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Abstract: As international trade and freight volumes increase, there is a growing port congestion
problem, leading to the long truck queues at US marine terminal gates. To address this problem,
some countermeasures have been proposed and implemented for reducing truck queue length at
marine terminals. To assess the effectiveness of these countermeasures, a method for accurately
estimating terminal gate truck queue length is needed. This study developed a new method, named
the state-dependent approximation method, for estimating the truck queue length at marine terminals.
Based on the simulation of the truck queuing system, it was found that it takes several hours for the
truck queue length to reach its steady state, and neglecting the queue formation (queue dispersion)
processes will cause overestimation (underestimation) of truck queue length. The developed model
can take into account the queue formation and dispersion processes, and it can be used to estimate the
truck queue length caused by short-term oversaturation at marine terminals. For model evaluation, a
simulation-based case study was conducted to evaluate the prediction accuracy of the developed
model by comparing its results with the simulated queue lengths and the results of other four existing
methods, including the fluid flow model, the M/M/S queuing model, and a simulation-based
regression model developed a previous study. The evaluation results indicate that the developed
model outperformed the other four modeling methods for different states of queue formation and
dispersion processes. In addition, this new method can accurately estimate the truck queue length
caused by the short-term system oversaturation during peak hours. Therefore, it will be useful
for assessing the effectiveness of the countermeasures that are targeted at reducing the peak-hour
congestion at marine terminals.

Keywords: maritime industry; container terminal; queue estimation; simulation

1. Introduction

As the volumes of international trade and freight increase, traffic congestion at ports
is becoming a serious problem. Recently, the times that trucks must wait have continued to
increase, and there almost always are long queues of trucks at the gates waiting to enter and
leave marine terminals. Sometimes, the congestion even extends to the surrounding net-
works of roads. This situation seriously hampers the smooth operation of ports and other
nearby businesses, resulting in significant economic losses. Thus, some countermeasures
have been proposed and implemented to reduce truck queue length at marine terminals,
e.g., using a gate appointment system to manage the arrivals of the trucks and applying
advanced communication and image processing technologies to reduce the service time
at the gate. California Assembly Bill (AB) 2650 required marine port terminals to either
extend hours of operation for truck pick-ups and deliveries, establish an appointment
system for trucks, or otherwise reduce truck queuing at terminal gate entries [1].

To assess the effectiveness of these countermeasures, a method is needed that can
accurately estimate the truck queue length at terminal gates. The existing methods, such
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as queuing models and fluid flow models, have limitations and cannot provide accurate
estimates of the truck queue length when certain conditions exist. For example, the
traditional queuing models cannot handle oversaturated situations (when demand exceeds
capacity), which occur often during peak hours at marine terminals. Note that, the capacity
in this study is referred to as the service capacity of a terminal gate, which is equal to the
average service rate per gate booth multiplied by the number of gate booths. In addition,
most of the queuing models [2–4] do not consider the processes involved in the formation
and dispersion of queues. Note that, truck queue length cannot reach its steady-state
instantaneously because there are queue formation and dispersion processes that can
take many hours [5]. Thus, due to the variations in the truck arrival rate and in the gate
service time, the truck queue length may not be able to reach its steady-state before the
conditions are changed. Therefore, if the queue formation and dispersion processes are
neglected, inaccurate queue length estimation will be produced. To fill these gaps, this
study is to develop a new method, named the state-dependent approximation method,
for estimating the truck queue length at marine terminals by using the simulation-based,
regression-modeling approach. The hypothesis that being test is that the proposed method
can provide a more accurate estimation of truck queue length than four selected existing
methods. The proposed new method considers both the queue formation and dispersion
processes and can also estimate the truck queue length caused by short-term system
oversaturation at marine terminals. Thus, it fills several important gaps in the existing
methods, which will be discussed in detail in the literature review section as follows.

2. Literature Review

The existing studies used both analytical and simulation approaches to analyze the
congestion at the container terminal gates. Some of them focus on the estimation of
the truck queue length and waiting time at the terminal gates [2,5–7]. Some studies
analyzed the impacts of vehicle queue length on the approach roads to the container
terminals [8,9]. Some studies investigated different operational strategies, such as truck
appointment systems, extending gate hours, and pooled queue strategy, on the reduction of
gate congestions [10–15]. In this literature review, we focus on the methods for estimating
the truck queue length at the terminal gate. In general, there are four typical types of
existing methods, i.e., fluid flow models, queuing models, simulation-based models, and
simulation-based regression models. An introduction of these existing methods and some
representative studies for each method are presented below.

2.1. Fluid Flow Models

The fluid flow method has been used to model many types of queues, including
telecommunication queues and vehicle queues at roadway intersections. This method is
based on the flow balance principle, i.e., the change in a queue is equal to the inflow of
vehicles minus the outflow of vehicles, and it can be expressed mathematically as follows:

lt = lt−1 + λt − µt (1)

where lt is the average queue length in time interval t; λt is the average rate of arrivals in
time interval t, and µt is the average service rate in time interval t.

Martonosi [16] used a fluid flow model to study the servers that could switch dynami-
cally between the two queues in order to minimize the total waiting time. In Martonosi [16],
the basic idea of the fluid flow model is illustrated as Figure 1.
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Figure 1. Diagram of the quantity of fluid and time in the fluid flow queue (source: Martonosi, 2011).

