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Abstract: Although the emission reduction and innovation effects of carbon emissions trading have
attracted considerable interest among academics and policy makers, there is a lack of empirical
research on how carbon trading pilots in China promote regional green innovation. Therefore, we
measured the green innovation efficiency of 30 provinces and cities in mainland China from 2005 to
2018, using selected panel data within a super-efficient SBM model that incorporated undesirable
outputs. We used a double differential model to evaluate the impacts of carbon trading policies on
the green innovation efficiency of seven carbon trading pilot regions. These impacts were confirmed
using the double differential propensity score matching method. Our findings were as follows. (1) The
implementation of carbon trading policies has a significant and continuous effect of promoting and
improving green innovation efficiency in the pilot areas. (2) Carbon trading induces technological
innovation effects, enabling green innovation potential to be realized. Regional green innovation
efficiency is further improved through energy substitution and structural upgrading effects and
subsequently through all three of the above effects. (3) The synergy between the three major effects
of carbon trading policies amplifies regional green innovation efficiency. Therefore, the Chinese
government should accelerate its efforts to develop and improve carbon markets, promote carbon
trading policies, and actively foster synergy among the three effects to achieve green and sustainable
regional development.

Keywords: carbon trading; green innovation efficiency; propensity score matching; difference in
differences model

1. Introduction

In recent years, while extensive economic growth has yielded economic dividends,
it has also generated various problems, notably, excessive energy consumption and in-
sufficient innovation. The question of how a win-win situation of economic growth and
carbon dioxide (CO2) emission reduction can be achieved, while making full use of essen-
tial resources, has emerged as a common societal concern. At the same time, the goal of
establishing a global governance system for achieving green, low-carbon, and sustainable
development is shared by countries globally. However, the task of achieving the reduction
targets stipulated in the Paris Agreement for limiting the rise in the global temperature
to no more than 2 ◦C above preindustrial levels and to reach the global peak as soon as
possible is a daunting one [1]. In addition, through the implementation of large-scale
carbon dioxide storage projects, the goals and requirements of the Paris Agreement can
also be achieved. On the one hand, accelerated adjustment of the industrial structure
to redress structural imbalances is required, and on the other hand, emission reduction
technologies should be prioritized, and development should be propelled by innovation.

The question of whether a win-win situation for regional economic growth and
carbon dioxide (CO2) emission reduction can be achieved through the adoption of rational
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economic policies and stringent environmental regulation is therefore a critical one. Efforts
to explore and establish different carbon trading systems have been initiated in various
regions worldwide. The European Union Emissions Trading Scheme is distinctive among
these initiatives, as it is not only politically feasible but also environmentally effective, as
well as cost-effective [2]. This system was rapidly extended to cover about 12,000 industrial
and power facilities in Europe that were responsible for almost 50% of the EU’s greenhouse
gas emissions. Between 2005 and 2012, the EU-ETS accounted for 85% of the total global
volume of carbon trading [3]. Within the United States, Chicago was the first city to
participate in transactions to reduce greenhouse gas emissions, providing a foundation
for national efforts to implement activities to reduce greenhouse gas emissions, such as
RGGI, WCI, and the California Plan. Australia too launched a domestic carbon trading
market after introducing relevant legislation in 2015, gradually developing a regional
carbon market with extensive coverage, a carbon price compensation mechanism, and an
improved monitoring mechanism over time [4].

In 2011, the Chinese government launched pilot carbon trading projects in seven
provinces and cities, namely, Beijing, Tianjin, Shanghai, Chongqing, Guangdong, Hubei,
and Shenzhen. The implementation of policies for establishing a carbon trading market in
China has occurred relatively late compared with their implementation by other countries
or organizations. Consequently, the carbon trading system is still evolving and requires
further refinement, and there are information gaps on transactions. The Chinese govern-
ment has adopted a series of market-oriented measures for achieving emission reduction
targets through the development of a carbon trading system for promoting coordinated
efforts to stimulate economic growth and environmental improvements. The government
is simultaneously actively pursuing a path of green innovation and development framed
through a series of concepts, notably, “innovative country”, “wild China”, and the “five
concepts for development”. “Green innovation” can also take diverse forms and include
the promotion of economic growth [5]. Technical progress and environmental improvement
initiatives in China are aimed at achieving the dual goals of “green mountains and clear
water” and “mountains of gold and silver”. Green innovation simultaneously entails a new
process technology, system, and products aimed at reducing environmental pollution and
damage and improving energy efficiency [6]. The goal of improving the efficiency of green
innovation not only conforms to the concept of green development but it also encourages
the implementation of innovation-driven development strategies.

