
sustainability

Article

A GIS-MCDA-Based Suitability Analysis for Meeting Targets
6.3 and 6.5 of the Sustainable Development Goals
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Abstract: Among the Sustainable Development Goals (SDGs) established in the 2030 Agenda, goals
6.3, regarding clean water and improve of water quality, and 6.5, regarding integrated water resources
management, highlight the need for the implementation of successful environmental water quality
monitoring programs of transboundary river waterbodies. In the present study, the designation of
high priority areas for water quality monitoring of Drin transboundary watershed is performed using
a suitability model, a GIS-based multicriteria decision analysis (GIS-MCDA) approach that takes into
consideration the most important conditioning factors that impose pressures on rivers. Based on the
results, the methodological approach used manages to sufficiently delimit the areas with increased
need for water quality monitoring in the Drin watershed, and the validation procedure produces a
correlation coefficient of 0.454 (statistically significant at a 0.01 level). Limitations arise in the case
of a lack of detailed information or inaccurate input data and due to the inconsistency among the
input data and the different methodological approaches regarding the information collection of each
country involved. These restrictions foreground the need for cooperation between the countries
involved regarding the exchange of scientific knowledge and common legislation, so as to achieve
integrated, effective, and sustainable management of water resources of the area.

Keywords: sustainable development goals (SDGs); river waterbodies; transboundary river basins;
water quality; suitability model; GIS-based multicriteria decision analysis; Drin river basin

1. Introduction

The 2030 Agenda for Sustainable Development was adopted in 2015 by the United
Nations (UN) and established 17 Sustainable Development Goals (SDGs) and 169 targets,
aiming to achieve a better and more sustainable future for all people [1]. In 2017, the
SDGs’ targets were followed by 231 unique indicators developed by the global indicator
framework for SDGs and adopted by the General Assembly of the UN [2]. SDGs succeed
the Millennium Development Goals (MDGs) to complete what the latter did not achieve
and focused on and reconciled all aspects and dimensions of sustainable development:
economic, social, and environmental [1].

Among the SDGs related to environmental protection (goals 6: Clean Water and
Sanitation, 12: Responsible Consumption and Production, 13: Climate Action, 14: Life
Below Water, and 15: Life On Land) [3], Goal 6 reflects the increased attention on water
and sanitation issues in the global political agenda [4]. Goal 6.6 aims to protect and restore
water-related ecosystems, including rivers, and to monitor progress by tracking the impact
of human development in the extent of water-related ecosystems over time (Indicator
6.6.1) [5]. The sub-indicators of 6.6.1 dictate the need for water quality monitoring of
rivers, imported from Indicator 6.3.2 (Proportion of bodies of water with good ambient
water quality) [5] and is highly interrelated to Article 8 of the Water Framework Directive
2000/60/EC [6].
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In most developed countries, water quality monitoring programs are implemented
under national and regional reporting requirements aimed at monitoring the health of
water-related ecosystems and protecting or restoring water resources [4], as dictated by In-
dicator 6.6.1 [5]. In the case of a transboundary river basin, cooperation over natural water
resources as noted under Goal 6.5 (Implement integrated water resources management), as
also promoted under The Convention on the Protection and Use of Transboundary Water-
courses and International Lakes (Water Convention) [7], can be even more challenging [4].
Differences in legislation, policies and priorities, financing, and stakeholder and private
sector participation among the countries involved complicate the implementation of a
holistic water management plan and monitoring program.

A strong tool commonly used in creating, managing, analyzing, modeling, and sharing
SDGs data is geospatial information technologies [8]. In the Outcome document of the
United Nations Conference on Sustainable Development which took place in Rio de Janeiro,
Brazil, the importance of space-technology-based data, in situ monitoring and reliable
geospatial information in sustainable development, policymaking, programming, and
project operations was recognized [9]; geography can provide the integrative framework
necessary for global collaboration and consensus decision-making [10,11].

In order to address the need for the implementation of successful environmental water
quality monitoring programs of transboundary river waterbodies, so as to meet the SDG 6.3
regarding clean water and the improvement of water quality, and SDG 6.5 regarding imple-
mentation of integrated water resources management, geospatial techniques were applied.
More specifically, the high priority areas for the monitoring of the Drin transboundary
river basin were estimated using a suitability model, a GIS (Geographical Information
System)-based multicriteria decision analysis (GIS-MCDA) approach, that has already
been successfully applied at a national level [12]. Although the challenges concerning the
inconsistency among the input data and the different methodological approaches regarding
the information collection of each country are many, this technique is cost-effective and can
be easily applied in river basins with various stakeholders involved [12]. The final scope
was to demonstrate a framework for cooperation among the countries involved that incor-
porates a common river basin management plan as promoted by the Water Framework
Directive 2000/60/EC [6], a GIS-based approach, and data sharing efforts that constitute a
valuable tool for decision making.

2. Materials and Methods
2.1. Study Area

The Drin River is located at the southern-western Balkans and covers an area of about
20.700 km2. The Drin River Basin is an interconnected hydrological system that comprises
the transboundary sub-basins of the Skadar/Shkoder Lake (27% of the total basin area), the
White Drin River (21%), the Black Drin River (19%), the Drin River (17%), the Ohrid Lake
(7%), the Prespa Lake (7%), and the Buna/Bojana River (2%) [13]. The Drin river basin is
shared among five countries: Albania (39%), Kosovo (This designation is without prejudice
to positions on status and is in line with UNSCR 1244/1999 and the ICJ Opinion on the
Kosovo declaration of independence.) (23%), Montenegro (21%), North Macedonia (15%),
and Greece (2%) (Figure 1).

