoint/reproduction
configuration [14]. This feature makes a good match to the empirical and strongly person-
alized aspects of perceiving soundscapes, opposed to the somewhat neutral/impersonal
acoustic environment capturing and reproduction [18–21]. Hence, the idea is to engage
the audience for sound-related CH capturing and semantic description, thus forming a
mediated way of experiencing soundscapes. Apparently, there are multiple aspects that
can be assembled in this direction, encompassing all spatiotemporal, acoustic, visual, and
semantic levels at the reproduction site. Nonetheless, the main goal here is to attract mobile
users for collecting and contributing semantically enhanced media assets (i.e., audiovisual
records with their pattern-related metadata), equipping them with the necessary Machine
Learning (ML) capabilities for on-site sound detection and classification [15,16]. Such
mobile applications would allow the description of the associated scenes and sound-fields
(both aurally and visually), and to share the soundscape experience as intangible CH
storytelling. This notion of soundscapes, which is perceived by the captured content, the
offered retrieval/reproduction, and the associated sound (and video) semantics, will be
considered throughout the rest of the paper.

The current work focuses on the collaborative collection and documentation of sound-
scapes and environmental sound semantics, which apart from CH, also significantly impact
human life quality in multiple perspectives (as explained in the next sections). The whole
approach has many similarities with sophisticated Mobile Journalism (MoJo) services,
helping professional and citizen journalists collect news-items and shape them into fea-
tured data-driven storytelling [23,24]. Relying on the so-called MoJo-mate platform (Mobile
Journalism Machine-Assisted Reporting) [23,24], an analysis is held regarding model elab-
oration and adaptation for the needs of soundscape heritage purposes. In this perspective,
state-of-the-art machine and deep learning services are implemented both client- (mobile)
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and cloud-wise. This approach allows for multilevel semantic monitoring of sound-related
heritage, while offering new insights toward sustainable urban and rural growth. Much
emphasis is placed on capturing, preserving, and recreating soundscapes and open ancient
theater acoustics, representing important cultural artifacts.

1.1. Related Work

Based on the preceding introduction, there are multiple perspectives concerning the
related work around the discussed research domain. Data-driven storytelling, as a form of
digital, sensemaking narrative, has recently received significant attention. Recognizing the
increasing need to support novel means for integrating data visualization into narrative sto-
ries, featured cultural and audiovisual heritage projects deploy state-of-the-art technologies
to capture, manage, and publish CH data through rich-media storytelling experiences [1–9].
Among others, related services or cultural activities (tomorrow’s heritage) include tourist
promotion and environmental preservation/awareness for landscapes and intangible arti-
facts [1–3], sites modeling/reconstruction and content restoration/documentation [4,5],
and multi-disciplinary collaborations in research and education innovations [6–9]. Audiovi-
sual and soundscape-related heritage initiatives also emerge, focusing on historical sound
records and landscapes preserved, re-created, and reproduced as means of intangible CH
expressions [25–29]. Furthermore, the impact of environmental sounds, noise, and sound-
scape components is analyzed on various aspects of modern human life, i.e., examining
their associations with the residents’ physical/mental health, perception, and behavior,
aiming to unveil factors of sustainable growth and development and overall quality of
life as well [30–37]. Social media soundscape information can serve for the prediction
of health effects of noise pollution in different areas [38]. In this context, cooperative
smart-sensing and crowdsourcing practices have been proposed and launched to raise
public awareness toward soundscape conservation, safeguarding, and overall ecological
consciousness through multimodal mapping capabilities [39–46].

In recent years, mobile devices offered significant advantages in the direction of mas-
sive harvesting of large-scale diversified audio and image data, enabling users to exploit
their mobile terminals for capturing, recreating, and sharing various events [10–16,44].
Smartphone capabilities can serve for citizen science projects, following a user-centered
design and providing motivation factors [45]. The cultural sector is also benefitted from
this evolution, adopting these practices to collaboratively collect, share, and annotate
heritage sites and artifacts [7,39–42,47]. These processes feature many resemblances with
aspects of the MoJo paradigm and other Digital Journalism genres (i.e., Data, Multimedia,
Immersive Journalism, etc.) [16–24,48]. Context- and location-aware services can be com-
bined with (multichannel) semantic processing to offer spatiotemporal sound mapping and
pattern-related visualizations. Such featured summarization techniques are encountered
on generic audio detection and classification tasks, including environmental sound recogni-
tion [14,49–59]. In this view, crowdsourced audio data can offer soundscape enhancement
with multiple augmentation layers in favor of documentation, data-driven storytelling,
and management. The massive research progress on the domain has established multi-
ple pattern recognition schemes and hierarchical semantic audio taxonomies to describe
the sound-fields associated with the different social events [13–24,52–59]. Apart from
the geographical- and time-related information that a mobile terminal can easily hold,
environmental sounds and soundscapes can be classified, filtered, and highlighted based
on the associated pattern classification taxonomies, various low-level audio descriptors,
other semantic labels concerning the transmitted or perceived emotions, etc. [49–56,60,61].
Furthermore, recent audio and audiovisual captioning trends can offer additional semantic
conceptualization meta-data [62–65]. These meta-information augmentation perspectives
can accompany the above-discussed sustainable growth and well-being indicators, sug-
gesting added-value innovative services for soundscape preservation and their engaging
promotion at environmental, ecological, and heritage views.
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A linked popular research topic that significantly propelled multidisciplinary scien-
tific projects and associated knowledge gain is the way of learning by example, through
the Machine and Deep Learning (ML/DL) paradigms. Both the audio semantics and the
CH domains have also benefited the made breakthroughs and progress [4–7,13–16,52–59].
Hence, sound and acoustic scene recordings can be processed to provide event detection
and recognition outcomes, offering pattern-related metadata, content-based description,
and management automation (i.e., retrieval, summarization/highlighting, etc.). Coarse
classification schemes (i.e., Speech, Music, Other) can be deployed for detecting human
activity and other main events, which could be hierarchically extended to additional
classes [13–16,54–59,66]. More complex audio patterns have been formed/adapted to the
needs of environmental sound monitoring, incorporating additional classes, therefore
increasing the pattern recognition difficulty (e.g., the UrbanSound classification task con-
taining 10 environmental sound categories) [15,54–59,66]. These two taxonomies represent
the primary/baseline recognition demands that the proposed system should be able to han-
dle (i.e., to extract such class-related metadata). Hand-crafted feature extraction has been
extensively used for abstracting audio information to feed ML systems, taking advantage of
the perceptual human experience. Early and late integration methods were also deployed,
either by temporally fusing base features or by combining multiple classifiers (both in par-
allel and in cascade order), also increasing the computational load demands [54–59,66]. A
recent trend in the field is the use of convolutional networks and DL architectures, shifting
from the feature-based representation to automatically forming audio embeddings, as part
of the training process [54–59,66,67]. These latest approaches are computationally heavier
(especially at the learning phase), while they also require much more labelled/ground-truth
samples as inputs, so dedicated datasets are continuously formed to serve the various
training and testing needs. Again, the proposed framework should be able to cope with
such solutions, as well as to expedite the creation of soundscape-adapted datasets through
the process of mobile crowdsourcing.