To sum up, carbon trading has gradually gained popularity within most countries
worldwide as a mechanism for promoting energy saving, emissions reduction, and low-
carbon economic transformation through the use of market-oriented and mandatory mea-
sures to reduce energy consumption intensity. This approach also promotes CO2 emissions
reduction, which in turn drives the improvement of regional technological innovations. As
the world’s largest developing country and a major energy consumer, China’s emission
base is large, crucially impacting on the global carbon trading volume. Therefore, studies
focusing on the operation of China’s carbon trading mechanism and status quo would
provide valuable inputs that could contribute to the realization of China’s low-carbon
economic transformation as well as the development of low-carbon technologies in other
countries. The achievement of green and sustainable development of regional economies
hinges on whether the technical effects of scale, and thus the level of regional technological
innovation can be fully realized through the implementation of China’s carbon trading
policy. Using panel data extracted for 30 provinces and cities in mainland China for the pe-
riod 2005–2018, we examined the green innovation potential of carbon trading. Specifically
we explored the dynamic relationship between regional carbon emissions reduction and
green innovation efficiency under the influence of China’s carbon trading policy. Moreover,
we sought to determine the mechanism by which carbon trading promotes regional green
innovation efficiency. Elucidation of this mechanism contributes to advancing research
on China’s carbon trading regime and yields insights that can be applied to formulate
guidelines for promoting green, high-quality regional development. Figure 1 shows the
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distribution of China’s pilot and non-pilot regions involved in the thesis research. Among
them, the pilot regions mainly include the seven provinces and cities: Beijing, Tianjin,
Shanghai, Hubei, Chongqing, Guangdong, and Shenzhen.

Figure 1. Comparative analysis of pilot and non-pilot regions.

2. Literature Review and Hypothesis
2.1. Literature Review

Scholars in China and abroad have conducted extensive research in the fields of
carbon trading and green innovation. The research on carbon trading has mainly focused
on impact effects, methods of measurement, carbon quotas, and carbon prices. This paper
primarily focuses on studies on the impact effects of carbon trading. Dan et al. applied
a differences-in-differences (DID) model to examine the policy effects of carbon trading.
Their findings provided support for the “Porter hypothesis”, revealing that the carbon
trading mechanism encourages technological innovation to a certain extent. However,
these authors did not find a strong policy effect on total factor productivity [7]. The trading
mechanism of carbon emission rights is required to realize low-carbon transformation of
the Chinese economy. Chuanming et al. applied a synthetic control method to investigate
the carbon emissions reduction effect of China’s carbon trading pilot provinces. They
found that the carbon reduction effects of different pilot provinces were heterogeneous
because of differences in their levels of economic development and in their industrial
structures [8]. Other studies have examined the effects of carbon trading on economic
growth. Zhengge et al. investigated whether the SO2 emission trading mechanism exerts
the Porter effect of inducing efficiency and innovation in China. They emphasized that
strengthening market development and environmental regulation are necessary conditions
for inducing the Porter effect [9]. Chunmei et al., who applied the directional distance
function to calculate emissions reduction costs for China’s industrial sector, confirmed
that the carbon trading market has a significant impact on industries’ emissions reduction
costs and carbon intensity [10]. Studies that have explored synergistic effects include
those of Cheng et al. and Ren Yayun. Their findings indicate that a carbon trading policy
that encourages synergistic emissions reduction not only promotes the reduction of CO2
emissions but it also promotes the reduction of other pollutants, thus playing a role in
coordinated emissions reduction [11,12]. Last, a study by Jing and others examined the
effect of upgrading the industrial structure, using the synthetic control method to evaluate
the impacts of carbon trading on the upgrading of China’s industrial structure. Its findings
indicated that carbon trading compels the upgrading of the industrial structure [13].

Research on the efficiency of green innovation has primarily entailed the use of two
approaches for measuring the values of efficiency and influencing factors. In the first
approach, the parameter-based stochastic frontier model and the non-parametric data
envelopment analysis methods are used to measure efficiency. In 1997, Chung and others
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proposed the concept of a directional distance function, which provides methodological
support for measuring total factor productivity, including “unexpected outputs” in a region.
Watanabe et al. used the directional distance function to assess the impacts of China’s
inter-provincial initiative to eliminate bad industrial outputs on industrial efficiency during
the period 1994–2002. They found that undesirable industrial outputs play an important
role in improving industrial efficiency [14]. Neng et al. applied a hybrid DEA model to
measure the efficiency of green innovation in China. The findings of their analysis of key
factors affecting the efficiency of green innovation revealed that a good industrial structure,
a free technology trading market, and basic environmental criteria had a greater impact
on green innovation than did other factors [15]. Considering environmental pollution and
innovation failure as undesirable outputs, Yanwei and others constructed an SBM–DEA
model and alpha and beta convergence models to measure and converge the efficiency of
green innovation in China [16]. The second approach entails the study of influencing factors.
Scholars adopting this approach have largely focused on the following dimensions: the
level of economic development [17], environmental regulation [18], R&D investments [19],
and the level of interaction with the outside world [20]. These studies have advanced
knowledge of the factors influencing green innovation efficiency within regions, while
providing a conceptual foundation for initiatives aimed at improving levels of regional
green innovation.

