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Abstract: Chlorophyll-a (Chl-a) concentration is a measure of phytoplankton biomass, and has
been used to identify ‘red tide’ events. However, nearshore waters are optically complex, mak-
ing the accurate determination of the chlorophyll-a concentration challenging. Therefore, in this
study, a typical area affected by the Phaeocystis ‘red tide’ bloom, Qinzhou Bay, was selected as the
study area. Based on the Gaofen-1 remote sensing satellite image and water quality monitoring
data, the sensitive bands and band combinations of the nearshore Chl-a concentration of Qinzhou
Bay were screened, and a Qinzhou Bay Chl-a retrieval model was constructed through stepwise
regression analysis. The main conclusions of this work are as follows: (1) The Chl-a concentra-
tion retrieval regression model based on 1/B4 (near-infrared band (NIR)) has the best accuracy
(R2 = 0.67, root-mean-square-error = 0.70 µg/L, and mean absolute percentage error = 0.23) for the
remote sensing of Chl-a concentration in Qinzhou Bay. (2) The spatiotemporal distribution of Chl-a
in Qinzhou Bay is varied, with lower concentrations (0.50 µg/L) observed near the shore and higher
concentrations (6.70 µg/L) observed offshore, with a gradual decreasing trend over time (−0.8).

Keywords: remote sensing monitoring; leave-one-out cross-validation; stepwise regression

1. Introduction

Coastal waters are an important ecosystem that humans depend on. They play an
important role in fisheries, industry, and tourism [1,2]. With the rapid development of
coastal economies, the pressures on the natural environment along the coast from urban
expansion, population growth, and industrialization are increasing. Many environmental
problems caused by unreasonable planning, unscientific management, and uncoordinated
production have also emerged [3].

The explosive growth of marine algae (i.e., phytoplankton blooms) can cause the sea
color to change to red or brown, depending on the blooming species and concentration [4–6].
This phenomenon primarily occurs in nearshore environments, including upwelling shad-
ows [7,8]. Phytoplankton blooms that have a toxic or harmful effect on marine life are
called harmful algal blooms (HABs) [9,10]. Although some ‘red tides’ are harmless, these
events can, for example, block the exchange of oxygen and cause aquatic organisms to die
from oxygen deficiency [11,12].

Previous studies have reported that the coastal waters of China have been polluted by
‘red tides’ to varying degrees [13]. This is mainly reflected in the increasing frequency of
‘red tides’, types of algae observed, and areas affected by ‘red tides’ [14,15]. In the 1970s,
only nine ‘red tide’ events were recorded in China. This number increased to 75 in the
1980s, and then to 262 in the 1990s [16]. The cumulative area of ‘red tide’ bloom from
2000 to 2019 reached 210,000 km2 (http://www.mnr.gov.cn. accessed on 10 March 2021).
These ‘red tide’ events have become an increasingly serious environmental problem in
China [13,17,18].
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The concentration of chlorophyll-a (Chl-a) is directly related to phytoplankton biomass
and can be used as an indicator of the presence of ‘red tides’ [19,20]. Therefore, monitoring
accurate Chl-a concentrations is critical for studying ‘red tide’ dynamics [21]. Traditional
monitoring is time-consuming and laborious, and some areas are difficult to reach; there-
fore, the needs of real-time monitoring and large-scale macro monitoring are difficult to
meet. Remote-sensing monitoring can overcome these shortcomings due to its real-time,
continuous, large-scale data collection, and has gradually become an important marine
monitoring approach [22–25].

The optical properties of water in the ocean far away from the shore are stable and
mainly affected by phytoplankton. Oceanic Chl-a concentration can be accurately obtained
from the ratio of blue to green bands [26]. However, the optical characteristics of water
near the shore are affected by phytoplankton, total suspended matter (TSM), and colored
dissolved organic matter (CDOM). Owing to these factors, the retrieval of Chl-a concen-
tration is still a challenge [25,27]. It is especially serious for coastal waters of lower Chl-a
concentration, where the signal-to-noise ratio of Chl-a is very low. Existing empirical [28],
semi-analytical [29], analytical [30], and machine learning [31,32] retrieval methods have
been demonstrated to have great potential in retrieving the concentration of nearshore
Chl-a. Owing to the different geographical environment [33], riverine sources, and phy-
toplankton in this region, the applicability of the models aforementioned were extremely
limited. Therefore, it is necessary to build a retrieval model for Chl-a concentration in
specific regions according to the actual situation.