Summing up, the conducted literature review revealed important aspects of sound-
scapes, i.e., environmental monitoring, sound and intangible cultural heritage, data-driven
documentation, decentralized/smart sensing, etc., with diverse extensions on human
health and sustainable growth indicators. Many related publications have attempted to
enlighten most of the above viewpoints by utilizing mobile terminals and collaborative
mapping [17–19,38–45]. However, to the best of our knowledge, such a multi-faceted
approach (like the current one) has not been reported, incorporating sophisticated on-site
semantic analysis and crowdsourcing dynamics, as they are advanced in today’s ubiquitous
society (i.e., in the era of big data and the semantic web). The impact of the anticipated
services is also strongly connected to featured projects, which have been deployed to
discover and recreate sounds of the past, emanating from the perspectives of acoustic
heritage, archaeo-acoustics, and historical acoustics. Such works, supported by limited
historical/acoustic data, rely mainly on computational models and simulation outcomes
to offer an intangible CH experience, projecting relationships between people and sound
over time [46,68–72]. In this direction, we can forestall the dense impact of the proposed
MoJo-adapted system, which can document today’s soundscapes to be experienced as
tomorrow’s heritage, taking advantage of semantically enhanced data-driven storytelling.
Recalling the importance of ground-truth datasets and crowdsourcing audio semantics
in the age of deep learning, the launched model can easily lead to massive soundscape
data and metadata. The in-depth analysis of those repositories would reveal finer pattern
correlations and taxonomies, with sharper conceptualization capabilities.

1.2. Project Motivation and Research Objectives

The related work presented in the previous section indicates that the field of crowd-
sourcing soundscape assets is very fruitful and mature, providing significant benefits
for cultural heritage preservation and urban development. Audience engagement can
be feasible, given a proper framework design. The motivation of the current project em-
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anates from the idea of incorporating proper ML/DL analysis for soundscape semantics
through a cloud-based architecture. For this reason, early backend implementations for
General Audio Classification and Detection are presented and evaluated. The successful
implementation of MoJo-mate, a mobile application offering machine-assisted reporting
with semantically enhanced capture and documentation MoJo facilities [23,24], justifies
this approach. The encompassed audio processing and recognition layers exhibit state-
of-the-art time-, context- and location-aware ubiquitous computing services, combined
with generic/hierarchical pattern classification schemes [13–16]. These content analysis
perspectives are considered ideal for meta-information augmentation of environmental
sounds and soundscapes, which can be massively crowdsourced as User-Generated Con-
tent (UGC) to represent essential sites or places of intangible CH. The multilevel semantic
interpretation of audio (and audiovisual) streams, contributed by both experienced and
average users, will allow monitoring how the formed soundscapes have evolved and/or
are still evolving over time and within special areas of interest. Typical examples include
sensitive ecological zones, landscapes with environmental and cultural interest, and places
hosting cultural activities (in ancient or modern theaters and music halls), UNESCO world
heritage sites, etc.).

The utmost target is to collect the necessary volumes of data in an easy and entertaining
way, provide in-situ/real-time and batch semantic analysis modes, augment the physical
visiting experience, and enable data-driven storytelling through multiple auralization
and visualization layers. Such techniques will allow the monitoring of the way acoustic
comfort of historic urban and rural areas is affected by sound space components (e.g.,
cars, motorbikes, tourists) and, overall, the necessities of improving the environmental
qualities. Another important aspect refers to assessing the mediated navigation experience
of both physical and virtual visitors, with respect to the offered digital storytelling, derived
by soundscapes and environmental acoustics recreation. No doubt, these perspectives
are equally important for the processes of intangible CH collection, management, and
preservation. In the long-term, sustainable growth and well-being indicators could be
systematically monitored, correlated, and predicted in relation to the associated sound-field
attributes (e.g., in heritage sites and areas featuring substantial environmental, cultural, or
historical interest).