An examination of the recent literature reveals a paucity of studies that have investi-
gated the relationship between carbon trading and green innovation efficiency and a lack
of in-depth analysis of the internal mechanism driving this relationship. Moreover, few
studies have examined the correlation between carbon emissions reduction and techno-
logical innovation despite the effectiveness of carbon trading, as a market-based policy
tool, in reducing carbon intensity on the one hand and the importance of regional green
innovation efficiency on the other hand. We aimed to address this gap by examining the
green innovation potential of carbon trading. Our study makes the following contributions
to the literature. First, it shows that the super-efficient SBM model, incorporating the
impacts of undesirable outputs (carbon emissions), is an appropriate model for measuring
green innovation efficiency in a region. Second, whereas several studies have examined the
emissions reduction effects of carbon trading, they have not investigated the potential of
carbon trading to promote regional green innovation. Therefore, we examined the diversity
of regional green innovation efficiency within a carbon trading framework. Third, we
argue that it is necessary to identify the intermediary transmission mechanism whereby
carbon trading promotes improvements in a region’s green innovation efficiency. At the
same time, it is important to analyze differences in the technology innovation effects of
carbon trading along with energy substitution and structural upgrading effects on green in-
novation efficiency. As we show, a study that entails both approaches can contribute useful
insights for improving regional energy conservation and emission reduction capabilities
and guiding inputs for the exploration of appropriate green innovation paths.

2.2. Research Hypothesis

As an environmental regulation tool, carbon trading influences the costs, benefits, and
operating efficiency of the regional economy and promotes green, low-carbon regional
development. Therefore, an in-depth study to examine the ways in which carbon trading
contributes to the efficiency of green innovation within regions would shed light on their
internal linkages.

(1) Technological innovation effect. Academic research has confirmed that techno-
logical innovation has a carbon emission reduction effect and that effective technological
progress can significantly reduce carbon emissions [21,22]. Technological advances can
help companies to control their emissions reduction costs and reduce production, thereby
reducing carbon emissions. At the same time, companies located in pilot regions can use
technological innovations to reduce emissions, and the technology spillover effect can
further promote regional green innovation efficiency [12].
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Hypothesis 1 (H1). Carbon trading contributes to enhancing technological innovation in pilot
areas, thereby increasing the level of regional green innovation efficiency.

Energy substitution effect. The energy substitution effect of carbon trading is evi-
denced by increased production costs for traditional high-emission enterprises because
of the need to expand their production scales. Moreover, CO2 emission rights relating to
ultra-carbon quotas have compelled enterprises to reduce their CO2 emissions and increase
the extent of their clean technology research and development [8]. Thus, the establishment
of a carbon market can effectively stimulate the optimization and upgrading of the energy
structures of enterprises, thereby increasing the proportion of clean energy that contributes
to a reduction of carbon emissions. Clean energy is mainly used in the power sector, which
has contributed more than 50% of carbon emissions [11]. Therefore, it is necessary to
improve the energy utilization efficiency of this industrial sector through the prioritization
of energy-saving and emission-reducing technologies and equipment that promote clean,
low-carbon development in the pilot areas.

Hypothesis 2 (H2). Carbon trading has led to the modification of the energy structure of enterprises
in the pilot regions, and the substitution of fossil energy by clean energy has enabled the coordinated
development of energy consumption and carbon emission reduction, thereby promoting regional
green innovation efficiency.

(2) Structural upgrading effect. An advanced industrial structure that is optimized
and upgraded reflects the changing relationship between different industrial ratios and
improved labor productivity within various industries and exerts “structural benefits” [23].
Carbon trading can contribute to the advancement of the industrial structure in two
ways. The first entails changing the proportion of different industries and the second
entails improving labor productivity within various industries [7]. At the same time, the
optimization and upgrading of the industrial structure contributes to the flow of factors
between industries, resulting in a gradual reduction in the proportion of the three industries
associated with high carbon emissions, which leads to a reduction in industrial carbon
emissions while simultaneously promoting green and low-carbon regional development.

Hypothesis 3 (H3). Carbon trading drives the process of upgrading the industrial structure in the
pilot regions, thereby improving the efficiency of regional green innovation.

A carbon trading policy has three major effects that contribute to promoting green
regional development: technological innovation, energy substitution, and structural up-
grading effects. Figure 2 shows the specific mechanism whereby these effects are achieved.

Figure 2. The mechanism whereby carbon trading policies influence the efficiency of green innovation.
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3. Methodology and Models Applied
3.1. Super-Efficient SBM Model