Figure 1 shows that the length of the queue is the difference between the cumulative
arrivals (upper curve) and the services (lower curve). This method is simpler and easier to
use than other methods. Most importantly, it can estimate the length of the queue in both
undersaturated and oversaturated conditions. However, this method is deterministic in
nature because it assumes uniform arrival and service rates and it cannot take into account
the queue caused by the random fluctuations in the arrival and service rates. For example,
Figure 1 shows that, according to the fluid flow model, the queue will develop only if the
arrival rate exceeds the service rate (the oversaturated condition). However, the queue will
form even if the arrival rate is less than the service rate because of the random fluctuations
in the arrival and service rates. Thus, the fluid flow method tends to underestimate the
length of the queue.

2.2. Queuing Models

Two types of queuing models, i.e., stationary and non-stationary models, have been
used in modeling the length of the queue of trucks at the gates of marine terminals. The
stationary queuing models are based on the classical queueing theory, which estimates
the length of the steady state queue at given service and arrival rates. These models are
useful for determining the steady state performance of a queuing system. Yoon [6] used
M/M/1 and M/M/S queuing models to estimate the delay of the truck as containers are
inspected at two successive stages of security inspections. Guan [2] applied a multi-server
M/Ek/s queuing model to analyze congestion at the container’s terminal gate and to
quantify the cost associated with the truck’s waiting. Minh and Huynh [7] expanded
the work of Guan [2] by providing design engineers with a methodology to investigate
the possible benefit of using a pooled queuing strategy for inbound terminal gate trucks
and to determine the optimal number of service gate booths for different truck waiting
time threshold. The major problem with the stationary queuing models is that the queue
formation and dispersion processes were neglected. Actually, the truck queue length cannot
reach its steady state instantaneously and the queue formation or dispersion process can
take up to 24 h [5]. As a result, the stationary queuing models can not accurately estimate
the time-varying truck queue lengths at marine terminals. In addition, the queuing models
cannot handle oversaturated situations, which often occur at congested marine terminals
where demand exceeds capacity during peak hours.

To address the problem of time-varying queue length Chen et al. [3] used a non-
stationary queuing model to estimate the truck queue lengths at ports. In their model,
a time-dependent capacity utilization ratio was used to estimate the time-dependent
length of the queue. This time-dependent capacity utilization ratio was derived using
the steady state queue-length equation of the stationary queuing model, which is based
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on the assumption of an undersaturated queuing system. As a result, this model is not
applicable to the temporarily oversaturated queuing systems too. Other non-stationary
queuing models, such as the pointwise stationary approximation (PSA) model developed
by Green and Kolesar [4], also are based on stationary queuing models, thereby inheriting
this same problem of the stationary queuing models. Chen et al. [17] applied a multi-serve
non-stationary queueing model to analyze the maritime terminal gate system. In order to be
able to solve the oversaturated queueing problem, the authors selected the fluid flow based
pointwise stationary approximation method and integrating it with the bisection method
and a correction factor. However, this model was developed based on the assumption of a
specific parameter of the gate service time distribution, which limits the applicability of
the model.

2.3. Simulation-Based Models

Numerous studies have used simulation models to investigate the problem of truck
congestion at marine terminals. In these studies, the discrete-event simulation and agent-
based simulation are two major approaches.

2.4. Discrete-Event Simulation

Discreet-event simulation is one of the most popular techniques in port operation
modeling [18]. Azab & Eltawil [19] used a discrete event simulation model FlexSim to
study the problem of long Truck Turn Times (TTTs) for external trucks at marine container
terminals. In this study, special simulation software for container terminal operations
was used to estimate the TTTs and the maximum truck queue lengths for different arrival
patterns. Derse and Gocmen [20] used ARENA, a discrete event simulation software, to
analyze the operating performance measures of a container terminal system, including
ship waiting times, queue time of the processes, the number of the containers at the
queue, the usage rate of the resources and the number of the loading-unloading containers.
Preston et al. [21] used a discrete-event simulation model in analyzing the future operation
of a ferry port considering the increased traffic volumes. Preston et al. [9] also used this
model for identifying the critical thresholds for vehicle processing times that would cause
the system to become oversaturated.

2.5. Agent-Based Simulation

An agent-based model is another common type of approach for simulating the
port operation.

Karafa et al. used an agent-based simulation PARAMICS to investigate the effective-
ness of the truck appointment system, as well as extending gate hours. Sherif et al. [22] used
an agent-based simulation and solutions by EI Farol model to achieve the steady arrival of
trucks and hence less queuing at congestion at port terminal gates. Fleming et al. [13] used
agent-based simulation to model the terminal gate system with two different queuing strate-
gies (pooled and non-pooled queues) to evaluate the system’s operational performance in
various conditions.

The use of simulation models is an effective approach for investigating the queuing
process because it takes into account the random fluctuations in the arrival and service
rates, and these models can provide estimates of the queue lengths for various scenarios.
The limitations of the simulation-based approach are that (1) conducting the simulation is
time-consuming and (2) the results of simulation studies cannot be applied easily to new
scenarios that have yet to be simulated. To overcome this problem, an approach, called
simulation-based regression modeling, has been used by previous studies.