The work presented here is part of a broader project, aiming to collect and document
multimedia semantics of soundscape heritage, to be later used for data-driven storytelling.
The Logical User-Centered Design (LUCID) [6,7,11,23] was adopted through the whole
process, emphasizing the audience engagement and reinforcement part. This was also one
of the principal elements that had to be answered in the early beginnings of this under-
taking, i.e., the degree to which targeted users would be interested to actively participate
and contribute in this effort, which is aligned with the Analysis/Communication phase
of standard application development procedures. Hence, a related survey was carefully
set-up and executed to serve the needs of audience analysis. The second key factor would
be to investigate whether mobile terminals and the associated algorithmic backend can
be adapted to the task of crowdsourcing soundscape semantics. In this perspective, ML
and DL systems were implemented as the initial/piloting algorithmic solutions and were
thoroughly evaluated at various levels to provide a convincing proof-of-concept of the
tested scenario.

Based on the above analysis, Research Hypotheses (RH) are stated and put to test, pro-
viding a convincing proof of concept of the proposed model, its feasibility, and effectiveness,
emphasizing the semantic processing part:

Research Hypothesis 1 (RH1): It is both feasible and innovative to launch a Mobile Journalism
application for soundscape heritage crowdsourcing and data-driven storytelling, and there is an
audience willing to use the application and contribute.

Research Hypothesis 2 (RH2): General Audio Detection and Classification techniques can be
implemented by means of Machine and Deep Learning to serve the required soundscape semantics.
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In this context, risen Research Questions (RQ) accommodated to the listed hypotheses
are as follows:

Research Question 1 (RQ1): How can the MoJo framework be configured for soundscape heritage
capturing and documentation? How can the crowdsourced media assets serve the needs for data-
driven storytelling?

Research Question 2 (RQ2): What are the main classification taxonomies that can be incorporated
in the initial backend implementations of soundscape recognition? What is the estimated accuracy
and computational load of these algorithmic systems?

The rest of the paper is organized as follows. The system architecture and concept,
as well as the experimental procedures, are presented and justified in the Materials and
Methods section. Results and discussion illustrate the corresponding outcomes (and
their thorough evaluation), providing multi-perspective analysis with regard to the stated
hypotheses and questions. Conclusions are finally drawn, stressing the novel aspects and
the contribution of the whole project, followed by the respective Summary section.

2. Materials and Methods
2.1. Integration of State-of-the-Art Audio and Soundscape Semantics on the Cloud

The main target of the current paper is to enhance the semantic aspects of capturing,
managing, and recreating soundscapes, engaging the audience in the direction of mobile
crowdsourcing and sharing related audio events. In this context, crowdsourced audio
data can be comprehended in various ways, one of them being monitoring encountered
soundscapes. Theoretically, this can be achieved by manually matching and managing
different input streams from end-users, exploiting the aspects of semantic tagging, and
annotation at different levels of hierarchy. However, in real-world conditions, difficulties
regarding user- and context-related heterogeneities arise, which require the employment
of intelligent audio processing and interaction methods, to utilize and benefit from the
underlying semantic information of audio data.

While many related processing strategies can be deployed on mobile computing
environments, resources for processing and analyzing vast amounts of audio data in a
mobile device are typically limited [10–24]. Thus, a strong motivation for embracing cloud-
based services emerges in this scenario. In this direction, accessible and highly capable
cloud-based computing environments can facilitate the binding of semantically relevant
content, by incorporating previous knowledge on individual soundscape characteristics
(i.e., the rules that a listener would associate to a specific soundscape) [73].

Prevailing research on intelligent audio analysis and sound recognition is highly
focused on the sub-fields of General Audio Detection and Classification (GADC) and
Environmental Sound Recognition (ESR). The analysis aims at the semantic description
of complex acoustic scenes, relying on a system that inputs an audio signal and outputs
the semantic description of that signal. Hence, in this case, the meaningful aspects of a
soundscape are to be detected and identified.

State-of-the-art approaches in computer audio intelligence motivate data-driven mod-
eling, through machine learning. A wide variety of pre-processing and classification
algorithms can deliver a solid generalization performance, given large amounts of training
data. Moreover, the performance of these models is strongly dependent on the quality of
the utilized data. For this reason, mobile devices can offer significant advantages in the
direction of large-scale diversified labeled audio data gathering and the construction of
generic ground-truth semantic audio databases [15].

Efficient pre-processing and semantic monitoring techniques can also be deployed as
a front-end client-based system, given the ability to adapt to the variance in the acoustic
environments and the respective sound recording conditions. This process can locally inter-
act with the input signal and map it into a latent space, allowing users to on-site-monitor
soundscape semantics, with the option to define patterns of interest and associate them
with specific audio features, geolocations, and/or visual content [56,57]. The proposed
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modular architecture allows the attachment of multi-channeled ambisonics sensors to the
client terminal (i.e., soundfield microphones), to apply more sophisticated spatiotemporal
localization and mapping that could facilitate the audiovisual content description and
management [49–51,74,75]. On the other side, more demanding semantic analysis can be
performed on a batch processing mode, as a cloud service, making use of recent advantages
on Convolutional Neural Networks (CNN), Deep Learning (DL), and multimodal decision-
making systems [58–65]. The focus here lies in the discrimination of time-concurrent audio
events in a hierarchical classification taxonomy. This processing type is more adapted to the
audio domain and may have considerable advantages over end-to-end solutions. Moreover,
a soundscape crowdsourcing approach is favored in the proposed methodology for con-
structing big datasets, as users are encouraged to contribute with new labeled data while
making use of the services. This real-world soundscape intervention approach to audio
management systems can offer further conceptual analysis perspectives of crowdsourced
audio data, layered on top of existing semantic analysis assets.