Following our review of the relevant literature, we selected the non-parametric DEA
method and the parametric SFA method for measuring green technology efficiency [24].
The DEA model can accommodate the relationship between multiple input and output
variables. Moreover, it is more aligned with actual situations, as it does not require
the setting of a specific function form. However, the traditional DEA model enables a
unilateral assessment in which only the expected output is considered, while the effects
of the undesirable output are ignored. Relaxation of inputs and outputs leads to a higher
value for the measured efficiency. At the same time, the traditional DEA model is radial and
angular, which results in some deviation in the calculated results. By contrast, non-radial
and non-angle SBM models are better aligned with the study’s requirements and address
the above-mentioned issues. Consequently, we adopted the approach used in previous
studies and incorporated undesirable outputs into the super-efficient SBM model [20,25].
We developed the following model for evaluating green innovation efficiency based on
the assumptions that n kinds of decision-making units (DMUs) have m kinds of element
inputs, Z1 kinds of expected outputs, and Z2 kinds of undesirable outputs:
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Model (1) indicates that when the invalid DMUk and the effective DMUk of ρ∗ are
transformed into each other, there is a corresponding correlation between a reduction in
input variable z−i , an increase in the expected output zg−

r , and a decrease in the undesirable
output zb−

q . When the values of z−, zg, and zb are larger, the efficiency value ρ∗ of DMUk is
correspondingly smaller, and when the values of z−, zg, and zb all have a value of 0, then
ρ∗ = 1, indicating that DMUk is effective, there is no shortage in the expected output, and
that the undesirable output is not in excess. DMUk in the super-efficient SBM model was
deemed effective based on a consideration of the factors of the corresponding relaxation
variables for the constraints. The specific model used for ranking DMUs was as follows:
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We derived and calculated model (2) on the basis of model (1). Using both of these
models, we calculated the regional green innovation efficiency values of 30 provinces
and cities in China (excluding the Tibet Autonomous Region) for the period 2005–2018
as follows:

GIE =

{
θ ∗ik θ∗ik < 1
ω ∗ik ω∗ik = 1

i = 1, · · · 30, k = 2005, · · · 2018 (3)

where GIE denotes the green innovation efficiency value for area i during year k.

3.2. DID Model

Currently, many methods exists for evaluating policy effects, such as synthetic con-
trol method and DID method [26]. In recent years, this DID model has been used for
quantitative evaluations of public policy or for assessing project implementation effects
within econometrics. The actual impacts of a policy can be assessed by comparing the
amount of change for a specific indicator before and after the policy’s implementation
using an experimental group and a control group. The DID method has been widely used
by scholars because of its ability to reduce endogeneity to some extent [26]. Therefore, we
applied this model to investigate the regional emission reduction potential and the green
innovation efficiency trend under conditions of the implementation of a carbon trading
policy and to examine key factors that influence changes in efficiency.

There are currently seven pilot provinces and cities in China where the carbon trading
policy has been implemented: Beijing, Tianjin, Chongqing, Shanghai, Hubei, Guangdong,
and Shenzhen. To simplify the analysis, the city of Shenzhen was merged with Guangdong
Province, and following Guangming et al., we set 2014 as the year demarcating the separa-
tion of the pilot and non-pilot periods, with the pilot period commencing from 2014 [27].
Accordingly, the following basic model was constructed:

GIEit = α0 + α1Ci + α2Yt + α3(Ci×Yt) + λi + γt + µit (4)

where GIE denotes green innovation efficiency, i denotes area, t denotes time, and Ci
denotes regional dummy variables. If province i is a carbon trading pilot province or city,
then the values of Ci are 1 and 0, respectively, for the experimental and control groups.
Yt denotes a time dummy variable. In 2014, which is the year of implementation of the
policy, t ≥ 2014 and Yt = 1; otherwise 0. The estimated coefficients α1, α2, and α3 of the
multiplication term Ci × Yt are double-difference estimators, indicating the net impact of
carbon trading policies. λi denotes the individual fixed effects of provinces and cities, γt
denotes the fixed effect of time, and µit is the random interference term.

The explanatory use of model (4) on its own could result in the influence of other
variables being discounted. Therefore, it is necessary to add control variables to the model
to account for the influence of objective factors on the explanatory variables. With reference
to previous studies, we transformed the basic model, selecting GDP per capita, R&D
investment, carbon intensity, energy structure, population size, and R&D investment as the
control variables:

GIEit = α0 + α1Ci + α2Yt + α3(Ci×Yt) + ∑ αjXj + λi + γt + µit (5)

where Xj denotes the control variable, and the meaning of other variables is consistent with
the above.

3.3. Selection of Variables and Data Sources
3.3.1. Interpreted Variables

Green innovation efficiency differs from other forms of innovation efficiency because
it considers the impact of changes in energy consumption and carbon emissions on regional
low-carbon development potential. Accordingly, drawing on the findings of previous
studies that measured regional green innovation efficiency, we applied the super-efficient
SBM model, incorporating undesirable outputs. Input elements, selected with reference
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to the existing literature, were full-time R&D personnel, R&D funding inputs, and energy
resource inputs.

Two categories of output elements of green innovation activities were defined: ex-
pected and undesirable outputs. Expected outputs were the value of economic growth,
the number of authorized invention patent applications, and revenue from sales of new
products. Undesirable outputs were innovation failures and the environmental pollution
index. According to Schumpeter’s definition of innovation, the success or failure of innova-
tion is reflected in the generation (or not) of economic profits. Failure to innovate affects
companies’ ability to repay their business loans and their regular cash flows, making it
impossible for them to generate profits. Consequently, they are left with non-performing
loans. Accordingly, the undesirable output was calculated as the ratio of the amount
of non-performing loans of commercial banks to the previous year. The environmental
pollution index relates to the discharge of waste water, gas, and solid waste in various
regions and was calculated using the entropy weight method to measure the weight of
each indicator. The specific index system applied in this study is shown in Table 1.