The concentration of Chl-a in the coastal waters of Qinzhou Bay in Guangxi is at a
relatively low level. Due to rapid economic development, the discharge of land-based
pollutants has increased. In 2014, the Phaeocystis bloom blocked the cold source water
intake system of a nuclear power plant [34]. This was the first incident in China that
threatened the safety of nuclear power due to a bloom of algae. Based on this, this study
screened out the significant variables that affect the concentration of Chl-a in Qinzhou Bay
based on the Gaofen-1 (GF-1) image, and established a retrieval model for the concentration
of Chl-a in Qinzhou Bay. The spatiotemporal distribution of Chl-a in Qinzhou Bay was
discussed and its trend was determined, providing a reference method for the prevention
and management of ‘red tides’ in the coastal waters of Qinzhou Bay.

2. Materials and Methods
2.1. Study Area

Qinzhou Bay is located in southern Guangxi, China, and is part of Beibu Bay, covering
an area of 908.37 km2 between latitudes and longitudes of 21◦33′20′′–21◦54′30′′ N and
108◦28′20′′–108◦45′30′′ E, respectively. The bay consists of inner (Maowei Sea) and outer
(Qinzhou Bay) bays, and is generally ‘gourd-shaped’ [35]. Qinzhou Bay has a good ecolog-
ical environment and rich solar radiation energy. The total radiation is 104–129 cal/cm3,
the annual average temperature is about 21–23 ◦C, the annual average sunshine is 1801 h,
and the annual average rainfall is 1500–1800 mm [36].

2.2. In Situ Data

Water quality monitoring data were obtained from the Guangxi Academy of Sciences.
The sampling period extended from October 2017 to February 2018. Together with the
Guangxi Academy of Sciences, the Institute of Oceanology, Chinese Academy of Sciences
monitors algal blooms in Qinzhou Bay. The layout of the monitoring points is shown in
Figure 1. The specific longitudes and latitudes of the sampling points are listed in Table 1.
The concentrations of measured Chl-a are shown in Table 2.
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Figure 1. Distribution map of in-situ monitoring points.

Table 1. Water quality monitoring sampling point coordinates.

Point Number Longitude Latitude

P1 108.586788 21.709953
P2 108.584854 21.667281
P3 108.586224 21.621741
P4 108.586643 21.570105
P5 108.560702 21.60908
P6 108.618361 21.634292
P7 108.636792 21.64218
P8 108.608956 21.676246

Table 2. Measured statistics of chlorophyll-a (Chl-a) concentration.

Date Minimum Maximum Mean Standard Deviation

20 October 2017 4.45 2.56 3.59 0.68
1 November 2017 2.62 1.16 3.59 0.42
19 December 2017 1.74 0.89 1.36 0.26
1 February 2018 1.38 0.74 1.19 0.20

All 0.74 4.45 1.95 1.06

2.3. Satellite Data

In this study, the remote sensing data used are the multispectral remote sensing image
of China’s GF-1 satellite. The GF-1 satellite was launched on 26 April 2013. It has four
wide-angle field-of-view (WFV, 16 m spatial resolution) cameras and one panchromatic
and multispectral (PMS) sensor [37]. The revisit cycle of GF-1 data is four days, which is
better than Landsat data (16-day repeat cycle). Obtaining cloud-free remote sensing data
matching the field monitoring time is thus more likely [38,39]. Based on the water quality
sampling monitoring times, four GF-1 WFV images covering the whole study area with
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cloud cover of less than 20% were selected. The payload parameters of the GF-1 satellite
are listed in Table 3. Information on the selected GF-1 images and field monitoring time is
shown in Table 4.

Table 3. GF-1 satellite payload parameters.

Sensor Band NO. Spectral Range
(µm)

Spatial Resolution
(m)

Repeat Cycle
(day)

Panchromatic
Multispectral (PMS)

1 0.45~0.90 (Pan) 2

4
2 0.45~0.52 (Blue)

8
3 0.52~0.59 (Green)
4 0.63~0.69 (Red)
5 0.77~0.89 (NIR)

Wide-angle
Field-of-view (WFV)

6 0.45~0.52 (Blue)

16 2
7 0.52~0.59 (Green)
8 0.63~0.69 (Red)
9 0.77~0.89 (NIR)

Table 4. Data source information on remote sensing images.

Satellite Sensor Image Date Monitoring Date Quality

GF-1 Wide-angle
Field-of-view (WFV) 19 October 2017 20 October 2017 No cloud

GF-1 Wide-angle
Field-of-view (WFV) 1 November 2017 1 November 2017 No cloud

GF-1 Wide-angle
Field-of-view (WFV) 19 December 2017 19 December 2017 No cloud

GF-1 Wide-angle
Field-of-view (WFV) 3 February 2018 1 February 2018 Less than 20% cloud

Source: http://36.112.130.153:7777/DSSPlatform/. accessed on 1 January 2021.