The 149 km-long Black Drin River originates out of the Prespa and Ohrid karstic
system and meets the 136 km long White Drin River at Kukes in Albania; their confluence,
the Drin River, discharges to the Adriatic Sea. The old riverbed of Drin discharges into the
Adriatic Sea south of the Buna/Bojana River, while the Drin River’s main branch, which
was diverted northwards, nowadays joins the Buna/Bojana River close to the latter’s outlet
from Shkoder Lake and together they discharge into the Adriatic Sea [14,15].
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The significance of the Drin River and its main tributaries in terms of hydropower
production is major, especially for Albania. This has led to the alteration of the hydrological
regime of the river, the increase of flood risk at the downstream area of Buna/Bojana
River [16], to the consequential disturbance of sediments discharge, the interruption of
the biological corridors along the river, and the degradation of the supported ecologi-
cal systems. Significant pressures also impose the abandoned mines in Albania, illegal
dumpsites, uncontrolled waste disposal, sanitation and sewer leakage, and the intensive
tourism around lakes Ohrid, Prespa, and Shkodra. Finally, agricultural activities have led to
locally increased nutrient concentration in the Drin hydrographic network that eventually
discharge into the Adriatic Sea [14,17].

The Drin River Basin is characterized by a large number of native (56) and nonnative
(16) fish species [17], while many areas have been recognized for their environmental
values and have been included in environmental protection networks. There is a number
of existing and proposed protected areas, under different protection statuses among the
countries involved. For more details, see Section 2.3.5.

In the Drin River Basin, except for Greece that as a European Union (EU) member
is obliged to report annually the results of the inland water quality monitoring program,
Albania, Montenegro, North Macedonia, and Kosovo follow different protocols concerning
the river water quality monitoring. Nevertheless, Albania, Montenegro, and North Mace-
donia as EU candidate countries, and Kosovo as a potential candidate, are in the process
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or already have incorporated in their national legislation the 2000/60/EC WFD and other
directives related to surface water quality monitoring and protection.

Details concerning the river water policies, environmental legislations, and the quality
status classification system of rivers used by each country involved are presented in
Appendix A.

2.2. Suitability Modeling

The designation of high priority areas for the monitoring of the Drin transbound-
ary river basin was performed using a suitability model. In this specific effort, the GIS
(Geographical Information System)-based multicriteria decision analysis (GIS-MCDA)
approach, was employed by utilizing ESRI—ArcMap 10.7 software. GIS-MCDA is a
very popular suitability analysis tool [18], used commonly for supporting environmental
decision-making [19]. Here, the conventional GIS-MCDA, multi-attribute decision analysis
(MADA) approach that involves a predetermined, limited number of alternatives and
assumes spatial homogeneity of preferences with respect to different levels of criterion
values was adopted [20,21].

GIS-MCDA suitability mapping involves the following procedure: (1) defining the
goal, (2) defining the criteria and constraints, (3) standardization of criteria (value scaling),
(4) criterion weighting, (5) criteria aggregation, and (6) validation of suitability model accu-
racy [22,23] (Figure 2). The first two steps (steps 1 and 2) are based on the decision maker’s
judgement and depend on the scope of the analysis and the data availability, while the last
step (step 6) depends highly on available reference data [24]. In this paper, the suitability
model criteria used were based on experts’ judgment (two environmental scientists of
HCMR and one of the Ministry of Agriculture, Forestry, and Water Management MAFWM,
Directorate for Water Management, specialized in water resources management), and the
criteria used in similar analysis [12] after modifications, and are presented in detail in
Section 2.3.

Standardization of criteria (step 3) is the procedure for transforming raw data to
comparable units [20] and the most common GIS-based method for standardizing evalua-
tion criteria is the score range procedure [22]. The accuracy of standardization depends
on the expert’s judgment, experience, and expertise [24]. In this specific effort, criteria
standardization was achieved on the basis of the assumption that the value function has a
linear shape:

xi =
(Ri − Rmin)

(Rmax − Rmin)
× SR (1)

where Ri is the raw score i, Rmin is the minimum score of each factor, Rmax the maximum
score of each factor, and SR is the standardized range, here set to 100 [25,26]. In case of
qualitative criteria, the score ranking can be attributed subjectively.

Criterion weighting (step 4) is the procedure of value assigning to an evaluation crite-
rion, which indicates its importance relative to the other criteria under consideration [20].
Here, the weighted linear combination (WLC) model, the most straightforward and one of
the most common GIS-MCDA models used [27,28], was employed. In WLC, the decision
rule evaluates each alternative with the following value function, S:

S = ∑
j

wjvj(xi) = ∑
j

wjrij (2)

where wj is a normalized weight (∑ wj = 1); vj(xi) is the value function for the j-th
attribute; xi = xi1, xx2, . . . ., xin; and rij is the attribute transformed into the comparable
scale [26,28].

Criterion weighting was based on the pairwise comparisons method in the context of
a decision-making process known as the Analytic Hierarchy Process (AHP) [29], which is
an adoption of WLC, and relies on the judgements of experts to derive priority scales.
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The priority scales were derived after synthesizing their judgements using geometric
mean of the final outcomes, as proposed by Saaty [30]. AHP employs a fundamental scale
of values to represent the intensities of judgments, ranging between 1 and 9 (Table 1) [31].
All identified criteria are compared against each other in a pairwise comparison matrix.
Once the pairwise comparison matrix is obtained, a vector of criterion weights, w = (w1, w2,
. . . , wn) can be computed. The weights are obtained as the unique solution to:

Cw = λmaxw, (3)

where λmax is the largest eigenvalue of C. The consistency ratio CR of a pairwise comparison
matrix defines the probability that the matrix ratings (rating of each criteria against each
other regarding their relative importance) were randomly generated. CR can be defined as:

CR =
λmax − n
RI(n − 1)