2.2. The Implemented Sound Heritage and Storytelling Model

Soundscapes can tell the story of spaces through time. While the acoustic scenes
can characterize certain places and ecosystems, they are also in constant movement and
evolution, as they change as a whole, and as temporary events occur, breaking the perceived
continuity of sound. Treating environmental recordings in this scope allows the design
of an interactive storytelling mode, where varying soundscapes can be in the spotlight of
the narration.

When a crowdsourcing approach is adopted, definitive and linear storytelling is
replaced by a collective narration, formed with the combination of the provided audio
recordings and audiovisual assets provided by the users. The criteria that individual
listeners follow to access the available files define different perspectives and can form
a vast amount of stories that emerge from the provided soundscape recordings. An
intuitive design can support interactive storytelling, facilitating the exploration of the
dataset in creative ways. Two of the main aspects of treating soundscapes have already
been mentioned and they refer to their spatial and temporal evolution. An interactive
map, with a supplementary timeline option, can provide the functionality for filtering
the data, using both the geographical and temporal information of the recordings. The
user can access environmental recordings using an interactive world map, while the
option of selecting the time interval within which the recording was created is available.
Context-aware content-creating applications can provide such information without manual
annotation at the time of the recording [11–16,74,75].

Besides the straightforward spatiotemporal filtering of results, content-based retrieval
can form different storytelling paths. Soundscapes that are far away in terms of distance or
time may capture similar acoustic scenes, e.g., open theaters, cities, forests. Manual anno-
tation from the content creators can provide a tagging scheme to retrieve relevant assets.
By providing a data-driven analysis system on the cloud, several soundscape descriptors
can be extracted automatically from the audio characteristics of the recordings. Users can
form queries to browse through the dataset, based on the manual and automated tagging
of data. In this approach, the integration of featured personalization and recommendation
modules can push relevant content to the users, based on their queries and, overall, the
monitoring of their behavior and interests.

So far, several scenarios of searching for audio content through textual input, as well as
extracting textual descriptors from audio content, have been presented. However, modern
trends in Human–Computer Interaction demand more intuitive query processes. In the
context of soundscape storytelling, it is possible to retrieve audiovisual content through an
audiovisual input query. By recording or providing a soundscape, users should be able
to search the database through similarity checks (e.g., pattern matching). This will result
in accessing content with audio characteristics that match the input. In the same way, by
accepting not only audio recordings but also videos, or accompanying assets (e.g., users
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can upload photographs along with the environmental recordings), a mapping between
different modalities can be created. By providing certain soundscapes, relevant content can
be generated, and vice-versa. This interaction can provide great possibilities in the paths a
user can follow to access different stories.

Another meaningful parameter that can boost interactive storytelling functionality is
the acoustic modeling of distinctive soundscapes, especially those related to cultural her-
itage (i.e., the cases of notorious ancient open theaters). This process of defining a transfer
function can be used to estimate and imitate the acoustic behavior of a scene. In the case
such a functionality is offered, users can provide studio-quality or close-miking recordings
with no reverberation and simulate the reproduction of their recordings as if they had been
held within various soundscapes [5,56]. It is essential to mention that related functionalities
have been recently deployed on the MoJo-mate application, facilitating time-, context-, and
location-aware audiovisual recordings with significant semantic enhancements concerning
the encountered audio patterns and the surrounding acoustic behavior [11,12,16–24]. While
these modalities have been successfully integrated and evaluated for the needs of MoJo
capturing and publishing services, the proposed re-orientation can be even more valu-
able in the direction of preserving and demonstrating soundscape heritage. Furthermore,
the collection of big data in a more organized manner and the gradual construction of
semantically enhanced audio (and audiovisual) repositories can force added-value services
toward implementing diverse ground-truth sets and their utilization on more sophisticated
semantic conceptualization automations. As already stated, such analysis perspectives
can be correlated with human well-being, cultural heritage, and sustainable development
indicators, which is very important in today’s rapidly changing ubiquitous society.

2.3. The Proposed Model Architecture

The work presented emanates from the particularities residing in the vast increase
in UGC. Apparently, mobile devices offer significant advantages in the direction of mas-
sive harvesting of large-scale diversified labeled audio data. Users’ smartphones make
the procedures of recording, recreating, and sharing audio and audiovisual material as
simple as possible. Professional and nonprofessional users capture audiovisual content
using mobile devices (smartphones and tablets) and upload it to the platform. However,
multimedia data that are collected through crowdsourcing are often of low quality, due
to nonprofessional hardware limitations and the lack of proper training. In this direction,
mobile automations add a level of intelligence to assist the process. Difficulties regarding
user- and context-related heterogeneities are overcome through the adoption of dedicated
audio processing and interaction techniques for the semantic tagging and annotation of
audio events.