Table 1. Evaluation index system used to measure green innovation efficiency.

Index Category Index Composition Specific Measurement

Input
indicators Factor input

R&D expenses R&D expenditure (ten thousand yuan)

R&D staff R&D personnel full-time equivalent
(person, year)

Energy resources Total energy consumption (10,000 tons of
standard coal)

Output
indicators

Expected output

The level of economic
development

GDP per capita (ten thousand yuan,
constant price in 2005)

Knowledge and
technology output

Invention patent application authorization
volume (pieces)

Product output New product sales revenue (ten thousand
yuan)

Unexpected
output

Innovation failure Year-on-year ratio of non-performing loans
of commercial banks (%)

Environmental Pollution
Index

The entropy weight method is used to
calculate the discharge of waste water,

waste gas and solid waste

3.3.2. Core Explanatory Variables

Ci × Yt was the core explanatory variable. For a low-carbon city or province, when
Y ≥ 2014, the virtual variable Ci × Yt corresponding to the city had a value of 1, and
its coefficient indicated the net effect of the carbon trading policy and the strength of its
emission reduction effect.

3.3.3. Control Variables and Measuring Indicators

Referring to the literature, we selected per capita GDP, R&D investments, carbon
intensity, energy structure, and foreign capital dependence as the control variables relating
to the level of regional green innovation efficiency.

GDP Per Capita

In general, improvements in levels of regional economic development can drive
technological innovation and enhance the level of low-carbon technological innovation.
The regional GDP (constant price in 2005) and the proportion of permanent residents at the
end of the year were used to express GDP per capita.

R&D Investment Intensity

The level of scientific research has a crucial impact on the extent of regional technolog-
ical innovation, thereby influencing energy usage. Regional R&D expenditure was used to
reflect the amount of regional R&D investment.
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Carbon Intensity

Carbon intensity was measured as the ratio of the total CO2 emissions from fossil
combustion in the region to the GDP.

Energy Structure

Coal is the main source of energy consumed. The ratio of total coal to total energy
consumption was used to reflect changes in the energy structure, enabling a more intuitive
understanding of the trend of energy ratio changes in various regions.

Foreign Capital Dependency

The amount of foreign direct investments significantly influences regional economic
growth and the capabilities for controlling environmental pollution. Therefore, in this
study, we considered the ratio of foreign direct investment to GDP to reflect the degree of
foreign capital dependence.

3.4. Data Sources

Panel data were selected from the available raw data for 30 provinces in China (ex-
cluding Tibet, Hong Kong, Macau, and Taiwan) for the period 2005–2018. The data were
extracted from the China Statistical Yearbook, the China Energy Statistical Yearbook, the China
Environmental Statistical Yearbook, and the China Science and Technology Statistical Yearbook.

4. Empirical Results and Analysis
4.1. The DID Method of Regression Analysis

The DID method was applied in a further investigation of the effects of carbon trading
policies on regional green innovation efficiency. Accordingly, we performed a regression
analysis of the green innovation efficiency of 30 provinces and cities in China (excluding
Tibet) for the period 2005–2018. In turn, the analysis was carried out for uncontrolled
variables, using a two-way fixed-effect model that incorporates control variables, adds
control variables, and controls regional and time effects, and analyzes the differences in
impact under different circumstances.

Table 2 presents the results of an analysis to evaluate the impacts of carbon trading
policies on green innovation efficiency using the DID method. Model (1) is a benchmark
model for analyzing green innovation efficiency without control variables, whereas in
model (2), control variables, such as per capita GDP, scientific research inputs, carbon
intensity, foreign capital dependence, and energy structure were sequentially added. Model
(3) is a model with time effects added to model (2). Overall, with the increase in control
variables, the significance of the core explanatory variables and the signs of the coefficients
did not change appreciably, and were significantly positive at the 5% level, indicating that
the model results were robust. The impact of GDP per capita on green innovation efficiency
relating to the control variable changed from negative to positive at a 10% significance
level. This result indicates that after the implementation of the carbon trading policy, the
pilot regions paid more attention to the coordinated development of economic growth and
environmental protection, thereby promoting improvements in regional levels of green
innovation. R&D investment was positive at a 1% significance level, indicating that regional
R&D investments play a definitive role in promoting technological innovation. The impacts
of carbon intensity and the energy structure on the efficiency of green innovation changed
from negative to positive, indicating that the reduction effect of carbon trading policies
propelled the energy structure’s optimization and enhanced green innovation efficiency
within a region. Dependence on foreign capital had a positive effect on the efficiency of
green innovation, but this effect was not significant. This finding indicates the importance
of expanding the proportion of foreign investment and improving the level of technological
progress to improve the level of green innovation in a region.
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Table 2. Regression results for the impacts of carbon trading policies on green innovation efficiency.