The water quality monitoring was conducted two days before and after the GF-1
satellite imaging. The weather conditions were good, with a breeze and no precipitation.

2.4. Data Processing
2.4.1. Radiometric Calibration

Radiometric calibration: By using Equation (1), the GF-1 multispectral image digital
numbers were converted to the radiance, and the error of the sensor itself is eliminated,
which can be realized by the radiation calibration tool in the ENVI 5.3 image process-
ing software.

Le = Gain ×DN + Bias, (1)

where Le is the radiance, DN is the digital numbers value observed by the sensor, and gain
and bias are coefficients [40].

2.4.2. Atmospheric Correction

Most of the radiation received by satellite sensors originates from the atmosphere [41].
Therefore, atmospheric correction of remote sensing images is vital for water quality
retrieval. The FLAASH module in ENVI 5.3, which is based on the MODTRAN 5 radiation
transfer model, and includes all MODTRAN atmospheric and aerosol styles, can effectively
remove the water vapor/aerosol scattering effect and ‘proximity effect’ between pixels in
different images [42]. The study area is at a low latitude. The atmospheric model is set to
tropical, and the aerosol type is maritime.

http://36.112.130.153:7777/DSSPlatform/
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2.4.3. Orthorectification

The orthorectification of a remote-sensing image is conducted in order to correct
the distortion that occurs in the process of imaging. It helps eliminate errors caused by
terrain, camera geometry, and sensors, allowing us to obtain a consistent image [43]. The
downloaded L1-level GF-1 imaging product has not been geometrically corrected, and
the position is offset, but it carries a rational polynomial coefficient (RPC) file to obtain an
accurate geographic location. Therefore, for GF-1 image data, orthorectification based on
RPC file and RPC model is used to realize geometric correction [44]. This process can be
implemented in the orthocorrection tool of ENVI 5.3. The digital elevation model (DEM)
used is the global terrain elevation data that comes with ENVI5.3, with a resolution of
900 m.

2.5. Correlation Analysis and Regression Models

Previous studies have shown that the blue-green ratio can accurately estimate the
concentration of chlorophyll-a in clear waters [26]. There is a fluorescence peak in the red
to near-red band [45]. However, due to the complex composition of nearshore water, the
concentration of Chl-a presents different spectral curves. Based on this, we tried to combine
the blue, green, red, and near-red bands, and used the Pearson correlation coefficient to
find the sensitive band and band combination of Chl-a concentration in Qinzhou Bay.

Based on the results of the correlation analysis, the regression relationship between the
point value of remote sensing reflectance and measured data were established following a
stepwise regression analysis method. Variables were introduced to the model individually,
and the F-test was conducted each time to remove insignificant variables and those causing
multicollinearity. This is an iterative process that ends when no significant variables enter
the model, and the resulting variable set is guaranteed to be optimal.

2.6. Model Calibration and Validation

To minimize the effects of modeling a random factor, we used the leave-one-out
cross-validation (LOOCV) [46,47] method to achieve model calibration and validation.
The subset (31 data samples) was randomly selected from a total of 32 data samples for
modeling, while the remaining sample was used for model validation. This process was
repeated 32 times to ensure that each sample was used for calibration and validation to
avoid the over-fitting and under-fitting of the model.

To evaluate the performance of our retrieval model, the fitting coefficient (R2), root
mean square error (RMSE), and mean absolute percentage error (MAPE) were used. The R2
value reflects the fitting between the retrieval value and measured value, and is a statistical
index used to evaluate the reliability of a regression model. RMSE is the square root of
the square and total number ratios of the deviation between the retrieval and measured
values, and is used to measure the deviation between the retrieval and measured values.
The MAPE can accurately reflect the error between the retrieval and measured values, and
the calculation formulas of each evaluation index are as follows:

R2 =
∑n

i=1(yin−situ − yretrieval)

∑n
i=1(yin−situ − ymean)

, (2)

RMSE =

√
∑n

i=1(yin−situ − yretrieval)
2

n
, (3)

MAPE =
100%

n

n

∑
i=1

∣∣∣∣yin−situ − yretrieval
yin−situ

∣∣∣∣, (4)

where yin−situ is the measured Chl-a concentration, and yretrieval is the value calculated by
the retrieval model.
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3. Results and Discussion
3.1. Results of Correlation Analysis