2.6. Simulation-Based Regression Models

Simulation-based regression models have been developed in several previous studies
for modeling the truck queue length at marine terminals. In these studies, a simulation
model was developed that could be used initially to simulate the operations at marine
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terminals and derive the truck queue lengths for different scenarios. Then, based on the
results of the simulation, regression models were developed and used to estimate the truck
queue lengths in different scenarios. Thus, the regression models are used to generalize
the simulation results in order to predict the truck queue lengths beyond the simulated
scenarios. Chen and Yang [5] used a microscopic traffic simulation tool, PARAMIC, to
simulate a container terminal system and observe the truck queuing process. In their
study, they pointed out that “a queue cannot reach its steady state instantaneously,” and,
according to its simulation results, it can take up to 24 h for the queue to reach a steady
length. Based on this finding, the truck queue length was estimated separately for two
different states, i.e., (1) the queue formation state and (2) steady state. For “steady state,” a
stationary queuing model, M/G/S, is used to estimate the steady queue length according
to the arrival and service rates. For the queue formation state, a set of regression models
was developed for estimating the queue lengths during the queue formation process based
on the simulation results. It is important to note that this is the first study that pointed out
and verified the need for considering the queue-formation process in modeling the truck
queue length. However, it only considers the queue formation process without considering
the queue dispersion process, which can also affect the accuracy of the queue estimation.
In addition, in their study, a model was developed specifically for a given marine terminal
with a given number of gate booths (2) at a fixed service rate (40.8 trucks per hour), and
these specific conditions limit the applicability of the model.

Our literature review indicated that the existing methods all have their limitations
and improvements are needed for accurately estimating the truck queue length at marine
terminals. The new method that we proposed in this study is a type of simulation-based
regression model.

3. Methodology

This research was conducted to develop a new method, named state-dependent
approximation method, for estimating truck queue length at marine terminals. The model
was developed based on the method proposed by Chen and Yang [5], but it expanded two
critical aspects of their work. First, both queue formation and dispersion processes have
been considered in the estimation of truck queue length. Thus, the truck queue length was
estimated separately for four different states: (I) steady state, (II) queue formation state,
(III) queue dispersion state, and (IV) oversaturated state. Second, the proposed model can
be used for estimating truck queue length at the marine terminals with different numbers
of gate booths and various service rates.

This model was developed in three steps, i.e., (1) estimating the steady queue length,
(2) modeling the queue formation and dispersion processes, and (3) developing the
final model.

3.1. Step 1. Estimating the Steady Queue Length

In this step, a multi-server (M/M/S) queuing model was used to estimate the steady
state length of the queue of trucks. A marine terminal gate system that has multiple
inbound and outbound gates can be treated as a multi-server queuing system. In this
queuing system, it is assumed that (1) the number of parallel servers (S) is the number
of gate booths, (2) the truck arrival rate (number of trucks arriving per hour) follows a
Poisson distribution (M), and (3) the service time for each gate follows an exponential
distribution (M). Under these assumptions, the system utilization factor (ρ) is given by the
following equation:

ρ =
λ

C
=

λ

µS
(2)

where λ is the average truck-arrival rate (average number of trucks arriving per hour),
C is the service capacity of a terminal gate, µ is the average service rate per gate booth
(average number of trucks that can be served per hour per gate booth), and S is the number
of gate booths.
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Then, according to the M/M/S queuing model, the steady state of the truck queue length
(the average number of trucks in the queue) can be estimated by the following equation:

L =
P0

(
λ
µ

)S
ρ

S!(1− ρ)2 =
P0αSρ

S!(1− ρ)2 (3)

where α = λ/µ is referred to as traffic density [2], and P0 is the probability that no trucks
are in the queue (L = 0); P0 can be estimated by the following equation:

P0 =

∑S−1
0

(
λ
µ

)n

n!
+

(
λ
µ

)S

S!

(
1

1− ρ

)
−1

=

[
∑S−1

0
(α)n

n!
+

(α)S

S!

(
1

1− ρ

)]−1

(4)

According to Equations (2) and (3), the steady queue length, L, is a function of α, ρ,
and S. Besides, since

ρ =
λ

µS
=

α

S

ρ is a function of α and S. Therefore, the steady queue length L can be viewed as a
function with only two variables α and S as follows:

L =
P0

(
λ
µ

)S
ρ

S!(1− ρ)2 =
P0αSρ

S!(1− ρ)2 =
P0αS α

S

S!(1− α
S )

2 =
P0

αS+1

S

S!(1− α
S )

2 (5)

where

P0 =

[
∑S−1

0
(α)n

n!
+

(α)S

S!

(
1

1− ρ

)]−1

=

[
∑S−1

0
(α)n

n!
+

(α)S

S!

(
1

1− α
S

)]−1

=

[
∑S−1

0
(α)n

n!
+

(α)S

S!

(
α

S− α

)]−1

Equation (5) shows that L can be determined once the values of α and S are given.

3.2. Step 2. Modeling the Queue Formation and Dispersion Processes

A simulation-based regression modeling approach was used to model the formation
and dispersion processes of the queue. Initially, a queuing simulation model was developed
to simulate the queue formation and dispersion processes in different scenarios. Based on
the simulation results, a set of regression models was developed for estimating the average
truck queue length at a particular moment of the queue formation and dispersion processes.

• Queuing Simulation

A queuing simulation model was developed using MATLAB. In the simulation, the
arrival time of a truck and the truck service time is determined according to the random
numbers generated from two exponential distributions. The parameters of these two
exponential distributions were set according to the truck arrival rate and the gate service
rate. The simulation time is set enough long (up to 60 h) to allow the queue to reach its
steady state. Since the steady queue is only determined by two variables, i.e., traffic density
(α = λ/µ) and the number of gate booths (S), different simulation scenarios were designed
by varying these two variables. In this study, based on the information collected from
a marine terminal in the Houston area, S was set from 2 to 21, which is the range of the
number of gate booths that usually are open at marine terminals. The value of α was set
according to S because ρ is equal to α/S and there are some constraints on the value of ρ.
First, to reach a steady-state, the system utilization factor (ρ) should be less than 1. Second,
ρ should not be very small, otherwise, the steady queue length will be very short and can
be reached instantaneously. Using the trial-and-error method, the minimum value of ρ was
set as 0.75. Thus, ρ varies from 0.75 to 1. For the design of the simulation scenarios, the
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value of ρ varies from 0.75 to 0.95 in 0.05 increments. Since ρ is equal to α/S, the value of α
varies from 0.75 S to 0.95 S in 0.05 S increments. As listed in Tables 1 and 2, 95 different
simulation scenarios were designed by varying the two variables, S and α. Note that, in the
real-world application, if α = λ/µ is not equal to the values listed in Tables 1 and 2, the
interpolated method could be used for deriving the estimated queue length lt.