, (4)

where n is the number of criteria under consideration and RI is the random index, which is
the consistency index of a randomly generated pairwise comparison matrix and depends
on the number n of elements being compared (Table 2). CR ratings greater than 0.10 indicate
that the pairwise judgments are almost random and untrustworthy [32], while CR smaller
than 0.10 indicates a reasonable level of consistency in the pairwise comparisons and
that the adjustment is small compared to the actual values of the eigenvector entries [31].
Although some uncertainties may arise during criterion weighting and sensitivity analysis
is often performed on the preference weights of the suitability model (e.g., [33–35]), in this
case the validity of the outcome was evaluated using the consistency ratio CR, while the
criterion weightings were optimized using the following procedure proposed by Saaty [36]:
definition of the most inconsistent judgment in the matrix, determination of the possible
range of the judgment values, and improvement of the final values based on expert’s
judgment. This procedure was repeated until the desired consistency was reached [37]. In
this specific effort, three environmental scientists of HCMR and MAFWM specialized in
water resources management were involved in the procedure.

Criteria aggregation (step 5) and the suitability modeling procedure was performed
in ArcGIS Pro 2.7.0 with the Suitability Modeler tool. Finally, the validation of suitability
model accuracy (step 6) was performed (see Section 2.4 for details).
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Table 1. The fundamental scale for pairwise comparison [31].

Intensity of Importance Definition

1 Equal importance
2 Weak
3 Moderate importance
4 Moderate plus
5 Strong importance
6 Strong plus
7 Very strong or demonstrated importance
8 Very, very strong
9 Extreme importance

Table 2. Average random consistency index (RI) [31].

n 1 2 3 4 5 6 7 8 9

RI 0.00 0.00 0.52 0.89 1.11 1.25 1.35 1.40 1.45

2.3. Suitability Model Criteria

The activities and factors imposing a significant pressure on rivers in the Drin wa-
tershed [14] leading to an increased need for water quality monitoring, as dictated by
the specialized in environmental water resources management personnel of HCMR and
MAFWM, included in the analysis were: agricultural and economic related activities, the
hydrogeological structure, the domestic wastewater, the type and capacity of hydropower
projects in rivers, and the existence of area protected under legislation.

2.3.1. Agricultural Activities

Agricultural activities can impact water quality of rivers directly, due to the use of
agrochemicals (pesticides, fertilizers, chemical growth agents, and animal manure) [38], but
also indirectly, due to water abstraction for irrigation that affects the hydrological regime
of the river and the amount of dissolved and suspended solids in rivers [39]. The spatial
distribution of agricultural activities in the Drin watershed were retrieved from CORINE
Land Cover 2018 [40]. Based on CORINE 2018 inventory, the total agricultural area in the
Drin watershed is 4588 km2 (22% of the total basin area), the majority of which is occupied
by complex cultivation patterns (8.6%), land principally occupied by agriculture, with
significant areas of natural vegetation (6.9%), non-irrigated arable land (3.5%), and pastures
(1.8%) (Figure 3). For each agricultural activity, a standardized value was attributed, on
the basis of the pressures it poses on surface water quality, depending on the general
agricultural practices proposed by agricultural engineers regarding nutrient management
in the study area [12,41].

2.3.2. Economic Activities

Economic, mainly industrial and other related, activities may impose significant
pressure on surface water resources [42]. In order to identify the pressures on river’s
water quality due to economic activities in the Drin watershed, the Statistical Business
Registry and/or the Structural Business Statistics (SBS) concerning the number of active
enterprises per municipality, provided from the corresponding statistical authority of each
country [43–47], were used. The categorization of these activities is based on the statistical
classification of economic activities in the European Community NACE (Nomenclature
statistique des Activités économiques dans la Communauté Européenne) ver. 2 [48].
For each economic activity, the degree of the expected disturbance on the surrounding
environment was attributed (low, moderate, and high disturbance) [12]. A normalized
value was attributed to the disturbance classes, depending on the impact on the river’s
water quality that leads to an increased need for monitoring. Finally, for each municipality
of the Drin watershed, a normalized value was attributed on the basis of the number of
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economic-industrial and other related activities and the expected disturbances they impose
on surface water.
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Based on the statistical inventories, the total number of the active business entities in
Drin River Basin for the year 2018 (expect for Montenegro—2011, and Greece—2017) were
128,743. Only 772 business entities (0.6%) may impose high disturbance to the environment
and 41,670 (32%) moderate disturbance (Figure 4a). The higher density of the number of
businesses was noted in the highly populated municipalities and at areas where mining
and quarrying activities are located (Figure 4b).

2.3.3. Hydrogeological Structure

Surface water and groundwater interact in a complex and direct or indirect manner
and can be viewed as linked components [49]. Therefore, surface water quality is affected
by groundwater quality. The latter, except for human-induced changes, depends on the
hydrogeological characteristics of the aquifers and the chemical propertied of the overlying
soil. The water, while infiltrating through soil and the underlying geological formations,
is naturally purified; during this process, clay, silts, and sand may adsorb chemical con-
taminants, and filter harmful bacteria and other small particles from water, while bacteria
decompose dissolved organic matter or agricultural and industrial chemicals [50]. Notwith-
standing, karst systems are fragile environments and vulnerable to pollution, due to the
rapid transmission of surface pollutants through the usually vast and large karst network
and the usually small thickness of the overlying soil [51].

Drin watershed is located in the Dinaric Karst Aquifer System that forms one of
the world’s largest karst aquifer systems [52] and consists of an extremely heterogeneous
medium [53]. The karst aquifer is developed within over 1000 m thick calcareous formations
(limestones and dolomites), which are highly karstified. Karst landscape and underground
drainage systems are well-developed, allowing the intensive groundwater circulation [52].
Based on the hydrogeological map of the Drin watershed [52], 39% of the total area is
covered by karst formations and 23% by porous formations (Figure 5a).