Variable
Green Innovation Efficiency

(1) (2) (3)

Ci × Yt 0.1332 ** (2.39) 0.0899 ** (2.01) 0.0498 *** (3.45)
GDP per capita −0.3653 * (−1.73) 0.4929 * (1.86)

Research investment 0.3692 *** (4.62) 0.3678 *** (4.27)
Carbon intensity −0.4379 * (−1.94) 0.6479 ** (2.17)

Foreign capital dependency 0.0525 (1.29) 0.0635 (1.42)
energy structure −0.1103 (−0.43) 0.0509 * (1.80)
Control variable NO YES YES
Province fixed YES YES YES

Fixed year NO NO YES
Constant term 0.1756 *** (8.10) −1.2177 *** (−4.54) −2.6662 *** (−6.44)

N 420 420 420
R2 0.0374 0.3850 0.4274

Notes: t-values are shown in brackets; ***, **, and * indicate statistical significance at the 1%, 5%, and 10%
levels, respectively.

4.2. Analysis Using the PSM Method

The DID method must meet the requirements of the parallel trend assumption, and
whether to implement the carbon trading policy as a virtual variable for overall regression,
the parameters may be biased. Therefore, the PSM–DID method was used for the estimation.
As required for the PSM method, the Logit model was used to estimate the propensity
scores of per capita GDP, scientific research investment, carbon intensity, foreign capital
dependence, and the energy structure. These scores are shown in Table 3. Subsequently,
provinces within the experimental and control groups were matched using the kernel
matching method. At the end of this procedure, 10 samples that did not match the cost
were deleted. Regression analysis was performed again using the matching data, and the
results are shown in Table 4.

Table 3. Logit regression estimation results using the PSM method.

Variable Coefficient Standard Error T P

GDP per capita 0.2843 ** 0.1435 1.98 0.021
Research investment 0.3737 *** 0.1341 2.79 0.005

Carbon intensity −0.0215 *** 0.0070 −3.06 0.002
Foreign capital dependency 0.0062 ** 0.0002 2.14 0.030

energy structure −0.7002 *** 0.2574 −2.72 0.003
-cons 1.8016 *** 0.6656 2.71 0.000

Notes: *** and ** indicate statistical significance at the 1%, 5%, and 10% levels, respectively.

Table 3 shows estimation results for the control variables obtained using the Logit
regression model. The significance level was high for each variable, which is consistent
with the actual situation. Advanced regional economic development along with increased
proportions of R&D investments and emissions reduction efforts were indicative of an in-
creased proportion of foreign direct investment and of an optimized and upgraded energy
structure. Instead, it is easier to enter the experimental group to ensure the reliability of
the regression results. Table 4 depicts the results of continued testing of the carbon trading
policy using the DID after deleting unmatched samples. The regression results reveal
that overall, the matching carbon trading policy resulted in enhanced green innovation
efficiency, which increased by 0.01 units. The increase in GDP per capita was also caused
by changes in the matched samples, and the economic dividend phenomenon was clearly
apparent, contributing significantly to enhanced green innovation efficiency. At the same
time, investments in scientific research, reduced carbon intensity, and green innovation
efficiency within a region’s energy structure evidently had positive effects. Moreover, with
the implementation of the carbon trading policy, this effect was amplified. Thus, the ques-
tion of whether a mechanism whereby carbon trading policies influence green innovation
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efficiency in the pilot areas exists, and, if so, how it operates, required an in-depth analysis.
This investigation to elucidate and verify such a mechanism is described next.

Table 4. Regression results showing the role of carbon trading policies before and after the propensity score matching process.

Green Innovation Efficiency

Before
Matching

After
Matching

Before
Matching

After
Matching

Before
Matching

After
Matching

Ci × Yt 0.1332 **
(2.39)

0.2063 ***
(2.67) 0.0899 ** (2.01) 0.0149 ***

(3.11)
0.0498 ***

(3.45) 0.0676 ** (2.22)

GDP per capita −0.3653 *
(−1.73) 0.0891* (1.91) 0.4929 *

(1.86) 0.2844 ** (2.30)

Research
investment

0.3692 ***
(4.62) 0.4073 *** (3.44) 0.3678 ***

(4.27)
0.3737 **

(3.79)

Carbon intensity −0.4379 *
(−1.94) −0.2137 (−0.01) 0.6479 **

(2.17) 0.0215 ** (2.06)

Foreign capital
dependency

0.0525
(1.29) 0.0006 * (1.81) 0.0635 (1.42) 0.0063 * (1.92)

energy structure −0.1103
(−0.43) 0.7981 (1.04) 0.0509 * (1.80) 0.7002 ** (2.32)

Control variable NO NO YES YES YES YES
Province fixed YES YES YES YES YES YES

Fixed year NO NO NO NO YES YES

Constant term 0.1756 ***
(8.10)

0.2558 ***
(6.35)

−1.2177 ***
(−4.54)

−1.1822 ***
(−2.76)

−2.6662 ***
(−6.44)

−1.8016 ***
(−2.71)

N 420 260 420 260 420 260
R2 0.4274 0.8901 0.3850 0.9225 0.4274 0.3532

Notes: t values are shown in brackets; ***, **, and * indicate statistical significance at the 1%, 5%, and 10% levels, respectively.

