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Abstract: An important issue today for industries is optimizing their processes. Therefore, it is
necessary to make the right decisions to carry out these activities, such as increasing the profit of
businesses, improving the commercial strategies, and analyzing the industrial processes performance
to produce better goods and services. This work proposes an intelligent system approach to prescribe
actions and reduce the chemical oxygen demand (COD) in an equalizer tank of a wastewater
treatment plant (WWTP) using machine learning models and genetic algorithms. There are three
main objectives of this data-driven decision-making proposal. The first is to characterize and adapt a
proper prediction model for the decision-making scheme. The second is to develop a prescriptive
intelligent system based on expert’s rules and the selected prediction model’s outcomes. The last is
to evaluate the system performance. As a novelty, this research proposes the use of long short-term
memory (LSTM) artificial neural networks (ANN) with genetic algorithms (GA) for optimization in
the WWTP area.

Keywords: artificial neural network (ANN); chemical oxygen demand (COD); data-driven decision
making (DDDM); Industry 4.0; machine learning (ML); optimization; wastewater treatment plant
(WWTP)

1. Introduction

A brilliant explosion in the accessibility and availability of information through the
data of many industrial processes has opened the data analysis to describe, predict, and
prescribe to make better decisions in processes like iron extraction, food chains, medicine
production, and energy generation [1]. However, there is not currently enough research
in the prescription area. Therefore, there is plenty of topics to discuss how to interpret
prediction events to make intelligent decisions [2]. In search of optimal achievement of the
industries’ goals, prescriptive analytics support their processes intelligently using inference
and predictions to avoid future faults [3]. Through a timely prediction of out-of-range
values, the authors in Reference [3] take precautions representing savings in operational
costs. However, today “the deep relation between predictive and prescriptive analytics still
is neither well understood nor fully exploited” [4]. Exploiting the research results in the
area, the enterprises could analyze their processes through the continually growing data
and the prescriptive analysis method, leading to controlling their activities efficiently [5].
In terms of competition, the industries empowered by prescriptive analysis techniques will
lead to the evolution of the next industrial level with the ability to decide in real-time. This
paper proposes research on the prescriptive analysis, showing the impact and potential in
the industry. Specifically, this paper focuses on a case study for an industrial wastewater
treatment plant (WWTP), a facility accustoming a mix of several processes (e.g., physical,
chemical, and biological) to treat industrial wastewater and take away pollutants [6]. The
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treated water in these plants can be classified according to its source. For instance, domestic
wastewaters are liquids from residences, commercial, and institutional buildings. This
municipal wastewater is the liquid waste transported by the sewer of a city or town and
treated in a municipal treatment plant. On the other hand, industrial wastewater is the
water from the discharges of manufacturing industries [7]. In WWTP, a biological treatment
process known as activated sludge reduces the organic load in these waters thanks to the
aerobic microorganisms’ action. Figure 1 shows a general structure of biological treatment.
The variety of microorganisms in this treatment makes the process highly nonlinear, which
is a real process to investigate. However, not everything is lost yet since computational
algorithms have high accuracy to cope with complex systems. For instance, artificial
neural networks (ANNSs) are part of a set of computational algorithms known for their
ability to accurately approximate many processes’ general behaviour, whether complex or
straightforward. This technology is inspired by biological neural networks wherein input
signals are processed by neurons that answer with an output signal [8]. For some years
now, it has used neural networks in regression or classification problems. References [9,10]
developed examples of regression problems using ANN technology. In classification,
computer vision found an essential resource in ANNSs to identify objects, animals, and
people in images and videos. Some examples in classification can be seen in the latest
works [11,12]. It is worth noting that there will be a type and a more suitable network
architecture for each application type. Among the most popular networks are convolutional
networks, recurrent networks, and multilayer perceptron networks.
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Figure 1. Biological treatment in the industrial wastewater treatment plant (WWTP) case study.