In this specific study, the classification of the hydrogeological formations was based
on their vulnerability to pollution, with karst formations being the most vulnerable and
impervious being the least vulnerable. Finally, a normalized value was attributed to the
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hydrogeological formations, depending on the pollution risk they impose on the river’s
water quality.
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2.3.4. Domestic Wastewater

The disposal of domestic wastewater can impose an additional pressure on rivers.
Urban wastewater treatment plants (UWWTPs) do not always manage to remove all
contaminants from the water successfully [54], while the effluent quality depends on the
composition of the initial, untreated wastewater and whether all the stages of the treatment
have been completed successfully [55]. Based on a study conducted by Regional Capacity
Development Network for Water and Sanitation Services (RCDN), a project about the
water utilized in the Western Balkans managed by the German Agency for International
Cooperation (GIZ), the operational UWWTPs by the end of 2019 in Albania were 10, in
Kosovo 6, in Montenegro 12, and in North Macedonia 19 [56]. Of these UWWTPs, 12 are
located in the Drin River Basin (4, 3, 3, and 2, constructed in Albania, Kosovo, Montenegro,
and North Macedonia, respectively). In Greece, of the total 960 UWWTPs operating
currently [57], none is located in the Drin river basin. Most UWWTPs provide secondary
wastewater treatment and only two provide tertiary treatment (Velipoje in Albania and
Nikšić in Montenegro; 165,000 PE), while Virpazar UWWTP is dysfunctional. The total
physical capacity (population equivalent (PE)) of the operating UWWTPs in the Drin River
Basin is about 530,000 PE [56]. The total population connected to these UWWTP ranges
concerning the municipality and is estimated to be about 390,000. It can be assumed that
the rest of the population uses septic tanks and pits.

In order to quantify the impact of domestic wastewater on Drin water resource quality,
the population distribution GEOSTAT 2011 grid dataset [58] was used. Additionally, the
local seasonal population increase, due to tourist arrivals, was taken into consideration in
the analysis. In order to quantify the impact of tourism on domestic water use in the Drin
basin, the nights spent by tourists per municipality was retrieved form the corresponding
statistical authority of each country. A weighting factor expressing the average annual
population increase per administrative division, due to tourists, was calculated for the
period 2012–2016. Then, the population distribution of the population (GEOSTAT) was
multiplied by the weighting factor so as to estimate the actual population distribution in
the Drin basin. The population distribution was classified on the basis of the Degree of
Urbanization as: (1) urban center (or a high-density cluster) consists of contiguous grid
cells with a density of at least 1500 inhabitants per km2, (2) urban cluster (or moderate
density clusters) consists of contiguous grid cells with a density of at least 300 inhabitants
per km2, and (3) rural grid cells (mostly low density cells) are cells that do not belong to an
urban cluster (density below 300 inhabitants per km2) [59].

Based on the results, the population in the Drin River Basin is 1,712,489, which
increases to 1,766,308, due to tourism (Figure 5b).

2.3.5. Protected Areas

Monitoring areas designated by law for preservation and protection is essential, so as
to assess their ecological condition in time and to directly proceed to crucial interventions
and management actions when necessary [60]. The legislation concerning the protected
areas includes Law 81/2017 on Protected Areas in Albania [61], Law No 03/L-233 on Nature
Protection in Kosovo [62], the Law on Nature Protection 54/2016 in Montenegro [63], Law
67/04 on Nature Protection in North Macedonia [64], and the Legislative Decree 86/1969
on Forest Law [65], Law 1650/1986 on Environment Protection [66], and the Decision
50743/2017 concerning the revised list of the national list of the European Ecological
Network NATURA 2000 in Greece [67].

In the present effort, the European inventory of Nationally Designated Areas CDDA
that holds information about protected areas was used [68]. Additionally, environmental
(NATURA 2000 [69], Biogenetic Reserves [70]) or international (UNESCO-World Heritage
List [71], UNESCO-Biosphere reserves [72], Ramsar Convention [73]) protection networks
were included in the analysis. It should be noted that in some cases, areas from different
environmental protection networks overlap (Figure 6a). A uniform value regarding the
increased need for monitoring was attributed to all protected areas at the Drin River Basin.
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2.3.6. Hydropower Projects in Rivers

Hydraulic structures (dams, small and large hydropower plants-HPP, weirs, sluices,
spillways, etc.) alter the hydrological regime of the rivers and may affect the downstream
rivers’ characteristics [74] and eventually the water quality [75] and the recharging of
groundwater bodies [52]. More specifically, flow alteration of regulated rivers may lead
to changes in downstream river water temperature [76], affect the BOD (biochemical
oxygen demand) [77], the nutrient concentrations [78,79], and the water self-purification
capacity [80].

The hydraulic structures database of the current study includes the hydropower
projects constructed in the study area and was compiled on the basis of information de-
rived from the following sources: the inventory of hydropower in Europe conducted
by EuroNatur, Riverwatch, WWF, and GEOTA [81], the inventory of hydropower pants
conducted under the project “Regional Strategy for Sustainable Hydropower in the West-
ern Balkans” [82], the JRC Hydro-power database [83], DIKTAS Project [52], and other
sources [84–87]. The HPPs reported in the present effort were classified as follows: storage
or reservoir HPPs (that include dams and a reservoirs), run-of-river (RoR) HPPs (where
energy is generated from the available flow of the river), and pumped storage HPPs (where
water is pumped from a lower reservoir into an upper reservoir when electricity generation
exceeds demand and is released back when needed). All vary from the very small to the
very large scale, depending on the hydrology and topography of the watershed [88,89].
Additionally, HPPs were classified on the basis of their installed capacity. Although the
definition of small HPPs varies widely among the countries, in this effort, the limit between
small and large HPPs was considered to be the conservative 10 MW [81,90]. It should be
noted that only verified HPPs were included in the present analysis.