SPSS was used to conduct a Pearson correlation analysis of the reflectance of each
band and the measured Chl-a concentration data to determine the significant variables of
the retrieval model, and the correlation variables were as follows:

Table 5 results show that 1/B4 had the highest correlation, with correlation coeffi-
cients reaching 0.745 and 0.781, and was significantly correlated with the measured Chl-a
concentration within a 99% confidence interval. Generally, the closer a Pearson correlation
coefficient is to 1, the better the linear fitting degree between the band combinations (model
independent variable) and the Chl-a concentration (model dependent variable). Therefore,
this study attempts to use the band combination with the highest Pearson correlation
coefficient (|r| > 0.7) for modeling analysis.

Table 5. Pearson correlation analysis of highly correlated band combinations.

Bands R-Chla Bands R-Ln(Chla)

B1 −0.375 * B1 −0.401 *
B2 −0.516 ** B2 −0.561 **
B3 −0.603 ** B3 −0.641 **
B4 −0.597 ** B4 −0.674 **

1/B4 0.745 ** 1/B4 0.781 **
B3/B2 + B2/B3 0.710 ** ln(1/B4) 0.752 **

B2 × B2/(B3 × B3) 0.709 ** lnB2/lnB3 0.711 **
lnB2/lnB3 0.703 ** B3/B2 + B2/B3 0.704 **

B2/B3 0.699 ** B2 × B2/(B3 × B3) 0.704 **
ln(1/B4) 0.696 ** B2/B3 0.698 **

(B3 − B2)/(B1 + B4) −0.699 ** lnB4 −0.752 **
lnB3/lnB2 −0.698 ** lnB3 + lnB4 −0.743 **
lnB3 + lnB4 −0.697 ** lnB2 + lnB4 −0.727 **

lnB4 −0.696 ** (B3 − B2)/(B1 + B4) −0.709 **
B3/B2 − B2/B3 −0.692 ** lnB3/lnB2 −0.707 **
ln(B3/(B2 + B3)) −0.691 ** B3 + B4 −0.698 **

** Correlation is significant at the 0.01 level. * Correlation is significant at the 0.05 level.

3.2. Model Validation

The bands and band combinations for which correlation coefficients greater than
7 were set as variables, along with insignificant variables, were removed by stepwise
regression analysis. One to three extremely significant variables were retained, and the
following model was established:

To further determine the optimal retrieval model, unmodeled measured data and
model retrieval values were verified and compared, and the verification-comparison charts
were as follows:

Based on the LOOCV analytic method, the statistical values of the model validation
results are shown in Table 6, and the scatter plots of the retrieval values and measured
values of the six regression models are shown in Figure 2. Among all models, 1/B4 and
Ln(Chl-a) has the best model performance (R2 = 0.67, RMSE = 0.70 µg/L, MAPE = 0.23), and
the samples are concentrated near the 95% prediction interval. The formula is as follows:

Ln(Chl-a) = 487× X− 0.86, X = 1/B4 (5)
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Table 6. Leave-one-out cross-validation (LOOCV) model validation results of Chl-a concentration model performance
corresponding to different band ratios.

Dependent
Variable

Independent
Variable

Intercept 1
(a1)

Intercept 2
(a2)

Intercept 3
(a3) Slope (b)

Fitting
Coefficient

(R2)

Root Mean
Square Error

(RMSE)

Mean
Absolute

Percentage
Error

(MAPE)

Chl-a 1/B4 1033 / / −1.04 0.56 0.71 0.32

Ln(Chl-a) 1/B4 487 / / −0.86 0.67 0.70 0.23

Chl-a 1/B4 and B3/B2 +
B2/B3 770 1.58 / −3.88 0.53 0.74 0.32

Ln(Chl-a) 1/B4 and (B3 −
B2)/(B1 + B4) 863 13.66 / −0.86 0.66 0.71 0.24

Chl-a 1/B4, B3/B2 + B2/B3
and B2/B3 1116 18.39 −11.46 −24.11 0.54 0.73 0.31

Ln(Chl-a)
1/B4, (B3 − B2)/(B1

+ B4) and
ln(B2)/ln(B3)

863 3.66 −0.86 −8.70 0.63 0.70 0.23
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3.3. Spatial Variation

The selected equation (5) retrieval model was used to retrieve the Chl-a concentration
in Qinzhou Bay, and the Chl-a concentration distribution from October 2017 to February
2018 is shown in Figures 3–5:
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According to Figures 3 and 4, the low value of Chl-a concentration dominates most
areas of Qinzhou Bay. Generally, higher concentrations were found offshore, while lower
concentrations were found near the shore, decreasing with time. These findings are
consistent with previous studies [48].