Table 1. Regression models for the Queue Formation State.

Simulation Scenarios

Simulation Results Steady Queue
Length (L)
Estimated by the
Queuing Model

Time to Reach
Steady State
(Hours)

Regression Models
lt=a1ln(t)+b1,
t∈[0, CriticalPoint]

S α = λ/µ ρ a1 b1 R2

2

1.5 0.75 1.6 0.5496 1.662 0.9043 2.0887

1.6 0.8 3.17 0.5984 1.9951 0.9037 3.1263

1.7 0.85 5.07 1.0612 2.9571 0.9019 4.9888

1.8 0.9 10.92 1.8115 4.1236 0.9333 9.1168

1.9 0.95 18.43 5.5311 5.3286 0.9227 24.9526

3

2.25 0.75 1.02 0.4791 1.41 0.9001 1.7033

2.4 0.8 1.92 0.687 1.7732 0.9113 2.5888

2.55 0.85 6.17 0.8219 2.0216 0.9002 4.1388

2.7 0.9 6.85 1.6 3.1657 0.936 7.3535

2.85 0.95 24.07 3.1828 4.9391 0.9184 17.2332

4

3 0.75 0.95 0.4769 1.4356 0.9088 1.5283

3.2 0.8 1.67 0.551 1.6508 0.9012 2.3857

3.4 0.85 2.10 1.0272 2.5478 0.9125 3.9061

3.6 0.9 6.40 1.3923 3.5117 0.9272 7.0898

3.8 0.95 20.80 3.3506 4.7571 0.9257 16.937

5

3.75 0.75 1.38 0.3939 1.1845 0.9083 1.3854

4 0.8 1.82 0.6117 1.7434 0.9088 2.2165

4.25 0.85 3.40 0.9129 2.1158 0.9109 3.7087

4.5 0.9 5.63 1.5224 3.384 0.9013 6.8624

4.75 0.95 17.77 3.4924 5.1727 0.9385 16.6782

6

4.5 0.75 0.67 0.3902 1.1976 0.8684 1.265

4.8 0.8 1.52 0.6158 1.6264 0.9051 2.0711

5.1 0.85 3.80 0.8279 2.2095 0.9108 3.5363

5.4 0.9 6.70 1.5462 3.4707 0.9113 6.6611

5.7 0.95 15.10 3.206 6.3214 0.9206 16.4462

7

5.25 0.75 0.63 0.4664 1.3448 0.8414 1.1614

5.6 0.8 1.13 0.5639 1.5933 0.9075 1.9438

5.95 0.85 1.90 0.9113 2.4528 0.9152 3.3829

6.3 0.9 3.58 1.6988 3.6956 0.9205 6.4796

6.65 0.95 14.30 3.5003 6.3407 0.9323 16.2346
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Table 1. Cont.

Simulation Scenarios

Simulation Results Steady Queue
Length (L)
Estimated by the
Queuing Model

Time to Reach
Steady State
(Hours)

Regression Models
lt=a1ln(t)+b1,
t∈[0, CriticalPoint]