4.3. Testing and Verification of an Intermediary Influence Mechanism

The above empirical results reveal that the pilot provinces and cities where carbon
trading policies have been implemented could significantly improve their levels of green
innovation efficiency. However, a macroscale analysis of the impact of carbon trading
policies on green innovation efficiency lacks sufficient depth for exploring the impact
mechanism behind the policy effect. As previous research has shown, carbon trading
policies have a significant role to play in promoting low-carbon development of provinces
and cities, which, in turn, propels technological innovation, energy substitution, and
structural upgrading and improves the efficiency of green innovation. To elucidate the
impact mechanism and verify the existence of these three effects, the following steps were
implemented, applying the formulas described by Baron and Kenny and Daqian [28,29].

The first step entailed verification of the three major effects of the carbon trading
policy in pilot regions using the following formula:

TIit(ESit, SUit) = β0 + β1Ci + β2Yt + β3(Ci×Yt) + ∑ βjXj + λi + γt + µit (6)

The second step entailed verifying the impacts of carbon trading policies on green
innovation efficiency as follows:

GIEit = β0 + β1Ci + β2Yt + β3(Ci×Yt) + ∑ βjXj + λi + γt + µit (7)

In the third step, the multiplier term and the three major effects were simultaneously
inputted into the model and returned to the green innovation efficiency:

GIEit = θ0 + θ1Ci + θ2Yt + θ3(Ci×Yt) + θ4TIit(ESit, SUit)∑ θ jXj + λi + γt + µit (8)

where TI denotes the effect of technological innovation, expressed by the number of
patent applications for energy conservation and emission reduction technologies in various
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regions. The specific data for the calculation, which were acquired using the method
described by Ye Qin et al., indicated that carbon trading enhances the level of regional
technological innovation, inducing a technological innovation effect and improving the
efficiency of green innovations [30]. ES is the energy substitution effect, entailing the
replacement of a proportion of the total amount of regional electricity that is consumed
by clean energy. A higher proportion of clean energy used as a substitute within a region
corresponds to a stronger effect of enhanced green development. SU is the structural
upgrading effect, expressed as the ratio of the tertiary industry to secondary industry within
a region. Carbon trading evidently promotes the advancement of the regional industrial
structure, and this structural upgrading effect improves the level of green innovation.

Table 5 shows the regression results for the impacts of carbon trading policies relating
to the three major effects. The results show that the regression coefficients of the three
major effects were all positive at the 1% significance level, indicating that carbon trading
policies influence technological innovation, energy substitution, and structural upgrading
in the process of applying market-oriented strategies to achieve emission reduction goals.
Table 6 shows the regression results for the impacts of carbon trading policies on green
innovation efficiency after including the difference factors. The results indicate that the
regression coefficients of the effects of technological innovation, energy substitution, and
structural upgrading were significantly positive. Specifically, the effect of technological
innovation on green innovation efficiency was positive at a 1% significance level, highlight-
ing the important role of the development and use of energy-saving and emission-reducing
technologies for advancing green and sustainable regional development. The effects of
energy substitution and structural upgrading on green innovation efficiency were positive
at the 10% and 5% significance levels, indicating that both of these effects play a role
in promoting efficient green innovation, but these effects are not particularly significant.
Moreover, the results indicate that China’s current energy structure continues to be un-
viable, as it is still overly dependent on traditional fossil energy sources and requires
further optimization and upgrading. These results also confirm the three hypotheses of
the study, namely that carbon trading policies improve the efficiency of green innovation
within regions through their effects on technological innovation, energy substitution, and
structural upgrading.

Table 5. The regression results for carbon trading policies on the three major effects.

Variable Technological
Innovation Effect

Energy Substitution
Effect

Structural
Upgrading Effect

Ci × Yt 0.0162 *** (3.13) 0.2025 *** (5.21) 0.0266 *** (4.33)
N 420 420 420
R2 0.8043 0.9012 0.8624

Notes: t values are shown in brackets; *** indicate statistical significance at the 1%, 5%, and 10% levels, respectively.

Table 6. The regression results for carbon trading policies on green innovation efficiency after adding
the multiple differences.

Variable Green Innovation Efficiency

Ci × Yt 0.2308 *** (3.12) 0.0923 ** (2.10) 0.0831 *** (4.02)
Technological innovation 0.3425 *** (2.90)

Energy substitution 0.0565 * (1.93)
Structural upgrade 0.2602 ** (2.08)

N 420 420 420
R2 0.8913 0.8265 0.9031

Notes: t values are shown in brackets; ***, **, and * indicate statistical significance at the 1%, 5%, and 10%
levels, respectively.

4.4. Robustness Test for Changing the Sample Interval

The implementation effect of carbon trading policy needs time to test. Considering the
timeliness issues before and after the policy, a more balanced data sample for the period
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2010–2018 was selected for a further regression conducted to test the robustness of the
main regression.