Due to the Venturi effect, the water velocity in the northern coast is faster than in
other areas [49]. Most of the nutrients carried by the surface runoff are entrained to the
far shore, and fully mixed with the seawater, providing a material basis for the growth
and reproduction of phytoplankton [50–52]. In addition, aquaculture is practiced near
the coast [53,54], and the filter-feeding effect of fish, shrimp, shellfish and other animals
has an important control effect on the biomass of phytoplankton [55,56]. This causes the
concentrations to be low near the shore but high offshore.

As the seasons change, the temperature gradually decreases from 27 ◦C in October to
18 ◦C in February. Phytoplankton lack a suitable growth environment and the concentration
of Chl-a decreases as a whole over this period.

3.4. Details of Change in Chla Concentration

Based on Figure 3a, in October 2017, the Chl-a concentration in Qinzhou Bay was
high overall, with the highest concentration reaching 6.70 µg/L. The Chl-a concentrations
increased gradually from north to south, which may be due to the ebb and flow of the
sea [57]. As shown in Table 7, the sea was in ebb at this time and reached its lowest point at
noon. The tide then began to increase gradually. Ebb causes Qinzhou Bay’s phytoplankton
to move out to the sea with water. In addition, due to the impact of severe typhoon Khanun
in October 2017 [58], the water velocity accelerated, and a large number of phytoplankton
moved with the sea from east to west or southwest. Therefore, the concentration of Chl-a is
higher in the southwest.

Table 7. The ebb and flow schedule of the sea [59].

Date Filming Time (Beijing) Flux Time Reflux Time

19 October 2017 11:51:03–11:51:33 12:00
0:24

18:12
6:36

1 November 2017 12:07:29–12:07:59 10:24
22:48

16:36
5:00

19 December 2017 11:38:43–11:39:13 2:24
14:48

8:36
21:00

3 February 2018 11:59:54–12:00:24 2:24
14:48

8:36
21:00

Based on Figure 3b, during November 2017, the highest Chl-a concentration was
3.55 µg/L (no more than 5 µg/L), and the Chl-a distribution in most areas was relatively
constant (approximately 2.2 µg/L). However, the area with higher Chl-a concentration
appeared to be a ‘ring’, as shown in Figure 5, which may be due to the influence of the
hydraulic conditions. October–November is the transitional period between anticyclone
circulation and cyclonic circulation in Qinzhou Bay [60,61], and the wind weakens. Af-
fected by the coastal circulation in the southwest direction, the offshore water flows to
the nearshore and mixes with the runoff input to produce upwelling [62].This triggers the
exchange of nutrients up and down on the seafloor, providing suitable conditions for the
growth and reproduction of phytoplankton and algae.

Based on Figure 3c,d, the concentration of Chl-a in Qinzhou Bay from December 2017
to February of the following year was generally low (1.35 ug/L). In winter, the temperature
in Qinzhou Bay reaches the lowest temperature of 18 ◦C, and the flow of the river into the
sea weakens due to the decrease in rainfall, resulting in a decrease in the input of nitrogen
and phosphorus nutrients from land sources [63]. The lack of suitable temperature and
nutrients potentially limits phytoplankton production.
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The distribution of the Chl-a concentration is affected by various factors, and it is
difficult to analyze the spatiotemporal variation rules by solely relying on a four-month
retrieval image. Seasonal changes, weather changes, hydraulic conditions, and other factors
may cause fluctuations in the Chl-a content.

4. Conclusions

In this study, the 16 m resolution GF-1 remote sensing image was used to construct a
Chl-a concentration model for Qinzhou Bay to explore the spatiotemporal variations in the
Chl-a concentration of Qinzhou Bay, and the following conclusions were drawn:

(1) The regression retrieval model with 1/B4 variable was the best, with fitting coefficient
(R2), root mean square error (RMSE), and mean absolute percentage error (MAPE)
values of 0.67, 0.70 µg/L and 0.23, respectively, which can meet the requirements of
retrieving the Chl-a concentration in Qinzhou Bay via remote sensing.

(2) The concentration of Chl-a in Qinzhou Bay is generally low (1.26–6.70 µg). The
highest concentrations are primarily observed offshore, while lower concentrations
were observed in the nearshore and bay mouth. Overall, Chl-a decreased as the
seasons progressed (at the onset of autumn).
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