S α = λ/µ ρ a1 b1 R2

8

6 0.75 0.82 0.3419 0.9508 0.8421 1.0709

6.4 0.8 0.92 0.5609 1.6412 0.9046 1.8306

6.8 0.85 2.03 0.9082 2.1834 0.903 3.2446

7.2 0.9 3.93 1.476 3.6504 0.9441 6.3138

7.6 0.95 15.07 2.8699 6.2115 0.9212

9

6.75 0.75 0.65 0.3244 0.9625 0.8376 0.9911

7.2 0.8 0.88 0.5121 1.4498 0.8745 1.7289

7.65 0.85 2.65 0.7144 2.1002 0.9293 3.1184

8.1 0.9 4.13 1.2183 3.5405 0.9402 6.1608

8.55 0.95 12.15 3.0204 5.8623 0.9125 15.8571

10

7.5 0.75 0.63 0.3075 0.8862 0.8362 0.9198

8 0.8 1.25 0.4328 1.2042 0.8919 1.6367

8.5 0.85 1.80 0.7387 2.1294 0.9001 3.0025

9 0.9 3.22 1.528 3.5336 0.9072 6.0186

9.5 0.95 11.67 3.3032 6.4172 0.9412 15.6861

11

8.25 0.75 0.72 0.2412 0.7163 0.8493 0.8559

8.8 0.8 1.13 0.4305 1.2839 0.8902 1.5526

9.35 0.85 1.73 0.7532 2.0954 0.9029 2.8953

9.9 0.9 3.02 1.5566 3.8807 0.9241 5.8855

10.45 0.95 6.50 3.2303 6.9972 0.9216 15.5247

12

9 0.75 0.47 0.2883 0.8982 0.8496 0.7981

9.6 0.8 0.65 0.5423 1.5628 0.8475 1.4754

10.2 0.85 1.47 0.7352 1.9378 0.8678 2.7956

10.8 0.9 2.18 1.6461 3.8623 0.895 5.7604

11.4 0.95 10.90 3.57 6.1661 0.9239 15.3715

13

9.75 0.75 0.77 0.2114 0.6772 0.8731 0.7456

10.4 0.8 0.85 0.3607 1.0585 0.8127 1.4041

11.05 0.85 1.55 0.7702 2.1661 0.9037 2.7024

11.7 0.9 2.10 1.6288 4.003 0.9098 5.6422

12.35 0.95 5.70 3.4051 7.1178 0.9324 15.2255

14

10.5 0.75 0.65 0.2545 0.7192 0.8155 0.6978

11.2 0.8 1.12 0.3904 1.0828 0.828 1.3381

11.9 0.85 1.62 0.7569 1.955 0.9042 2.6149

12.6 0.9 2.57 1.3232 3.5006 0.907 5.5302

13.3 0.95 5.60 3.7782 7.9171 0.9356 15.086
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Table 1. Cont.

Simulation Scenarios

Simulation Results Steady Queue
Length (L)
Estimated by the
Queuing Model

Time to Reach
Steady State
(Hours)

Regression Models
lt=a1ln(t)+b1,
t∈[0, CriticalPoint]

S α = λ/µ ρ a1 b1 R2

15

11.25 0.75 0.73 0.2205 0.6503 0.8114 0.654

12 0.8 1.12 0.3466 1.0322 0.8212 1.2768

12.75 0.85 1.60 0.6317 1.8434 0.8081 2.5326

13.5 0.9 2.42 1.4169 3.6617 0.9183 5.4237

14.25 0.95 7.35 3.1303 6.9993 0.9426 14.9522

16

12 0.75 0.42 0.2439 0.7567 0.803 0.6137

12.8 0.8 1.25 0.3464 0.9659 0.8382 1.2195

13.6 0.85 1.58 0.7098 1.9418 0.8792 2.4549

14.4 0.9 2.65 1.1969 3.2778 0.8887 5.3221

15.2 0.95 6.63 3.0118 6.8217 0.8988 14.8237

17

12.75 0.75 0.48 0.1942 0.6021 0.8205 0.5766

13.6 0.8 0.6 0.4233 1.2191 0.8212 1.166

14.45 0.85 0.98 0.8053 2.295 0.8393 2.3814

15.3 0.9 1.37 1.4246 3.6318 0.8559 5.225

16.15 0.95 5.25 3.0934 7.5561 0.9274 14.6998

18

13.5 0.75 0.88 0.1533 0.416 0.8008 0.5424

14.4 0.8 1.13 0.3182 0.9613 0.8383 1.1158

15.3 0.85 1.98 0.5366 1.5367 0.8158 2.3116

16.2 0.9 2.23 1.424 3.6836 0.9046 5.132

17.1 0.95 7.73 2.982 6.5964 0.9253 14.5802

19

14.25 0.75 0.45 0.1746 0.5408 0.8011 0.5107

15.2 0.8 0.95 0.2895 0.8024 0.8018 1.0687

16.15 0.85 1.62 0.5357 1.6298 0.8033 2.2452

17.1 0.9 1.87 1.4706 3.6424 0.8992 5.0427

18.05 0.95 5.10 3.4827 7.2951 0.8815 14.4646

20

15 0.75 0.82 0.1604 0.4685 0.8288 0.4813

16 0.8 0.90 0.3403 0.9435 0.8851 1.0243

17 0.85 1.03 0.7324 1.9957 0.8866 2.182

18 0.9 2.55 1.3591 3.6086 0.9178 4.9569

19 0.95 7.27 3.2908 7.4617 0.973 14.3526
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Table 2. Regression models for the Queue Dispersion State.

Simulation Scenarios

SIMULATION RESULTS Steady Queue
Length (L)
Estimated by the
Queuing Model

Time to Reach
Steady State
(Hours)

Regression Models
lt=a2exp(b2t)
t∈[0, CriticalPoint]