To this end, the implementation of a 4-layer, cloud-based architecture is shown in
Figure 1, offering audio-driven multimedia analysis and classification. Mobile terminals
offer sensory and recording software to capture sound and audiovisual data, which can be
enhanced with time, geolocation, and other context-aware metadata. The user can upload
the created files on the cloud for analysis. The data handling layer is responsible for orches-
trating and distributing the incoming data depending on the resource allocation, while also
extracting audio tracks from audiovisual material and selecting the channels/segments to
be further processed. Next, the audio processing and classification layer takes over, result-
ing in an assembly of salient (human-crafted) audio features, as presented on the left side of
Figure 1 (terminal-wise analysis). A set of dedicated temporal feature integration processes
is involved [54,57,59], attempting to classify the sounds identified in the given sound-
scape through typical Multi-Layer Perceptron (MLP) architectures. Apart from this on-site
analysis, heavier processing is deployed on the cloud, utilizing state-of-the-art CNN archi-
tectures for machine-driven convolutional feature engines and finer pattern recognition
(right side of Figure 1). Overall, these two independent flows employ different-complexity
(and computational load) machine learning models, associated with the client-wise and
server-wise (cloud) perspectives, as previously stated. The resulting entities are stored
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in a repository along with their semantic representation. Based on this information, an
interactive map is created, augmented with a timeline bar and multiple semantic filtering
options, taking into consideration time, location, and pattern-related tags. The captured
audio streams are pinned in this multilevel information mapping so that spatiotemporal
monitoring and auralization processes are offered as part of the storytelling. Hence, both
the UGC contributors (displayed at the bottom of Figure 1) and the end-users/consumers
(depicted at the top of Figure 1) can reproduce the evolution of sound and soundscapes
over time, and in relation to the available semantic layers. The main goals of the pro-
posed architecture concern the efficient and purposeful employment of cloud services and
mobile artificial intelligence for the support of interactive soundscape exploration. More
specifically, the current paper evaluates the individual and ensemble potentials of the two
different semantic analysis processes (terminal- and cloud-wise), thus making a convincing
proof of concept for their usefulness in the attempted CH data-driven storytelling.

1 
 

 

Figure 1. The adopted semantic crowdsourcing model architecture. Terminal-site audio semantics is
deployed through feature extraction, temporal integration (enhanced temporal integration (ETi)),
and multi-layer perceptron (MLP)-driven pattern recognition. Server-wise semantics are applied
in heavier processing modes using convolutional neural networks (CNN) architectures for end-to-
end content-based recognition. Captured audio (and audiovisual) data are enhanced with diverse
semantic tags and pattern-related metadata, which are documented in the formed ground-truth
repository. These media assets also augment the proposed data-driven cultural heritage (CH)
storytelling model.
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2.4. Experimental Setup
2.4.1. Concept Validation: Preparation of a Questionnaire Survey

The initial hypothesis (RH1) can be examined by answering typical questions for
soundscape capturing, sharing, exploration, and specific aspects regarding users’ cultural
interests and habits, thus retrieving vital feedback. In order to grasp and monitor users’
preferences the research utilized a quantitative survey method for data collection, with the
formation of a corresponding online questionnaire.

Detailed information regarding this survey is provided in the associated results sec-
tion, along with the assessment outcomes. An overview of the chosen inquiries is presented
here, aiming to justify the adoption and configuration of the formed questionnaire. Hence,
background-related questions (soundscape knowledge, relevance, previous use, etc.) were
structured in a categorical form of potential answers, with 5-point Likert scales (1–5,
from “Totally Disagree” to “Totally Agree” or from “Not at all” to “Very Often”). Binary
values (i.e., gender) and higher-dimensional lists were also involved. The items were
divided into three subsets, with the former involving basic characteristics/demographics
of the users (questions 1–4), the second implicating questions on the participants’ back-
ground/knowledge on soundscapes (questions 5–10), and the latter containing suggested
modalities and usability characteristics of the proposed mobile application (questions
11–17, in Table 1). The test formation was validated after discussions and focus groups with
representative users and authorities of various kinds. Specifically, there were involved jour-
nalists, cultural and soundscape heritage enthusiasts, multimedia producers/programmers,
technologists and researchers in machine/deep learning, environmental sound recognition,
audio semantics, etc. The survey was updated based on the received feedback, investigat-
ing the audience interest in soundscapes and soundscape heritage, while also estimating
the anticipated dynamics of the proposed approach.

Table 1. The analysis questionnaire.

# Question (Indicative Answers—Range)

1 Age (intervals: <18, 18–25, 26–35, 36–45, 46–55, >55)

2 Gender (Male, Female, N/A)

3 Education (Secondary, University, Master, Student, PhD)

4 Profession (Employee, Freelancer, Student, Unemployed, Retired)

5 Knowledge of what a soundscape is (Yes, Probably Yes, Probably No, No, Don’t know)

6 Frequency of soundscape search last year (<5, 5–10, 10–20, >20)

7 Interest in soundscape heritage (1–5)

8 Yearly participation frequency in cultural events containing soundscapes (<3, 3–5, 5–10)

9 Soundscape capturing frequency (Never, Rarely, Sometimes, Frequently, Very often)

10 Most preferred soundscapes to capture (Culture, Environment, People, Urban, Other)

11 Privacy and/or copyright (Both, Privacy only, Copyright only, None)

12 Probability of using the app for soundscape capturing and sharing (1–5)

13 Probability of using the app for own soundscape re-production (1–5)

14 Probability of using the app for others’ soundscape re-production (1–5)

15 Technological maturity (Yes, No, Don’t know)

16 App capability for soundscape sustainability (1–5)

17
App extra usability features and modalities (6 suggestions: Soundscape search from soundscape, image search from
soundscape, soundscape recommendations, given soundscape’s related subjects, augmented reality, user sharing

and combination)
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Table 1 synopsizes the final set of questions selected for the needs of this survey.
During the survey preparation, all ethical approval procedures and rules suggested by the
“Committee on Research Ethics and Conduct” of the Aristotle University of Thessaloniki
were followed. The respective guidelines and information is available online at https:
//www.rc.auth.gr/ed/ (accessed on 2 March 2021). Moreover, the declaration of Helsinki
and the MDPI directions for the case of pure observatory studies were also taken into
account. Specifically, the formed questionnaire was fully anonymized, and the potential
participants were informed that they agree to the stated terms upon sending their final
answers, while they have the option of quitting anytime, without submitting any data.