On the basis of the inventory, 102 HPPs have been constructed in the Drin River
Basin, 20% of which can be characterized as large. Additionally, 18% of the HPPs were
classified as storage, and 28% as RoR, while for 54% of the HPPs, information regarding
their operation was missing. It should be noted that in some cases information was not
possible to be retrieved regarding the type of HPP, while no pumped storage HPPs was
possible to be identified in the Drin River Basin (Figure 6b).
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The classification and the standardized value attributed to the hydropower projects in
rivers was based on the pressures they pose to surface water quality, with large storage
structures imposing the greatest pressure and small RoR posing the least.

2.4. Designation of High Priority Areas for Water Quality Monitoring-Validation

The suitability model resulted in the production of a map where the high priority
areas for water quality monitoring of rivers were highlighted. In order to identify the
sub-basins of the Drin watershed with increased need for water quality monitoring, a score
Sc was attributed to each one on the basis of the total summation Σ(S) of the multicriteria
analysis and divided by the area A of the sub-basin:

Sc = Σ(S)/A, (5)

The spatial dataset used for the analysis was the HydroBASINS Version 1.c level
12, a global watershed boundary and sub-basin delineation derived from HydroSHEDS
(Hydrological data and maps SHuttle Elevation Derivatives at multiple Scales) data at 15 s
resolution [91]. Each sub-basin was classified into five classes (very high, high, moderate,
low, and very low) using the Natural Breaks (Jenks) classification technique. The final
output was the suitability map with the sub-basins of the Drin River Basin classified into
five classes (very high, high, moderate, low, and very low), describing the areas where
river monitoring is required.

In order to investigate the reliability of the methodological approach, the output map
was contrasted with the current surface water quality status in the Drin River Basin. More
specifically, annual, long-term, in situ measurements from the existing monitoring net-
works of rivers in the Drin watershed were employed, and the water status was estimated.
In this specific study, the Waterbase v2019.1 dataset that contains surface water quality data
of EU member countries (Greece) and cooperating countries (Albania, North Macedonia,
and Kosovo; but not Montenegro), in the scope of the current WISE SoE—Water Quality
(WISE-4/WISE-6) reporting obligations, was employed [92]. Additionally, in order to
compile the most complete, long-term, and recent (last decade) timeseries of physicochem-
ical parameters of the rivers, water quality measurements were also retrieved from the
corresponding environmental agencies or statistical authority of the countries (Institute
of Statistics of the Republic of Albania [93], National Hydrometeorological Service of
North Macedonia [94], Institute of Hydrometeorology and Seismology of Montenegro [95],
Hellenic Centre for Marine Research, Institute of Marine Biological Resources, and Inland
Waters for Greece [96]).

Each country involved uses a different classification system for estimating the water
quality status of rivers. In this effort, the classification scheme used by the National
Environmental Agency of Albania [97] was employed for the entire dataset. This system
uses the basic physicochemical parameters of surface water (dissolved oxygen, BOD5, pH,
NH4, NO3, NO2, PO4, and Total P concentrations) and is based on the recommendations
of the United Nations Economic Commission for Europe (UNECE) (Table 3; see also
Appendix A.1.) [98]. Therefore, for each monitoring station, the water quality status was
estimated on the basis of the in situ measurements conducted during the last decade
and, after averaging the individual status estimated, were based on each physicochemical
parameter. Overall, data from 42 monitoring stations were used in the present analysis,
with measurements varying between 4 to 10 years.

Finally, the water quality score of each monitoring station was contrasted against the
ranked score of the suitability map produced. The criteria used to investigate the reliability
was the correlation coefficient R.
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Table 3. Quality status in rivers based on physicochemical parameters used by the National Environ-
mental Agency of Albania [97].

Parameter Unit High Good Moderate Poor Bad

DO mg/l >7 >6 >5 >4 <3
BOD5 mg/l <2 <3.5 <7 <18 >18

pH (acid) - - >6.5 >6 - -
ph (alkaline) (alkaline) - - <8.5 <9 - -

NH4 mg/l <0.05 <0.3 <0.6 <1.5 >1.5
NO2 mg/l <0.01 <0.06 <0.12 <0.3 >0.3
NO3 mg/l <0.8 <2 <4 <10 >10
PO4 mg/l <0.05 <0.1 <0.2 0.5 >0.5
Ptotal mg/l <0.1 <0.2 <0.4 <1 >1

3. Results
3.1. Suitability Modeling

The six (6) criteria used to identify the increased need for water quality monitoring of
river waterbodies in the Drin watershed have been ranked in Table 4 and led to the produc-
tion of the maps in Figure 7. Based on the results, the most important factors increasing the
need for water quality monitoring is the existence of large HPPs, the economic activities
with high disturbance on the surrounding environment, and the agricultural activities with
high environmental risk potential.

Table 4. Weights of the factors increasing the need for the monitoring of water quality parameters of
rivers in the Drin River Basin.

a/a Conditioning Factors Class Rank

1 Agricultural

Non-irrigated arable land (211) 1
Permanently irrigated land (212) 3

Rice fields (213) 4
Fruit trees and berry plantations (222) 1

Olive groves (223) 1
Pastures (231) 1

Annual crops associated with permanent crops (241) 4
Complex cultivation patterns (242) 2

Land principally occupied by agriculture (243) 1

2 Economic/Industrial
Low disturbance 2

Moderate disturbance 3
High disturbance 5

3 Geological structure

Aquitard (AT) 0
Karst-fissure, permeability good (KA1) 3

Karst-fissure, permeability moderate (KA2) 2
Intergranular, good (IA1) 2

Intergranular, moderate (IA2) 1
Fissure (FA) 1

4
Domestic wastewater

Population density
(inh/km2)