Table 7 shows the regression results of the robustness test during the change sample
interval. Columns (1), (2), and (3) show the results of the carbon trading policy on the
regressions for the technological innovation, energy substitution, and structural upgrading
effects, and column (4) shows the regression results for the three major effects and for
green innovation efficiency. The regression results indicate that the coefficients of the
interaction terms were all significant at the 1% and 5% levels, and the coefficients of
the three major effects were also significant at the 5% and 10% levels. These findings
are consistent with those of the main regression, described above, confirming that the
regression results presented in this paper are robust. Thus, the findings indicate that the
carbon trading policy has produced three major effects and that it has enhanced regional
green innovation efficiency through the mechanism of these three effects.

Table 7. Results of the regression to test the robustness of the main regression and to change the window period.

Variable
Technological

Innovation Effect
Energy Substitution

Effect
Structural

Upgrading Effect
Green Innovation

Efficiency

(1) (2) (3) (4)

Ci × Yt 0.5566 *** (5.78) 0.2119 ** (2.56) 0.2572 *** (8.04)
Technological innovation effect 0.2522 ** (2.27)

Energy substitution effect 0.1051 * (1.90)
Structural upgrading effect 0.1296 * (1.78)

N 270 270 270 270
R2 0.7890 0.8248 0.8932 0.9023

Notes: t values are shown in brackets; ***, **, and * indicate statistical significance at the 1%, 5%, and 10% levels, respectively.

5. Conclusions and Policy Implications
5.1. Conclusions

Panel data obtained for 30 provinces and cities in China (excluding Tibet) were applied
within a super-efficient SBM model that included undesirable outputs to measure these
regions’ green innovation efficiency for the period 2005–2018. A dual difference model and
the PSM–DID method were simultaneously used in an empirical examination of the trend
in regional green innovation efficiency as it has been impacted by the implementation of
carbon trading policies. The conclusions of the study can be summarized as follows.

First, the implementation of carbon trading policies can significantly improve the
efficiency of green innovation in pilot areas and promote green, low-carbon regional
development. Second, we investigated the influence mechanism of carbon trading policies
as a driver of increased efficiency of green innovation. Our findings indicated that the
implementation of carbon trading policies improves the efficiency of green innovation
through its effects relating to technological innovation, energy substitution, and structural
upgrading. The technological innovation effect was positively significant at the 1% level,
while the effects of energy substitution and structural upgrading were positively significant,
though only at the 10% and 5% levels. Last, our empirical findings revealed the overall
synergistic effect of the three individual effects of carbon trading policies in amplifying
regional green innovation efficiency.

5.2. Policy Implications

In light of the above conclusions, our findings have the following policy implications
for improving the development of China’s carbon market. First, the successful experiences
in the pilot regions can be replicated by promoting the carbon trading policy on a wider
scale and through the advancement of the national carbon market. The implementation
of carbon trading policies can play a major role in reducing carbon emissions and driving
transformational, low-carbon regional development. On the one hand, further explo-
ration of low-carbon development is needed in the carbon trading pilot areas, focusing on
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technological innovation and the development of greener production and lifestyles that
incorporate, for example, green transportation, green buildings, and green consumption.
On the other hand, further development of the pilot regions would enable the expanded
scope of market transactions in terms of points and areas and the use of market-oriented
strategies to compel companies to upgrade their levels of technological innovation, thereby
promoting China’s overall green development.

Second, continued efforts are required to increase the proportion of R&D investment
in technology, while simultaneously increasing the proportion of clean energy use and
adjusting and upgrading the industrial structure. Specifically, the patent incentive system
requires improvement, and enterprises or innovation-focused entities should be provided
with guidance. Such guidance should focus on the invention and application of energy-
saving and emission-reduction patented technologies, reducing the costs for enterprises
of investing in new technologies, and providing innovation subsidies for carbon quotas
to facilitate green production processes. Further, the process of transforming the energy
structure to promote improved green innovation efficiency should be accelerated along
with the development of new clean energy and efforts to accelerate reforms of the electricity
market system to promote the greening of the power generation process. Finally, efforts to
increase the proportion of high-quality service industries, while simultaneously focusing
on rationalizing and gradually optimizing the industrial structure, would contribute to its
advancement and ensure a gradual rise in levels of regional green innovation.

A final implication of this study relates to the need to develop an institutional system
and mechanism for promoting low-carbon development, building on the synergistic effects
of technological innovation, energy substitution, and structural upgrades under carbon
trading policies. The development of green innovations within regions requires the pro-
motion of advanced green technology and industrial upgrading within various industrial
sectors. It simultaneously requires innovations within the macro-control energy system that
facilitate the phasing out of energy-intensive and carbon-intensive industries, and the dis-
mantling of the “locking effect” of energy-driven development. By ensuring the coordinated
and balanced development of different policy effects, this approach will lead to enhanced
efficiency of green innovation within regions and high-quality economic development.
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