2.4.2. Configuration and Validation of the Audio-Semantic Modalities

Aiming to conduct an objective evaluation for both terminal- and server-side classifi-
cation algorithms, a comparative evaluation between a lightweight feature-based method
and a deep learning approach was decided. As already explained, these two approaches
represent the earliest algorithmic implementations that the project should launch, so they
are investigated in this first research. Specifically, an Enhanced Temporal Integration (ETi)
model [57] with a fully connected neural network (i.e., MLP) and typical 2-dimensional
CNN topologies [58], proposed as the terminal and server-side classification approaches, re-
spectively, were tested on typical audio classification scenarios, utilizing common datasets.
Again, the specific pattern analysis taxonomies are thought of as the minimum, though
entirely adequate, pilot developments to provide a convincing proof of concept, while initi-
ating the semantic crowdsourcing process and the gradual construction of the anticipated
ground-truth repository, as well.

The classification scenarios involve two datasets, according to a 3-class generic classifi-
cation and an environmental 10-class scheme. The first one is simulated using the LVLib-v3
dataset [59], which follows the Speech/Music/Other (SMO) taxonomy, while the 10-class
task is based on the UrbanSound8K dataset [55]. This decision is justified by the fact that the
Other class of the LVLib-v3 can be hierarchically split into more classes, which for instance,
can follow the scheme of the UrbanSound8k [15]. On the one hand, LVLib-v3 includes 1.5 h
of recordings, and it is available online at m3c.web.auth.gr/research/datasets (accessed
on 2 March 2021) and specifies a 3-fold cross-validation strategy to make the results com-
parable across the algorithms of different creators. On the other hand, UrbanSound8K is
a standard benchmark for environmental sound recognition and contains 8.75 h of field
recordings, divided into 10 environmental sound categories.

Regarding the classification units, as aforementioned, the ETi with an MLP and a
2-dimensional CNN and were deployed. It is a fact that the latest deep learning approaches
can process raw waveform data [58], but the 2-dimensional topologies deliver the best
balance between performance and computational cost and were selected in this case. In
addition to this, the ETi method proved to be a lightweight solution for conventional
feature-based classification, offering decent performance [59]. The CNN processes mel-
spectrogram patches, with a shape of 84 time-steps × 56 bands. Spectral analysis is
executed on a 512/256 sample size/step basis with a sampling rate of 22,050 Hz. The
convolutional network consists of four consecutive CPD blocks (each one containing
successive Convolutional, Pooling, and Dropout layers), a Global Average Pooling (GAP),
and two Fully Connected (FC) layers with an additional Dropout layer in between. The
number of filters is 16, 32, 64, and 128 for the convolutional layers with a kernel size of
3 × 3, while the pooling size is set to 2 × 2. The number of neurons of the FC layers
was set to 64 and according to the number of classes, respectively. A schematic of the
deployed CNN architecture is given in Figure 2. The MLP configuration takes as input
200 features, extracted in a 512/256 sample size/step basis and integrated according to
the ETi method. The extracted baseline features are 12 MFCCs, Perceptual Sharpness,
Perceptual Spread Spectral Centroid, Spectral Decrease, Spectral Flatness, Spectral Flux,
Spectral Kurtosis, Spectral Rolloff, Spectral Skewness, Spectral Slope, Spectral Spread,
Spectral Variation, and Zero Crossing Rate. These features are temporally integrated

https://www.rc.auth.gr/ed/
https://www.rc.auth.gr/ed/
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using the Mean Value, Standard Deviation, Skewness, Kurtosis, Mean Absolute Sequential
Difference, Mean Crossing Rate, Flatness, and Crest Factor metrics [54]. A typical network
setup was deployed with two hidden layers, featuring 64 and 32 neurons. Concerning the
rest of the parameters, both networks follow the same configuration: The ReLU function
was used as activation for all intermediate (Convolutional and Fully Connected) layers and
SoftMax for the output layer, Categorical Cross-Entropy as the loss function, and Adam as
the optimizer. Dropout was set to 25%.
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3. Experimental Results
3.1. Concept Validation: Audience Analysis Results

To examine the proposed research question regarding the usefulness of an application
similar to the one proposed, we undertook an online survey (N = 171). Data collection via
an online survey appeared to be the most realistic and feasible method to reach a broad
audience that would lead to a representative sample. From the collected sample, 61.4%
of the responders were females, 36.4% were males, while 2.3% preferred not to state their
gender. Regarding sample’s distribution in the given age groups 18–25, 26–35, 36–45, 46–55,
and above 55, the results are 30.4%, 48%, 15.8%, 5.3%, and 0.6% respectively. In general,
the results showed that many people are not familiar with what a soundscape is. In more
detail, given six (6) common acoustic scenarios, the participants were asked to identify
which of them could be considered soundscapes. The study shows that over 70% of the
participants were able to identify the cases in which actual soundscapes were given (e.g.,
sound of a bell in a village), while on the other hand, about 40% of them had difficulty
distinguishing what was rather a false-positive soundscape (e.g., a teleconference). The
majority of the participants expressed their interest in the mediated soundscape experience
that is aimed within the current project, as thoroughly analyzed below.

In order to balance the diversity of the sample, we selected 104 out of the 171 partici-
pants, the ones positively posed against soundscape heritage, considering it an important
factor for sustainability, especially in cultural places. This division was also dictated by the
fact that some of the questions require a basic background and understanding of sound-
scapes. Thus, it would be unreliable or biased to equally balance the replies on soundscape
heritage and semantics of those without a basic comprehension of the associated terms.
The results from the selected sample (N = 104) show that only 30% of the participants
explore soundscapes once a month. In addition, 30% of the participants record sounds
and soundscapes frequently, while 66% of them record mostly cultural-related content.
Moreover, 40% stated that they want soundscapes to be available for future reference
and/or exploration. Moreover, the selected sample featured a clear interest in soundscape
preservation over time, while the majority of them (69%) stated that they use their mobile
devices for soundscape capturing and sharing. On the other hand, from the smaller per-
centage of participants not showing interest in sound heritage (13%) or being moderate
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about it (26%), almost half of them capture soundscapes quite often, thus constituting a
group of potential application users.