S α = λ/µ ρ a2 b2 R2

2

1.5 0.75 4.63 50.531 −0.556 0.958 2.0887

1.6 0.8 5.75 55.791 −0.374 0.9476 3.1263

1.7 0.85 6.27 60.379 −0.312 0.9549 4.9888

1.8 0.9 9.6 41.318 −0.154 0.9482 9.1168

1.9 0.95 8.77 35.441 −0.033 0.9644 24.9526

3

2.25 0.75 6.42 25.521 −0.354 0.983 1.7033

2.4 0.8 7.18 30.236 −0.311 0.9925 2.5888

2.55 0.85 12.08 29.767 −0.156 0.9806 4.1388

2.7 0.9 11.92 29.163 −0.11 0.9675 7.3535

2.85 0.95 18.80 36.081 −0.038 0.9678 17.2332

4

3 0.75 6.92 27.618 −0.42 0.9177 1.5283

3.2 0.8 7.58 37.039 −0.331 0.9554 2.3857

3.4 0.85 11.82 32.651 −0.163 0.9561 3.9061

3.6 0.9 13.97 41.887 −0.14 0.9879 7.0898

3.8 0.95 22.08 40.224 −0.04 0.9618 16.937

5

3.75 0.75 4.25 72.619 −0.749 0.9958 1.3854

4 0.8 7.70 51.92 −0.382 0.9817 2.2165

4.25 0.85 10.98 42.781 −0.216 0.9697 3.7087

4.5 0.9 19.08 56.259 −0.146 0.997 6.8624

4.75 0.95 32.05 52.407 −0.038 0.9475 16.6782

6

4.5 0.75 5.27 67.538 −0.661 0.9705 1.265

4.8 0.8 5.53 92.815 −0.567 0.9943 2.0711

5.1 0.85 8.78 68.927 −0.316 0.9835 3.5363

5.4 0.9 14.83 64.509 −0.155 0.9706 6.6611

5.7 0.95 29.23 66.985 −0.047 0.9644 16.4462

7

5.25 0.75 4.18 124.81 −0.881 0.9956 1.1614

5.6 0.8 6.02 97.331 −0.538 0.9976 1.9438

5.95 0.85 8.73 80.81 −0.324 0.9898 3.3829

6.3 0.9 14.07 74.345 −0.17 0.9765 6.4796

6.65 0.95 28.75 76.732 −0.054 0.9862 16.2346

8

6 0.75 4.62 126.31 −0.866 0.9863 1.0709

6.4 0.8 5.97 115.53 −0.616 0.9829 1.8306

6.8 0.85 11.25 83.517 −0.292 0.9581 3.2446

7.2 0.9 17.43 72.575 −0.149 0.9393 6.3138

7.6 0.95 34.92 75.575 −0.047 0.9315 16.0392
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Table 2. Cont.

Simulation Scenarios

SIMULATION RESULTS Steady Queue
Length (L)
Estimated by the
Queuing Model

Time to Reach
Steady State
(Hours)

Regression Models
lt=a2exp(b2t)
t∈[0, CriticalPoint]

S α = λ/µ ρ a2 b2 R2

9

6.75 0.75 4.20 177.73 −0.998 0.9922 0.9911

7.2 0.8 6.45 137.85 −0.607 0.9901 1.7289

7.65 0.85 8.67 137.89 −0.392 0.9885 3.1184

8.1 0.9 15.32 101.44 −0.169 0.9911 6.1608

8.55 0.95 35.42 86.844 −0.054 0.9277 15.8571

10

7.5 0.75 3.90 265.81 −1.146 0.9836 0.9198

8 0.8 7.12 107.05 −0.553 0.9458 1.6367

8.5 0.85 9.90 129.26 −0.367 0.9877 3.0025

9 0.9 15.22 117.91 −0.198 0.9758 6.0186

9.5 0.95 32.78 100.6 −0.061 0.953 15.6861

11

8.25 0.75 3.70 284.37 −1.148 0.9889 0.8559

8.8 0.8 5.32 231.85 −0.755 0.9896 1.5526

9.35 0.85 6.70 219.81 −0.499 0.9753 2.8953

9.9 0.9 15.17 137.11 −0.209 0.9741 5.8855

10.45 0.95 29.57 133.38 −0.071 0.9899 15.5247

12

9 0.75 4.13 271.04 −1.113 0.9902 0.7981

9.6 0.8 4.63 312.35 −0.851 0.978 1.4754

10.2 0.85 7.58 220.06 −0.514 0.9914 2.7956

10.8 0.9 17.50 148.27 −0.183 0.9863 5.7604

11.4 0.95 41.03 121.17 −0.05 0.9747 15.3715

13

9.75 0.75 3.45 432.01 −1.319 0.9833 0.7456

10.4 0.8 4.75 385.6 −0.932 0.9632 1.4041

11.05 0.85 9.90 161.9 −0.391 0.9725 2.7024

11.7 0.9 17.72 142.81 −0.193 0.9597 5.6422

12.35 0.95 29.63 161.87 −0.079 0.996 15.2255

14

10.5 0.75 5.02 304.29 −1.03 0.9794 0.6978

11.2 0.8 6.68 271.54 −0.723 0.984 1.3381

11.9 0.85 7.57 298.36 −0.545 0.9852 2.6149

12.6 0.9 13.53 222.01 −0.257 0.9934 5.5302

13.3 0.95 41.00 138.27 −0.059 0.9536 15.086

15

11.25 0.75 3.72 617.23 −1.422 0.979 0.654

12 0.8 4.98 456.57 −0.913 0.9754 1.2768

12.75 0.85 8.88 294.79 −0.509 0.9774 2.5326

13.5 0.9 14.73 226.94 −0.241 0.993 5.4237

14.25 0.95 31.60 183.47 −0.079 0.9893 14.9522



Sustainability 2021, 13, 2917 12 of 18

Table 2. Cont.

Simulation Scenarios

SIMULATION RESULTS Steady Queue
Length (L)
Estimated by the
Queuing Model

Time to Reach
Steady State
(Hours)

Regression Models
lt=a2exp(b2t)
t∈[0, CriticalPoint]