For processes where variables can be monitored and essential in their efficiency, the
artificial neural networks used for regression applications could be quite helpful. One of the
many benefits is the opportunity to predict the behaviour of a process [13]. Still, it would
be much more advantageous if, beyond predictive analysis, a process applies prescriptive
analysis techniques. Prescriptive analytics is about making intelligent decisions that favour
the analyzing process based on the conclusions provided by predictive analytics. In other
words, it optimizes the process [14]. Section 2 will detail works that take advantage of
these techniques. One technique for prescriptive analysis purposes to highlight is genetic
algorithms in evolutionary computation. The process of natural biological selection inspires
this computational model, which, over time, finds the fittest species. This algorithm leads
to find the best possible solution for a complex optimization problem with the conviction
of not falling into local lows in the optimization zone [15]. Therefore, it is one of the most
used algorithms in complex problems.
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As mentioned above, the industrial WWTP process’s biological treatment in this work
is highly nonlinear. Consequently, the purpose of this work is to answer the question:
can an intelligent computational model make a prescriptive decision based on available
predictive data in an industrial WWTP?

2. Related Works

Currently, several works about descriptive and predictive analytics can be found in
the literature. However, prescriptive analytics works are a bit behind in terms of research
published. Recent interest in this topic has increased [16]. Reference [17] presents a sys-
tematic literature review on prescriptive analytics. According to this review, related works’
prescriptive methods are classified into Probabilistic Models, Machine Learning/Data Min-
ing, Mathematical Programming, Evolutionary Computation, Simulation, and Logic-based
Models. The authors in Reference [17] make this classification based on the prescriptive
techniques used in all the works found in their literature review. Then, it will discuss the
intelligent systems approaches developed by the works. Figure 2 represents a review of
the methods used. According to this, Table 1 presents the number of published articles in
each category.

Prescriptive Analytics
Probabilistic Models

Logic-based Models Machine Learning/Data Mining

Simulation

Mathematical Programming

Evolutionary Computation

Figure 2. Prescriptive analytics literature review.

Table 1. Published articles according to a prescriptive analysis techniques classification in Refer-
ence [17].

Category Number of Published Articles !
Probabilistic Models 2
Machine Learning/Data Mining 7
Mathematical Programming 23
Evolutionary Computation 3
Simulation 7
Logic-based Models 16

1 Publications until 2020.

Below are the most relevant works. In Reference [18], prescriptive analytics help
classify information into secure and insecure for avoiding security vulnerability in the
Hadoop framework. Then the system decides the preferred location for writing the data.
The authors implemented an unsupervised machine learning algorithm for clustering.
In Reference [19], the authors developed two prescriptive methods based on Nadaraya-
Watson and nearest-neighbours learning to prescribe an optimal decision applied to a small
newsvendor problem. A case study in Reference [20] is tackled using the ANN model
and a genetic algorithm to optimize product quality in complex industrial processes. The
primary aim was to find the behaviour of the alloying elements in steel with the desired
performance. Reference [21] presents a prescriptive system for determining hotel room
prices to be published in price brochures. The work solved the trade-off between profit-
maximizing and an easy-to-read price brochure. A human resource planning model in
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Reference [22] is developed to make hiring decisions and maximize profit at firms that sell
contract-based consulting projects.

In the lodging industry, prescriptive analytics let authors in Reference [23] plan well
lodging capacity before the FIFA (French: Fédération Internationale de Football Associ-
ation) World Cup. They tested alternative scenarios of 32 qualifying teams considering
critical foreign spectator attendance factors and comparing it with the FIFA seat alloca-
tion mechanism.

Regarding health management for the electric power grid, IBM Research in Refer-
ence [24] developed a system to test asset health, suggesting an optimal maintenance
strategy considering budgetary constraints for the electric power grid in an enterprise.
The results improved the prioritization process based on both the risk and the impact
of each budget allocation. In the simulation field, a project in Reference [25] named Pre-
dictive Analytics for Server Incident Reduction (PASIR) simulates the operation of some
servers in real-time to classify them into problematic and non-problematic classes. For
those problematic ones, the system recommends modernization actions analyzing the
behaviour of the server. The research [26] conceives a new framework comprising random
forest, Bayesian belief networks, and ARIMA (AutoRegressive Integrated Moving Average)
models to overcome some difficulties, such as identifying key performance indicators
(KPIs) and incorporating the KPIs’ temporal effects into predictive analytics. Authors in
Reference [27] combined both product portfolio configuration and prescriptive methods to
satisfy volatile market demands and accomplish company objectives. This way, companies’
product management is closer to making the right decision and catching more customers.

About logic-based models, EventAction is the first interface to give recommendations
about temporal event sequences. Reference [28] shows event action in the context of student
advising. The interface recommends temporal event sequences that might help students to
accomplish their academic goals.