<300 1
300–1500 2

>1500 3
5 Protected areas - 1

6 HPPs

Large, storage 6
Large, RoR 5
Large, n/a 4

Small, storage 3
Small, RoR 2
Small, n/a 1

The pairwise criteria comparison based on the AHP approach resulted in the pref-
erence matrix with assigned preference values and calculated weights (Table 5) and to a
consistency ratio CR of 0.019. This value is smaller than 0.10 and meets the criteria set by
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Saaty [31]. Based on Table 5, the most important factor affecting the rivers’ water quality
in the Drin River Basin is agricultural activities, followed by domestic wastewater and
economic activities. Factors, such as protected areas and hydrogeological structure, do not
necessarily imply degraded water quality, but increase the vulnerability of surface water
bodies, and therefore they were ranked lower. After performing a weighted summation
of the criteria maps and normalization based on the sub-basins cover area, the final map
of the high priority sub-basins of the Drin watershed for the water quality monitoring of
rivers was produced (Figure 8a,b).

Table 5. Pairwise comparison matrix of six criterion using the Analytic Hierarchy Process (AHP) method.

Item Description Agricultural
Activities

Domestic
Wastewater

Hydropower
Projects

Economic
Activities

Protected
Areas

Hydro-
Geology Weight

Agricultural activities 1.00 1.00 3.00 2.00 4.00 7.00 30.2%
Domestic Wastewater 1.00 1.00 3.00 2.00 3.00 7.00 29.0%
Hydropower projects 0.33 0.33 1.00 1.00 2.00 4.00 12.8%
Economic Activities 0.500 0.50 1.00 1.00 4.00 5.00 17.3%

Protected areas 0.250 0.33 0.50 0.25 1.00 2.00 7.0%
Hydrogeology 0.143 0.14 0.25 0.20 0.50 1.00 3.7%

Consistency ratio CR 0.019

On the basis of the results, the high priority areas for river water quality monitoring
are in the highly populated plains of Kosovo, where additionally increased agricultural
and economic or other related activities were observed. A moderate to high need for water
quality monitoring was noted in areas where the majority of hydropower projects of high
installment capacity have been constructed, mainly at the northwestern part of Albania,
where also settlements are located. Higher needs for river water quality monitoring
are expected in areas structured by calcareous formations (e.g., north Albania, where also
increased economic activities have been reported, and north and northwestern Montenegro,
where significantly populated areas are located) or in areas included in environmental
protection networks (e.g., in the Greek part of the Drin River Basin, or the northwestern
area of the North Macedonian part of the Drin River Basin).

Areas of moderate or low priority for water quality monitoring are mostly areas with
hydrogeological formations of low pollution vulnerability, moderate to low agricultural
and economic activities, and lack of protection schemes (Figures 7 and 8). Thus, the central
and western part of Albania belong to this category as well as most of the southern part of
North Macedonia. The main tributaries of the Drin River which are expected to contribute
significantly with respect to the hydrological regime of the river but also to its pollution
loads, are covered by the high priority areas for water quality monitoring (Figure 8a,b).

3.2. Validation of the Methodological Approach

Regarding the reliability of the methodological approach, the correlation coefficient
between the water quality status score of the existing monitoring network in the Drin
River Basin and the corresponding sub-basin suitability score, was acceptable (R = 0.454,
p-value = 0.002547, statistically significant at 0.01 level; Figure 8c). It should be noted
that a high suitability score does not necessarily imply water quality degradation, since
an increased need for water monitoring is perceived as a precautionary measurement in
areas of high vulnerability (e.g., areas possibly exposed to pollution, due to the geological
structure-karst areas) or of high importance (e.g., legislatively protected areas of high
environmental value). This is the case especially in the southeastern part or at the northern
part of the Drin River Basin, where the Ohrid and Prespa lakes and the Albanian Alps are
located, which are included in many environmental protection networks. Likewise, the
Drin River Basin is structured to a great extent by calcareous formations, especially in the
central part of Montenegro, the northern and southeast part of Albania, the southwest part
of North Macedonia and the Greek part of the watershed. Significant parts of these areas
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do not have very important pollution sources, but still, the need for monitoring can be
relatively high to the increased natural vulnerability.
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Possible discrepancies between the river quality status score and the corresponding
sub-basin suitability score can also be attributed to the lack of detailed and accurate primary
information used in the present analysis. The water quality classification system used
in this effort is also something that needs further examination and intercalibration at an
EU level, due to the quite homogeneous quality status that is produced in most of the
monitoring stations. Another limitation arises, due the lack of information regarding
possible sources of pollution that lead to the degradation of surface water resources and
which was not possible to be included in the present analysis. For example, details about the
agricultural practices regarding fertilizer use, illegal waste disposal, and water abstractions
are still unknown.

Finally, in the present study, an important issue arose, due to the inconsistency of
the input data and the different methodological approaches of the information collection
of each country. This was evident especially in the case of the economic activities, and
the hydropower projects inventories compilation, where the structure and information
of the databases of each country involved varied considerably. These obstacles affect
negatively also the transboundary basin water management potential and thus need to
be resolved to achieve the target of the EU Water Framework Directive (WFD) and UN
SDG 6 for good water quality. The proposed monitoring prioritization is a step towards
the necessary harmonization of methods and decision-making regarding the Drin River
Basin management.

4. Discussion

The 2030 Agenda for Sustainable Development, aiming to achieve a better and more
sustainable future for all people, focused on all aspects and dimensions of sustainable
development: economic, social, and environmental [1]. Among the SDGs related to environ-
mental protection, Goal 6.6 aims to protect and restore water-related ecosystems, including
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rivers, and to monitor progress, while the sub-indicators of 6.6.1 dictate the need for water
quality monitoring of rivers [5]. Although in most developed countries water quality mon-
itoring programs are implemented under national and regional reporting requirements,
in case of transboundary river basins, cooperation over natural water resources, as noted
under Goal 6.5 regarding the implementation of integrated water resources management,
can be even more challenging [4].