It is noteworthy that although soundscape capturing, sharing, and reproduction is
not that widespread, the selected participants showed a high interest in the proposed
application. More specifically, 89% of the participants would use an application like the one
proposed for soundscape capturing and sharing. Further, 77% would use the application
for the reproduction of what was once recorded, either by themselves or other users. Finally,
87.5% of the participants believe that an application similar to the one proposed here would
assist in the sustainability of soundscapes’ heritage.

Figure 3 provides graph statistics for both the whole (N = 171) and the subset group
(N = 104), concerning some of the important questions (namely, #12, #13, #14, and #16). It
can be noticed that most users are willing to capture and contribute soundscape recordings,
especially the ones belonging to the selected subset (a mean value of 4.03 is observed with
a st.dev of ±1.11, compared to the 3.47 ± 1.11 respective values of the entire population).
Likewise, almost all participants consider it very likely to reproduce their own or other
soundscapes, appraising the impact of the application to sound and soundscape heritage
(again, the mean values are higher and with slightly smaller dispersion in the case of the
selected sub-group). In summary, the results of the conducted survey validate the first hy-
pothesis (RH1) and the associated research question (RQ1) that there is an audience willing
to use the suggested MoJo application, contributing to soundscape heritage crowdsourcing
and the subsequent data-driven storytelling (even subjects that do not fully comprehend
the underlying principles of the soundscape semantic).
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Figure 3. Results on the probability (a) to record—contribute soundscapes (q#12); (b) to reproduce recorded (own)
soundscapes (q#13); (c) to reproduce recorded (others’) soundscapes (q#14); and (d) on the estimated impact of the
application in sound heritage. Statistical moments of mean and standard deviation (st.dev) are presented both for the entire
population (N = 171) and the selected subset (N = 104).

3.2. Audio Classification Results

Classification results are presented (Table 2) in terms of accuracy statistics (mean
value/standard deviation) as they have been extracted by the associated evaluation in
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unknown samples (testing dataset). In this manner, it is anticipated the expected gen-
eralization performance of the trained modalities, i.e., their ability to provide accurate
classification estimates to entirely new/unknown data. On the LVLib-v3 dataset, both clas-
sification modules perform almost equally, achieving high scores, similar to relevant tests
conducted in previous works [57–59,66]. As expected, the CNN classifier performs slightly
better. As already explained, the Urbansound8k dataset involves a 10-class scheme, making
the classification problem more demanding, compared to the 3-clas LVLib-v3 taxonomy.
While a reasonable accuracy drop is noticed for this reason (i.e., in Urbansound8k), the
performance ratings of these models are in line with the current state-of-the-art on the same
datasets. Concerning further the UrbanSound8k dataset, the high learning capacity of the
CNN is more evident, making the performance gap wider, where the deep network clearly
outperforms the conventional model. However, the utilized temporal integration tech-
nique ensures decent classification accuracy, making the feature-based approach capable of
successfully accomplishing the more demanding task.

Table 2. Classification accuracy (mean ± st.dev%) on the LVLib-v3 and UrbanSound8k Datasets.

LVLib-v3 UrbanSound8k

ETi 84.4 ± 4.1 68.4 ± 3.9

CNN 86.4 ± 3.9 72.2 ± 5.9

The results show that the ETi lives up to the standards of deep learning approaches,
especially when computational resources are limited [13,16,56]. This was further inves-
tigated, and a computational complexity evaluation was also executed. The additional
evaluation involves the measurement of prediction times for both models, and a relative
presentation of the results was decided because absolute measurements can significantly
vary on different processing units. Table 3 depicts the computational cost in terms of
network size and prediction times.

Table 3. Network size and relative computational complexity for the ETi and CNN models.

Number of Parameters Complexity

ETi 15k 1×
CNN 100k 2×

It can be noticed that in the case of the ETi approach, network size is significantly
smaller, facilitating the deployment on devices with low processing power. Nevertheless,
the size of the CNN is not that large to make the deployment of the model impossible in
the modern mobile computing devices. Summing up, the CNN can equip both client- and
cloud-wise semantic analysis services, while the ETi provides adequate performance at the
lowest processing cost. These findings directed our decision for selecting the ETi and the
CNN as client- and cloud-wise classification solutions, respectively.

Overall, based on evaluation results of the trained models, and the justification con-
cerning the selection of these two demanding datasets, the remaining research hypothesis
(RH2) and question (RQ2) are validated/positively answered. Hence, the adopted audio
classification schemes, suited for pattern-related soundscape semantics, can be served
through relatively light-weight (concerning the required memory and computation load)
ML and DL modules. Two related systems have been successfully trained and evaluated
as the initial algorithmic backend solutions. The accuracy of those models is already
more than satisfactory. However, it can be further enhanced through the users’ feedback
(and the implicated semi-supervised learning features) deployed within the proposed
MoJo framework. Furthermore, the hierarchical and/or hybrid combination of the two
taxonomies, along with the initiation of the crowdsourcing process, would lead to the
gradual construction of a dedicated dataset. This problem-adapted ground-truth repository
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would facilitate the training of more sophisticated ML and DL networks with superior
performance and additional semantic conceptualization perspectives.