Finally, a recent case that uses the advantages of prescriptive analytics is the work
carried out by the authors in the water treatment topic presented in Reference [3]. However,
in the area, a lack of research related to prescriptive analytics is notorious, just like in
other fields. In Reference [3], an intelligent decision-making system reduces the membrane
fouling incidence. A self-organizing deep belief network compounds the first stage of
the system. The second stage shows the strength of a multi-warning method based on
independent component analysis and principal component analysis. Finally, authors in the
third stage develop a multi-category diagnosis method on a kernel function.

In general, the researchers are just beginning to be interested in prescriptive analytics
techniques in areas like information security, business, industry, health management, com-
puting, and education, according to the works found mainly from 2017 to 2020. However,
in the WWTP field, only one work with a system using computational techniques appears
under the searching conditions mentioned before. As a novelty, the proposed work in our
paper uses long short-term memory (LSTM) neural networks with genetic algorithms (GA)
for prediction and optimization in the WWTP field, in which, as can be seen before, it has
not found a publication using these techniques together.

3. Materials and Methods

Wastewater treatment processes usually monitor a set of variables to provide informa-
tion on how the process is developing, such as chemical oxygen demand (COD), which
gives information about efficiency. This set of variables detailed later classify whether
the action of some other variable indirectly controls the variable or whether it can be
manipulated directly with a controller based on the type of control used over each one [29].
Thus, changing the course of the efficiency of a process can be possible by manipulating
the correct variables optimally.

A biological wastewater treatment process can be manipulated to affect its efficiency
positively. Therefore, the proposed approach starts by characterizing the variables that
lead to the improvement of this efficiency. In this sense, one important aspect is that the
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objective will always be to optimize the process, so prescribing setpoints corresponding
to each manipulated variable and including a set of components in the prescription’s
implementation system is necessary. A conceptual approach to develop a prescription
system is shown in Figure 3 [20]. The proposed components of this system are:

(1) Prediction models;

(2) Desirability functions;
(3) Compound desirability;
(4) Optimization algorithm.

Predictive model
- Desirability Composite Optimization
Predictive model Function Desirability Algorithm

Desirability
Function

Vi, V2,.,VK)

Desirability
Function

N,KeN

Figure 3. The conceptual approach for developing a prescription system.

Below, this paper states the justification for the use of these components. The first
reason lies in taking advantage of the conclusions generated by N predictive models to
analyze how the characterized variables will impact the future of the process. According to
the literature review, these models are usually advanced computing techniques because of
their accuracy [30]. As shown in the Related Works section, some advanced computing
techniques are ANNSs, Bayesian belief networks, ARIMA models, and self-organizing deep
belief networks.

As mentioned before, the main objective is to modify variables intelligently in search
of optimal improvement. Therefore, it is necessary to use optimization algorithms that find
the best setpoint within an appropriate margin determined by experts in the process. It is
appropriate to limit this margin to use functions that transform each variable’s range into a
convenient range. For this reason, desirability functions are essential. Using a compound
desirability function is vital to condense the desirability functions when more than one
variable is part of the system. Finally, the experts’ recommendations and the biological
process variables in the wastewater treatment plant lead to contextualizing the conceptual
approach in Figure 3.

COD is one of the most critical variables in the process of a biological treatment [31]
because of the information COD provides, leading to making important decisions. The
objective of biological wastewater treatment is to remove the pollutant load in water [32].
In the bioreactor at this stage, a set of microorganisms of different natures break down a
percentage of the water’s organic matter. For studying the COD dynamics in the process, a
dataset is received from a WWTP from Nantong, China, with a daily data frequency for
877 samples. In this dataset, it registered 22 variables from 1 December 2017 to 16 July 2020.
Figure 4 describes the COD dynamics.
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Figure 4. Chemical oxygen demand (COD) behaviour in the equalizer tank.

Within the dataset, the main variables of the process are:

Flow;

COD of influent water;

Suspended solids on influent water (SS);

Mixed Liquor suspended solids (MLSS);

Mixed Liquor volatile suspended solids (MLVSS);
Nitrogen (N);

pH;

Dissolved oxygen (DO);

Food /Microorganism (F/M).