A strong tool commonly used in creating, managing, analyzing, modeling, and shar-
ing SDGs data is geospatial information technologies [8]. In the present study, in order to
address the need for the implementation of successful water quality monitoring programs
of transboundary river waterbodies, so as to meet the relevant International legislation
goals (EU WFD, SDG 6.3 and SDG 6.5), geospatial techniques were applied. More specif-
ically, the designation of high priority areas for monitoring of Drin transboundary river
basin was performed using a suitability model, a GIS-based multicriteria decision analysis
(GIS-MCDA) approach coupled with AHP, that has already been successfully applied on
national level [12]. The framework proposed aspires to contribute to the risk assessment
techniques commonly used to address multi-objective problems, and therefor comprise a
valuable decision support tool [99].

Based on the results, the methodological approach used in the present study man-
aged to sufficiently highlight the high priorities areas for water quality monitoring in
the Drin River Basin. Areas with intensive agriculture and economic activities and high
groundwater vulnerability were classified as high priority for monitoring, while areas
with moderate anthropogenic activities and low natural vulnerability to pollution were
characterized as moderate to low monitoring priority. Ecologically important areas that
belong to protection networks and undergo significant pollution pressures were also clas-
sified as high monitoring priority. The comparison of the prioritization map with official
water quality status classification outputs from monitoring activities in key points of the
hydrographic network, indicated good agreement with only few exceptions. Nevertheless,
some limitations arise in the present effort, mainly due to the lack of detailed information
or insufficient input data available. Additionally, in the methodology applied, it was not
possible to incorporate all factors forming the water quality status of surface water, such
as the agricultural practices regarding the exact fertilizers use, illegal waste disposal, and
water abstractions, that are unknown.

Finally, the most important limitation of the present methodology was the inconsis-
tency among the input data and the different methodological approaches regarding the
information collection of each country, since Albania, Montenegro, and North Macedonia
as EU candidate countries and Kosovo as a potential candidate follow different protocols,
since their national and EU legislations are not fully aligned. This is one of the major
restrictions during integrated water resource management at a transboundary level that
foregrounds the need for cooperation between the countries involved. In the Drin River
Basin, efforts have been made regarding this aspect. A first attempt towards an enhanced
cooperation among the Riparians for the management of the Drin River Basin was in 2006,
during the International Roundtable on Integrated Management of Shared Lake Basins in
South-Eastern Europe held in Ohrid and organized under the Petersberg Phase II/Athens
Declaration Process and the Global Environment Facility (GEF) IW:LEARN Programme.

In 2011, a Memorandum of Understanding (MoU) based on Shared Vision for the
sustainable management of the Drin Basin was signed by the Ministers of the Water
and Environment of the Drin Riparians in Tirana, as an outcome of the Drin Dialogue
coordinated by the Global Water Partnership Mediterranean (GWP-Med) and UNECE.
For the implementation of the Drin MoU, a Drin Coordinated Action (Drin CORDA)
process was initiated, which is still ongoing and supported amongst others by the Global
Environment Facility (GEF) [13]. This effort can assist towards designing and implementing
a common transboundary monitoring network in the Drin River Basin which will enhance
the cooperation between the riparian countries and will facilitate the most important
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step towards the integrated river basin management, which is the homogenization and
exchange of water-related data.
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Appendix A.

Appendix A.1. Albania

Surface water management, protection, and monitoring in Albania is mainly controlled
by the following legislation: Law 10431/2011 on the Protection of the Environment [100]
that is fully aligned with Directive 2004/35/CE on environmental liability with regard
to the prevention and remedying of environmental damage [101], Law No. 111/2012
on Integrated Water Resources Management [102] that is fully aligned with 2000/60/EC
WFD [6], the Decision No. 246/2014 on the Determination of the Environmental Quality
Standards for Surface Water [103] that incorporates Directive 2008/105/EC on environmen-
tal quality standards [104] and the Decision 742/2015 on the Operation and Management
of the pollutant release and transfer register [105] that partially incorporates Regulation
(EC) No 166/2006 [106]. The monitoring of surface water is performed by National En-
vironmental Agency of Albania (Agjencia Kombetare e Mjedisit (AKM)) that operates
under the Ministry of Tourism and Environment of Albania (Ministria e Turizmit dhe
Mjedisit). The national river network of the country is constantly increasing and the EU
Water Framework Directive (WFD) priority substances and biological quality elements
(benthic invertebrate fauna, phytoplankton, phytobenthos, macrophytes, and fish) are
gradually being monitored since 2016 [107,108].

The water quality of surface water of Albania is determined on the basis of physic-
ochemical parameters (dissolved oxygen, BOD5, pH, NH4, NO3, NO2, PO4, and Total
P concentrations) by comparing them with the permitted standards set out in the EU
Water Framework Directive. The classification of the river’s water quality in Albania is
distinguished into five classes, labelled from “high” to “bad”, but is not yet designed fully
in accordance with the requirements of the WFD [98,107]. The classification of Albania’s
rivers is achieved on the basis of Decision No.115/15.2.2012 that provides the comparative
standards [97] according to recommendations of the United Nations Economic Commission
for Europe (UNECE) [98]. Of the total 34 sites of the national river monitoring network
in Albania, for which physicochemical data are available from the Institute of Statistics of
Albania—INSTAT and the National Environmental Agency of Albania [93], five are located
in the Drin River Basin.