S α = λ/µ ρ a2 b2 R2

16

12 0.75 3.85 732.51 −1.466 0.9841 0.6137

12.8 0.8 5.90 489.43 −0.932 0.966 1.2195

13.6 0.85 8.87 287.2 −0.492 0.9914 2.4549

14.4 0.9 18.60 184.76 −0.198 0.9679 5.3221

15.2 0.95 30.10 184.7 −0.084 0.9778 14.8237

17

12.75 0.75 2.98 1170.4 −1.729 0.9471 0.5766

13.6 0.8 5.12 535.09 −0.978 0.9812 1.166

14.45 0.85 9.28 341.81 −0.512 0.9855 2.3814

15.3 0.9 16.57 223.38 −0.237 0.9685 5.225

16.15 0.95 32.15 200.15 −0.087 0.9683 14.6998

18

13.5 0.75 6.42 394.83 −0.893 0.9717 0.5424

14.4 0.8 8.38 403.93 −0.607 0.9779 1.1158

15.3 0.85 8.85 382.43 −0.528 0.9823 2.3116

16.2 0.9 14.15 280.58 −0.278 0.989 5.132

17.1 0.95 40.57 187.95 −0.07 0.9521 14.5802

19

14.25 0.75 4.05 849.63 −1.469 0.9886 0.5107

15.2 0.8 5.62 557.77 −0.954 0.9703 1.0687

16.15 0.85 8.02 438.16 −0.579 0.989 2.2452

17.1 0.9 16.93 236.5 −0.239 0.9463 5.0427

18.05 0.95 32.45 215.66 −0.086 0.9759 14.4646

20

15 0.75 3.37 1495.9 −1.737 0.9595 0.4813

16 0.8 4.35 791.51 −1.078 0.9496 1.0243

17 0.85 7.23 547.25 −0.647 0.9766 2.182

18 0.9 13.47 367.4 −0.293 0.9878 4.9569

19 0.95 35.17 241.27 −0.083 0.9799 14.3526

Since the simulation is driven by stochastic factors, for each designed simulation
scenario, 500 simulation runs were conducted for both the queue formation and queue
dispersion processes. The simulated lengths of the queue were averaged, and the average
queue lengths showed a clearly developed trend (Figure 2). Figure 2a is the simulation
result for the queue formation process for an example scenario (S = 20 and α = 19), and
Figure 2b is the simulation result for the queue dispersion process for the same scenario.
Note that, the initial queue length is set at 0 for the queue formation process, and for
the queue dispersion process, the initial queue is generated by doubling the arrival rate
to make the system oversaturated for the first hour. In Figure 2a (Figure 2b), the queue
length continues increasing (decreasing) until it reaches a steady-state, then it fluctuates
slightly within a range. In Figure 2, the critical point is the first time point at which the
queue length reached its steady state. The steady queue length (14.3526) was estimated by
using Equation (5). Using this critical point as a boundary, the entire queuing formation
(dispersion) process can be divided into two states, i.e., (1) queue formation (dispersion)
state and (2) steady-state. Figure 2 shows that it takes a long time for the length of the queue
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to reach a steady state. Therefore, if the queue formation (dispersion) process is neglected,
the length of the queue in the queue formation (dispersion) state will be overestimated
(underestimated).

Figure 2. Simulation results for an example scenario (S = 20 and α = 19).

• Development of Regression Models

Based on the simulation results, regression models were developed for estimating the
queue length at a particular moment of queue formation or queue dispersion state.

For the queue-formation state, it was found that the natural logarithm curve fit the
simulated queuing curve well (Figure 2a). Therefore, the following regression model
used by Chen and Yang [5] was used for modeling the queue length during the queue
formation state:

lt = a1ln(t) + b1 + ε, t ∈ [0, critical point] (6)

where t is the time interval, lt is the queue length at t, and a1 and b1 are the coefficients for
the regression model for the queue formation state.
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For the queue dispersion state, it was found that the natural exponential curve fit the
simulated queue formation curve better (Figure 2b). Therefore, the regression model for
the queue dispersion stage is:

lt = a2 exp(b2t) + ε, t ∈ [0, critical point] (7)

where t is the time interval, lt is the queue length at t, and a2 and b2 are the coefficients for
the regression model for the queue dispersion state.

For each simulation scenario, the simulated queue lengths before reaching the critical
point were used to develop the regression model. The modeling results for different
simulation scenarios for both the queue formation state and the queue dispersion state are
presented in Tables 1 and 2, respectively.

3.3. Step 3. Development of the Final Model

Based on the regression models that were developed, the truck queue length can be
estimated separately for four different states, i.e., (1) steady state, (2) queue formation state,
(3) queue dispersion state, and (4) oversaturated state. The basic modeling ideal can be
described by the following step-by-step procedure.

1. Check to determine whether or not the system is oversaturated. If the system uti-
lization factor at time t, i.e., ρt, is equal to or greater than 1, then the system is
oversaturated, which means the demand is greater than the capacity. In this case,
a steady queue length cannot be reached, and the fluid flow model will be used to
estimate the queue length as follows:

lt = lt−1 + λt − µt × S (8)

2. If the system is not oversaturated, then, according to the traffic density (α = λ/µ)
and the number of gate booths (S) at time t, the steady queue length at time t, i.e., Lt,
can be estimated according to Equation (5). After that, according to the estimated
queue length at the time interval t-1, i.e., lt−1, the state of the queuing process can be
determined.

a. If lt−1 < Lt, it is at the queue formation state. Then, the regression models (see
Equation (6)) developed for the queue formation state (given in Table 1) will be
used to estimate the length of the queue at time interval t. Figure 3 shows the
basic idea for this step. According to the value of lt−1, the time needed for the
queue length to reach lt−1 can be derived by the regression model at first. Then,
by adding 1 time interval, the current queue length lt, can be estimated by the
regression model. This can be expressed mathematically as follows:

lqueue f ormation
t = a1(αt, St)ln

(
t′ + 1

)
+ b1(αt, St) (9)

where:

t′ = exp
lt−1 − b1(αt, St)

a1(αt, St)

In addition, since the estimated queue length will not exceed the steady length
of the queue, then:

lt = min
{

lqueue f ormation
t , Lt

}
b. If lt−1 > Lt, it is at the queue dispersion state, and the regression models (see