Below, it details the stages related to the biological treatment in which the variables
can affect once or more:
Equalizer (EQ);
Bioreactor (BIO);
Bioreactor Pit N (BT_N);
Bioreactor Pit C (BT_C);
Clarifier (Clari);
Oxidation Tank (OxT);
Discharge Pit (D).
The variables that can be directly manipulated based on experts” knowledge are pH,
flow, and DO. These variables affect some other variables, such as MLVSS and COD. For
example, the MLVSS could increase or decrease depending on the amount of DO. Thus,
both have a directly proportional link. MLVSS is a variable that gives information about
microorganism growth [33]. Depending on the microorganism growth, the efficiency of
COD reduction will improve or worsen. Expressly, microorganisms break down COD.
Hence, constant microorganism growth leads to a constant COD reduction theoretically. In
general, the biological process’s objective is to reduce the COD at the end of the discharge
as much as possible. Thus, to reach the main objective, the optimization algorithms must
determine the combination of setpoints for the manipulated variables (pH, flow, and DO).
The final proposed system considers an MLVSS predictive model and two COD
predictive models in different stages each. The first stage is the equalizer at the beginning
of the biological process and the second one is in the pit at the end of discharge. Figure 5
shows the final system.
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Figure 5. The proposed approach for the prescriptive system of the industrial WWTP case study.

However, this paper’s approach focuses on the predictive model of COD in the
equalizer, the optimization algorithm, and one variable to prescribe. The first stage of the
system starts by using the COD model’s predictions in the equalizer. This prediction model
uses LSTM-ANN (Long Short-Term Memory Artificial Neural Network) developed with
the methodology in Reference [30] to forecast the mean of the variable COD tomorrow.
This neural network has 18 variables inputs to its model: MVLSS, SS, nitrogen, DO, F/M,
and COD. The six variables are received as input more than once, as shown in Table 2,
despite the repetitions that account for different stages of the process on different days.

Table 2. Inputs to the predictive model based on the long short-term memory (LSTM) artificial
neural network.

N° Variable Delay in Days (t)
1 BT_C_MLVSS 2
2 D_SS 2
3 EQ_N 2
4 Clari_DO 2
5 F/M 2
6 EQ_COD 2
7 BT_C_MLVSS 1
8 D_SS 1
9 EQ_N 1
10 Clari_DO 1
11 F/M 1
12 EQ_COD 1
13 BT_C_MLVSS 0
14 D_SS 0
15 EQ_N 0
16 Clari_DO 0
17 F/M 0
18 EQ_COD 0

The LSTM-ANN architecture consists of one input layer of 18 neurons, two hidden
layers with two neurons and 16 neurons, respectively, and one output layer of a neuron.
A grid search that analyzes the neurons’ distribution adjusts the number of neurons in
the hidden layers for obtaining the network’s best performance. The network’s training
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time does not exceed 1.5 min using hardware with the servers’ characteristics provided by
Google Colab. Due to the network structure, there are 1401 parameters trained with 80% of
the previously mentioned dataset of 877 samples.

The correlation of each variable with the entire set of variables is analyzed to adapt the
predictive model and build an intelligent system to optimize the process at each biological
treatment stage. This is in contrast of which variables coincided with the variables, as rec-
ommended by the experts. In the correlation matrix presented in Figure 6, the relationship
with each variable is detailed. Mainly, the objective is to analyze the variables inputs to the
LSTM strongly correlated with the variables to manipulate. Results lead us to conclude
that none of the inputs could be modified directly with a controller in this prediction model
because the focus is on looking for variables that could be manipulated before the equalizer
stage or in the equalizer itself. As a workaround, an indirect relationship could be found
between the nitrogen variable in the equalizer (EQ_N) and the pH that could be modified
in the oxidation tank, which is before the equalization stage. This variable is labelled as
OxT_pH_PM and gives information about the water’s pH in the oxidation tank. Figure 6
points this correlation with the white star. When choosing this variable, it is necessary to
study which other variables are affected by the pH change since the pH prescription will
change all the variables strongly correlated. Results show no variables have a considerable
correlation other than nitrogen. Besides, the pH variable’s operating margins in the pro-
cess are studied to narrow down the search for the optimization algorithm and find the
optimal setpoint. Figure 7 shows the probability density function (PDS) of the pH where
the operating margin is between 3.0 and 5.0. Hence, it is the range taken as a study.