Appendix A.2. Kosovo

Surface water monitoring in Kosovo is conducted by the Hydrometeorology Institute
of Kosovo (Institutit Hidrometeorologjik të Kosovës- IHMK), which is part of the Kosovo
Environmental Protection Agency-KEPA (Agjencia e Kosovës për Mbrojtjen e Mjedisit-
AKMM) of the Ministry of Environment and Spatial Planning of Kosovo (Ministrisë së
Mjedisit dhe Planifikim Hapësinor). The most important legislation of Kosovo related to
river water quality regulation, monitoring, and classification is the following: Law No
04/L-147/2013 on Waters of Kosovo [109] that partially incorporates 2000/60/EC WFD [6],
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and the Administrative Instruction MESP-No. 16/2017 on Classification of Surface water
bodies [110]. The latter partially incorporates the 2000/60/EC WFD and defines the
classification system of surface waterbodies water quality on the basis of physicochemical
and biological elements, but has not been implemented yet. Although some progress has
been noted regarding aligning water legislation with the acquis and through the adoption
of the Kosovo 2017–2036 national water strategy [111,112], efforts are required to ensure
that the river basin authority is operational and prepares the management plans [113].

The quality of the rivers of Kosovo is determined on the basis of physical, chemical,
and heavy metal analyses. The current monitoring network has a total of 19 sampling sites
in the Drin watershed.

Appendix A.3. Montenegro

Water quality in Montenegro is governed by an extensive legal framework. The key
legislation is the 2007 Law on Water [114], amended in 2018 for the transposition of Di-
rective 2000/60/EC (WFD) and other water directives [115]. Surface water monitoring in
Montenegro is performed by the Water Quality Department (Odsjek za kvalitet voda) of
the Institute of Hydrometeorology and Seismology of Montenegro (Zavod za hidromete-
orologiju i seizmologiju-ZHMS), while reporting is also conducted by the Environment
Protection Agency of Montenegro—EPA Montenegro (Agencija za zaštitu životne sredine).
The classification of surface water quality is regulated by the Water Law 84/2018 [115]
and the Regulation on the national list of environmental indicators 19/2013 [116], while
the alignment with EU regulation and water quality standards is to be developed [117].
EPA has developed the Water Quality Index (WQI) on the basis of the Water Quality Index
method [118], according to which ten parameters of physicochemical and microbiological
quality (water temperature, pH, electrical conductivity, oxygen saturation, suspended
matters, BOD5, ammonia-nitrogen content N-NH4, oxide-nitrogen content NO2 + NO3,
ortho-phosphorus, and total number of fecal bacteria) are aggregated into a single surface
water quality indicator. For each of these parameters a quality value qi and a weight
value wi are attributed, depending on the relative significance on the overall water quality
assessment [119]. Finally, the overall WQI is calculated as the sum of qi x wi, while classifi-
cation criteria of the descriptive quality indicator are assigned as: WQI = 0–38 very poor,
WQI = 39–71 poor, WQI = 72–83 good, WQI = 84–89 very good, WQI = 90–100 excellent
(Regulation on the national list of environmental indicators 19/2013) [116,120]. In the Drin
River Basin, 14 sampling surface water sites are located.

Appendix A.4. North Macedonia

The most important legislation concerning surface water of North Macedonia is Law
on Water 87/08 that regulates issues related to surface waters, including water use, protec-
tion against harmful activities, water facilities and services, protection of the waters from
drainage and pollution, management issues, manner of financing of the water-economy
activities, and other issues of importance [121]. Based on the national legislation con-
cerning the procedures of observation and measurement of the qualitative characteristics
of the waters in the network of the hydrological stations, the following indicators are
being monitored: organoleptic, acidity-alkalinity, oxygen concentration, mineralization
indicators, eutrophication/biological indicators, indicators of microbiological pollution,
radioactivity, content of harmful and dangerous substances, the ecological condition of the
rivers, and the ecological potential of the lakes [122]. The incorporation of 2000/60/EC
WFD [6] is being accomplished with the Regulation for the Classification of Surface Waters
33/16 [123], that replaced the Regulation for Water Classification 18/99 [124], and defines
the assessment of the ecological status of rivers in North Macedonia. The ecological status
of rivers is classified according to the four main groups of quality elements: biological,
hydromorphological (hydrological regime, morphological conditions), and chemical and
physico-chemical elements that are used to support biological elements. Surface waters
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are classified into four classes (high/good, good/moderate, moderate/insufficient, and
insufficient/bad) regarding their ecological status [123].

The water quality of surface water in North Macedonia is being monitored by the
National Hydrometeorological Service (NHMS) of North Macedonia (Упрaвaтa зa хидро-
метеоролошки рaбoти-УХМР) through the RIMSYS program (River Monitoring System),
and the collected data is processed by the Ministry of Environment and Physical Planning.
It should be noted that surface the water monitoring program implemented by NHMS does
not fully meet the requirements of the national water-related legislation and 2000/60/EC
WFD [125]. Of the total 20 sampling points of the surface water monitoring network
of North Macedonia (River Monitoring System Project in Macedonia-RIMSYS), two are
located in the Drin watershed.

Appendix A.5. Greece

In Greece, river water quality monitoring is performed by the Hellenic Centre for
Marine Research, Institute of Marine Biological Resources, and Inland Waters (HCMR-
IMBRIW) under the supervision of the Special Secretariat for Water of Ministry of Envi-
ronment and Energy of Greece [126], in compliance to 2000/60/EC WFD [6] that has been
incorporated in the national legislation by Law No.3199/2003 regarding the protection and
management of waters [127]. The quality status of Greek rivers is estimated on the basis of
the Nutrient Classification System (NCS) [128], modified to also include dissolved oxygen
concentrations [129] averaging each status. Currently, the river water quality national
monitoring network comprises 490 sites, one of which is located in the Greek part of the
Drin River Basin.
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