Equation (7)) developed for the queue dispersion state will be used to estimate
the queue length at time interval t. Similarly, the current queue length, lt, can
be estimated according to the value of lt−1, by the following equations:

lqueuedispersion
t = a2(αt, St)exp

[
b2(αt, St)

(
t′ + 1

)]
(10)
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where:

t′ = ln
(

lt−1

a2(αt, St)

)
/b2(αt, St)

and
lt = max

{
lqueuedisperson
t , Lt

}
(11)

c. If lt−1 = Lt, it is at steady state, and then, the steady queue length Lt can
be used for estimating lt. Based on the modeling ideals described above, the
overall model can be expressed mathematically as:

lt =




min

{
lqueue f ormation
t , Lt

}
, lt−1 < Lt

Lt, lt−1 = Lt

max
{

lqueuedisperson
t , Lt

}
, lt−1 > Lt

lt−1 + λt − µt × S, i f ρt ≥ 1

, i f ρt < 1 (12)

where ρt =
αt
St

, lqueue f ormation
t is estimated by Equation (9), lqueuedispersion

t is esti-
mated by Equation (10), and Lt is estimated by Equation (5).

Figure 3. Estimation of the Queue Length for the Queue Formation State.

4. Model Evaluation

To evaluate the model that was developed, a case study was conducted to compare
the accuracy of the model with other existing methods, including the fluid flow model,
the M/M/S queuing model, and the simulation-based regression model developed by
Chen and Yang [5], which is referred to as Chen (2014)’s model. A simulation-based
numerical experiment was conducted to derive the simulated truck queue length at a
maritime terminal where the truck arrival rate and the gate service rate vary throughout
the day. It was assumed that the hourly truck arrival rate increased from 35 to 45 during the
first 10 h and decreased to 31 for the rest of the day. To compare with Chen (2014)’s model,
the number of gate booths S and the service rate µ (number of trucks that can be served per
hour) were set the same as in Chen (2014)’s model, i.e., S = 2 and µ = 40.8. Therefore, the
system was oversaturated during a 9-h peak period (from 6th to 14th hour). The proposed
modeling method was used in this case study, and the modeling results and the results of
other existing models are presented in Figure 4. By comparing the simulated truck queue
lengths with the queue lengths estimated by different models, the following key findings
were obtained:
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1. Overall, the proposed state-dependent approximation method outperformed the
other modeling methods regarding the accuracy of the estimation. Other models
either underestimated or overestimated the queue lengths.

2. The fluid flow model significantly underestimated the queue length because it ne-
glected the random fluctuations in the arrival rate and the gate service rate.

3. The M/M/s queuing model cannot be used in the oversaturation condition (ρ > 1),
and it significantly overestimated the queue length for the queue formation state and
significantly underestimated the queue length for the queue dispersion state.

4. Chen (2014)’s model had a comparable performance during the queue formation
process. However, it significantly underestimated the queue length during the queue
dispersion process because this process was not considered in the model.

Figure 4. Estimated Truck Queue Lengths by Different Models for the Case Study.

5. Discussion

The proposed modeling method can estimate the truck queue length more accurately
than the other four existing methods. It is because the truck queue length needs several
hours to reach its steady-state and the developed model is the only model that can take
account of both the queue formation and dispersion processes. In addition to the model
estimation accuracy, the proposed model is more flexible and applicable than other models.
First, it can be used for both undersaturated and oversaturated situations. This new method
can accurately estimate the truck queue length caused by the short-term oversaturation
during peak hours. Therefore, it will be useful for assessing the effectiveness of the
countermeasures that are targeted at reducing the peak-hour congestion at marine terminals.
Second, since the model estimates the truck queue length based on two input variables,
i.e., traffic density (α = λ/µ) and the number of gate booths (S), it can be used for marine
terminals that have different numbers of gate booths and different gate services rates.

In terms of the model applications, the developed model can be used for assessing
the effectiveness of some countermeasures that reduce the terminal gate congestion by
controlling the truck arrival rate (such as terminal appointment system), reducing the gate
service time (such as using optical character recognition (OCR) technology and IT system)
or increase the number of gate booths. Besides, it can be used as a sketching tool to quickly
estimate the truck queue lengths to help design the scenarios for simulation-based port
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operation modeling. For example, the size of the buffer zone in the simulation model can
be set according to the estimated truck queue lengths.

6. Conclusions

In this study, a state-dependent approximation method for estimating truck queue
length at marine terminals was developed to fill the gaps in the existing methods. Based
on the simulation of the truck queuing system, it was found that it takes several hours for
the truck queue length to reach its steady state, and neglecting the queue formation (queue
dispersion) processes will cause overestimation (underestimation) of truck queue length.
To address this problem, the proposed method takes account of both the queue formation
and dispersion processes into the truck queue length estimation. The model evaluation
results showed that it can produce more accurate and robust estimates of the truck queue
length than the existing methods. In addition, this new method can accurately estimate the
truck queue length caused by the short-term oversaturation during peak hours. Therefore,
it will be useful for assessing the effectiveness of the countermeasures that are targeted at
reducing the peak-hour congestion at marine terminals. Furthermore, the developed model
can be applied to estimate the customers’ queue at any service facility in the transportation
and logistic industry where the customer arrival rate and service rate vary by time and
system oversaturation conditions exist during peak hours.

In this study, the proposed model was evaluated based on the simulation experiment
results. In the future, field data need to be collected at the maritime terminal gates to further
verify the accuracy of the developed model. In addition, more research can be conducted
on the application of the developed model to optimize some operational strategies, such as
the terminal appointment system, to minimize the truck queue length at the terminal gates.
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