1.0
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Flow_efl
BT_C_MLSS 0.8
BT_C_MVLSS
BT_N_MLSS
BT_N_MVLSS
D_SS

EQ_N
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Figure 6. Pearson correlation matrix of variables at the biological treatment process.

A machine learning algorithm is implemented to estimate how the change in the
pH variable affected the equalizer’s nitrogen variable. Depending on the pH variable’s
behaviour and the nitrogen variable itself on days past, it could estimate the new EQ_N
measurement. A decision tree is the chosen algorithm. This estimation algorithm has, in
total, five inputs, which are: EQ_N (t-2), OxT_PH_PM (t-2), EQ_N (t-1), OxT_PH_PM (t-1),
and OXT_PH_PM (t). Figure 8 shows the result of this estimation, comparing it with the
actual variable. The estimation has a slight shift because, in some days, the algorithm
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estimates the nitrogen remains equal to the day before. In this regard, using the Mean
Absolute Percentage Error (MAPE) as a comparison metric between the actual and the
estimated variables. A performance of the model equal to 7.09% is obtained. Because this
model obtains a performance of less than 10% of MAPE, the prescriptive system uses it to
estimate the EQ_N.
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1.25
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ensi

2 1.00¢
0.75
0.50¢

0.25}

0.00 3.0 35 4.0 4.5 5.0
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Figure 7. pH probability density function (PDS) of the oxidation tank before the biological treatment.
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Figure 8. EQ_N estimation using a decision tree algorithm.

Consequently, the LSTM prediction model receives the estimate of the nitrogen by
modifying the pH variable. Therefore, it is possible to analyze how pH changes directly
influence the nitrogen EQ_N and study how the COD variable changes. The focus is on
minimizing or stabilizing the COD variable over time. To pursue this, the optimization
algorithm based on genetic algorithms is designed.

The design starts by generating an initial population from a uniform distribution. The
initial population has a size of N = 20. The genes are various pH setpoints represented
in binary in the range mentioned before (from 3.0 to 5.0). For creating new generations
and making the crossover, the system selects 20% of the best chromosomes. In the case
of mutations, the population generated as offspring has its genes randomly modified,
conditioned by the effect of tossing a coin. If it is head (x < 0.5), the mutation will not be
applied. Otherwise (x > 0.5), the genes are altered with a random value such as zero of
either one. Finally, the number of generations will depend on three criteria:
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(1) Maximum number of generations;

(2) Convergence;
(3) Ideal COD outcome.

The first criterion sets a maximum of 100 generations to save computing resources.
Using the second criterion, the system states that if there is no improvement after a specific
number of generations (10% of the maximum number of generations), the algorithm would
stop and report the best value found. The last criterion states the algorithm would stop
if it finds a COD less than or equal to 250 mg/L (value recommended by the experts). In
addition, according to the experts” suggestions, small pH values are favoured. Figure 9
shows a general scheme about how the genetic optimization algorithm works.

A Create initial

( START ) population

RS

Set random
mutations to
population

t

Create a

¢Max
Generation?
or ) Prescribe i
¢Convergence? Yes—>| best-found —>( END )
or
H value ==
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|

Select

new
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best
parents

Figure 9. Genetic algorithm scheme for the chemical oxygen demand (COD) value optimization.

4. Results

A forecast is made with the LSTM predictive model day by day, taking 877 actual
samples from the process to analyze the best pH setpoint that significantly decreased the
COD variable. Figure 10 shows the pH points that are selected day by day based on the
genetic algorithms (GA) optimization process. Using these setpoints, the predictive model
forecasted how the course of the COD variable would change. Figure 11 compares the
forecast with the actual values and the changes with the prescribed values for pH.

4.0

3.8

prescribed pH

OXT_PH_PM(t)

3.0 00 ® (0% 32 20,0.1°%80°

pO° o° o
samples

Figure 10. Prescribed pH day by day based on the optimization algorithm.
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Figure 11. Comparison among original data vs. prescribed data for the COD variable.

For making the comparison of the two signals, it follows the procedures below:

(1) Calculation of mean and standard deviation;
(2) T-student test;

(3) F-Fisher test;

(4) Box-and-whisker plots comparison.

Table 3 shows the mean and standard deviation of each variable. As can be seen, the
mean of the prescribed COD is lower than the original one even though the prescription
increases measurements’ variability. With this, the algorithm is optimizing the equalizer
performance by decreasing overall COD values.