4. Discussion

The current paper introduces MoJo services updated and adapted to the need of
semantic soundscape, crowdsourcing, management, and data-driven storytelling. Based
on the conducted experiments, the stated hypotheses have been fully verified, i.e., the
audience is interested in such a mobile application (RH1). Furthermore, current technology
is adequately mature to reliably deliver the wanted functionalities through General Audio
Detection and Classification techniques deployed through Machine and Deep Learning
networks to serve the required soundscape semantics (RH2). Furthermore, specific audio
processing and semantic analysis features were tested in an effort to quantify the imple-
mentation parameters set in RQ1. The configured modalities, both client- and server-wise,
exhibit remarkable accuracy with acceptable computational load. Based on the previous ex-
perience with the MoJo-mate platform [11–24], especially for the data shaping, presentation,
and publishing part, the proposed model can efficiently deploy the desired data-driven
storytelling and management services, which have a heavy impact on the CH domain. Con-
cerning the technological adequacy and reliably that RQ2 inquires, the proposed integration
seems to overcome the expected difficulties and to suitably serve the desired semantic
enhancement, documentation, and auralization/reproduction perspectives. Specifically,
along with the above-mentioned low-level measurement modes, the software also provides
long-term audio analysis capabilities, based on semantic audio processing concepts [56].
This higher-level mode brings real-time audio-pattern recognition, visually resulting in
an event detection markup timeline. A dynamic audio-samples database is used as a
pattern-storing matrix, which is configurable by users. Samples can be added, by making a
simple recording, and deleted as well. Relying on the MoJo-mate application experience, a
user-friendly measurement session manager is feasible, allowing each measurement to be
easily stored on the mobile terminal memory and recalled on demand. Additional session
measurement data can be stored, including title, location, user’s comments, etc., while the
position is automatically determined utilizing the device GPS. Likewise, timestamps are
easily overlaid by the device, while a handy interface allows photo and video capturing of
the measurement location, i.e., the recorded soundscape. A cloud-based session manager
handles all the users’ data, aiming at building a user-generated, spatiotemporal digital map
used for storing measurements. Users can store, update, and retrieve raw audio data and
their corresponding analysis output. All measurements uploaded to the cloud are accessi-
ble by anyone who uses the application. By exploiting the GPS sensor and cellular data
capabilities, the application can easily classify and group measurements by geographical
location and kind. Thus, a user can instantly check and confirm the correctness of a specific
measurement by comparing it to similar ones, provided by other users. They can even
obtain the desired data without making a measurement.

Audio recognition usually refers to different recognition tasks, like acoustic scene de-
tection, speech recognition, and speaker recognition. Systems that implement such models
are oriented to specific scenarios of recognition. Applying audio recognition to soundscape
management is a much more complicated task. The information that can be extracted from
the recordings is not pre-defined. Environmental noise can contain multiple layers of audio
information and includes a great variety of possible temporal audio events. In the proposed
approach, an ensemble of algorithms is proposed to compose a hierarchical classification
scheme. For example, an algorithm for acoustic scene classification can classify an acoustic
scene as “river,” while an audio event detection can recognize a “speech” audio event at a
certain time, triggering algorithms that extract information concerning speaker diarization
and spoken language, thus triggering algorithms that transform speech-to-text, etc. This
approach results in several layers or perspectives of audio monitoring, giving the user
the possibility to browse through the data with different levels of information abstrac-
tion. In the context of environmental recordings, several information layers concerning
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acoustic characteristics, noise levels, etc. can also be included in the defined hierarchical
scheme. Another interesting approach for analyzing complex scenes is automated audio
(and audiovisual) captioning. This defines an end-to-end model that maps acoustic scenes
to descriptive texts but can also correlate them with associated visual entities.

5. Summary

The current work focuses on the collaborative collection and documentation of sound-
scapes and environmental sound semantics. The whole approach has many similarities
with sophisticated Mobile Journalism services, assisting professional and citizen jour-
nalists in collecting news-items and shaping them into featured data-driven storytelling.
Crowdsourcing media assets for cultural heritage is a fruitful field that can engage an audi-
ence through successful design and motivation decisions. Along with audio/multimedia
content and metadata, semantic annotation can be incorporated through typical sound
classification scenarios. A comparative evaluation between a lightweight feature-based
machine learning network and a convolutional deep learning architecture was decided for
the terminal and server-side algorithmic approaches, employing two different classification
taxonomies with applicable audio datasets. Adopting the LUCID design and development
methodology, audience engagement and reinforcement was triggered through an online
survey, confirming that users are willing to contribute and appraise the impact of the
application to crowdsource sound semantic and soundscape heritage.

The innovation of the paper lies in the incorporation of sophisticated on-site semantic
analysis and crowdsourcing dynamics, as they are advanced in today’s ubiquitous society
(i.e., in the era of big data and the semantic web). Specifically, one of the advantages of
this approach, which also highlights one of the main novelties of our work, is that besides
collecting and storing resources (recordings of soundscapes and corresponding metadata)
from users, it is possible to provide semantically enhanced services on the cloud. Environ-
mental sound recognition is addressed in the paper as one of the featured functionalities
using machine learning techniques. Relying on the so-called MoJo-mate platform, an analy-
sis is held regarding model elaboration and adaptation for the needs of soundscape heritage.
A four-layer, cloud-based architecture was deployed, incorporating two independent flows
that employ different-complexity (and computational load) ML/DL models, associated
with the client-wise and server-wise (cloud) perspectives for soundscape semantics. The
achieved model performance supports the feasibility of the proposed system. The impact
of the proposed MoJo-adapted system lies in the ability to document today’s soundscapes
to be experienced as tomorrow’s heritage, taking advantage of semantically enhanced
data-driven storytelling.
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