Table 3. Mean and standard deviation of the original and optimized time series through prescription.

Statistic Original Time Series Optimized Time Series
Mean (mg/L) 358.29 355.21
Standard deviation (mg/L) 38.04 39.87

In addition, to determine if the two-time series are statistically equal, a set of tests is
performed to solve two null hypotheses. The first is that the two-time series have the same
mean, and the second is if they have the same standard deviation. However, the p-value of
each test (T-student test and F-fisher) reject the null hypothesis, so it leads us to conclude
that the two-time series are statistically equal. The reason is that the two p-values are 0.108
and 0.811, respectively. Taking an alpha equal to 0.05, p-values that are more significant
than alpha lead to rejecting the null hypothesis. Therefore, although the mean and standard
deviation are close, it can be stated that, statistically, the two-time series are different.

For quantifying and evaluating the difference between the two signals, the analysis
uses the metric in Equation (1). In this equation, x,, are the original signal’s points and x,,
are the prescribed signal’s points. The equation result would be a day-to-day comparison
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normalized by summing the original signal points to measure how much larger the original
signal is than the prescribed signal.

N
1 Xor: — X,
W « 100%, 1)
Zizl Xor;

An important observation to highlight is that the original signal corresponding to
COD is 0.86% higher than the optimized one. This result meets the objectives considering
that the COD predictive model depends on 18 variables, and the prescriptive system only
selects the EQ_N for the respective optimization by modifying pH. As mentioned before,
Table 2 shows these 18 variables. From these variables, EQ_N is the variable controlled
by OxT_pH_PM to optimize COD for the reasons stated before in the correlation analysis.
Besides, box-and-whisker plots analysis supports the claim found using Equation (1).
For further explanation, Figure 12 shows two boxes that account for each time series
measurements’ distribution.

Original COD[ ¢+ "o e ‘e N

Optimized COD | LX) |

250 300 350 400 450 500
COD (mg/L)

Figure 12. Box-and-whisker plots of the original and optimized time series through prescription.

A comparison between both boxes shows that the optimized COD box is more to the
left than the original one, which means the optimized COD distribution is lower than the
original COD. However, the interquartile range is more extensive for the red one, but it
just reaffirms the increased variability in it, as shown in Table 3 in a standard deviation.
Physically, this denotes less organic load in the equalizer tank when the process uses the
prescription dictated by the optimizer. Giving solidity to the idea presented by the study of
the mean and the metric in Equation (1) supports that the intelligent system can optimize
the COD behaviour using the prescriptive strategies.

5. Discussion

This paper carries out the prediction model characterization and adaptation for the
decision-making scheme successfully using an LSTM-ANN. Thus, a prescriptive intelligent
system is developed based on rules made by expert knowledge, the outcomes provided
by the selected prediction model, and a decision tree algorithm to estimate changes of the
EQ_N based on the measurement of the OxT_pH_PM to optimize COD in the equalizer
tank. Finally, the variables’ mean, the calculus made with Equation (1), and the box-and-
whisker plots comparison support the prescriptive system evaluation proving a decreased
COD value. The optimization is notorious in analyzing the results in Table 3 and Figure 12,
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which denotes that the equalizer’s COD decreased. Comparing the means in Table 3,
the mean for optimized COD is smaller than in the original performance, averaging
the 877 samples for each variable. Figure 12 shows how the sample distribution in the
optimized variable is further to the left than the original COD, which means the sample
distribution in the optimized COD is decreased, according to the diagram analysis.

On the other hand, samples in Figure 11 for the optimized COD are worse than the
original one, which are mostly the last samples. This phenomenon is the algorithm’s
performance in Figure 8 for the last samples that are not that close to the actual expected
results. The prescription system will progress by improving the algorithm performance.

Consequently, this paper answers the question stated at the end of the introduction
positively. An intelligent computational model can make a prescriptive decision based on
available predictive data in an industrial WWTP. Future work will include more variables in
the intelligent system that help improve the optimization outcomes. Therefore, the authors
will complete the final proposal summarized in Figure 5. Finally, the work developed so far
has a high probability of being scaled to other fields. These fields include the optimization
in any manufacturing processes, whether of goods or services, electric power generation,
or others. In general, these prescription techniques favour any process that can monitor,
control, and store the information of the variables that define it. Other researchers can use
the same methodology designed in this study.
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