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Abstract: Short-term hydrothermal scheduling (STHS) can improve water use efficiency, reduce
carbon emissions, and increase economic benefits by optimizing the commitment and dispatch
of hydro and thermal generating units together. However, limited by the large system scale and
complex hydraulic and electrical constraints, STHS poses great challenges in modeling for operators.
This paper presents an improved proximal bundle method (IPBM) within the framework of La-
grangian relaxation for STHS, which incorporates the expert system (ES) technique into the proximal
bundle method (PBM). In IPBM, initial values of Lagrange multipliers are firstly determined using
the linear combination of optimal solutions in the ES. Then, each time PBM declares a null step in
the iterations, the solution space is inferred from the ES, and an orthogonal design is performed in
the solution space to derive new updates of the Lagrange multipliers. A case study in a large-scale
hydrothermal system in China is implemented to demonstrate the effectiveness of the proposed
method. Results in different cases indicate that IPBM is superior to standard PBM in global search
ability and computational efficiency, providing an alternative for STHS.

Keywords: Lagrangian relaxation; expert system; proximal bundle method; orthogonal design;
hydrothermal scheduling

1. Introduction

According to the International Energy Agency, thermal power and hydropower are
basic sources of electricity production in many countries [1]. Thus, short-term hydrothermal
scheduling (STHS) is necessary in power system operations. The significance of STHS is to
improve water use efficiency, reduce carbon emissions, and increase economic benefits by
optimizing the commitment and generation level of hydro and thermal generating units
together [2]. However, limited by complex hydraulic and electrical constraints, the nature
of STHS is a large-scale nonconvex, nonlinear problem with integer variables, posing great
challenges in modeling for operators [3].

Many approaches have been developed for STHS, such as mixed-integer linear pro-
gramming (MILP) [4], nonlinear programming (NLP) [5], dynamic programming (DP) [6],
and genetic algorithm (GA) [7]. Although these approaches have achieved success in
practice, challenges still exist when dealing with large-scale systems. MILP depends on
linearization strategies to accurately represent the system behavior. For NLP, a convex
approximation is required to improve the global search ability, and global optimum is
not guaranteed. DP suffers from the “curse of dimensionality”. GA falls into premature
convergence easily. For large-scale systems, common approaches are based on decom-
position techniques, such as the Lagrangian relaxation (LR) [8], Benders decomposition
(BD) [9], and aggregation–disaggregation [10]. BD decomposes the primal problem into
a master problem and some subproblems for dimension reduction. However, BD is sen-
sitive to integer variables, of which the computational efficiency becomes very low for
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problems with many integer variables. The aggregation–disaggregation method has been
successfully applied in the optimization of Brazilian hydropower system operations [11],
while a loss of information in the aggregation step may result in undesirable errors in
operations [12]. LR is suitable for large-scale nonconvex problems. In LR, the Lagrangian
dual problem is introduced by relaxing linking constraints through Lagrange multipliers,
which exhibits a decomposable structure [13]. By solving the dual problem, a lower bound
of the primal problem is found, acting as a good starting point for heuristics to obtain
feasible solutions [14].

Within the framework of LR, the key issue is to solve the Lagrangian dual, which is
nonconvex and nonsmooth [15]. The proximal bundle method (PBM) is a classic method
in nonsmooth optimization [16,17]. PBM gathers historical dual values and subgradients
in a “bundle” to construct the cutting-planes model, and yields new iterates by solving
a quadratic program per iteration [15]. To ensure high accuracy, an ascent condition is
checked per iteration to decide whether to take a null step or a serious step. The iteration
of PBM ends after the stopping rule is met. Although PBM is known for its stability and
precision, the bundle size increases with the iteration, leading to a growing computational
burden of solving the quadratic program [18]. Additionally, in the later iterations, a
sufficient ascent in dual value is hard to satisfy. As a result, many null steps are declared,
causing PBM to converge to a local optimum [19]. Some improvements of PBM were
developed. The authors of [20] proposed a splitting bundle approach, which partitions
the bundle into two subsets to capture the convex and concave behavior around the
current point. The authors of [21] introduced the notion of gradient sampling into PBM
to find the search direction, rather than using the subgradient information. The authors
of [22] developed a redistributed PBM, which generates cutting-planes models of a local
convexification of the objective function. However, solving a quadratic program per
iteration is inevitable in these improvements.

The generation scenario of STHS changes slowly in a continuous period (e.g., the water
level of reservoir decreases slowly in the dry season) and presents periodicity (e.g., the
reservoir inflow changes periodically in a year). In this case, some inspiration can be
obtained from historical operational records to guide the solution of a current problem.
Therefore, an improved PBM (IPBM) is proposed in this paper, incorporating the expert sys-
tem (ES) into the PBM. The ES is an important branch of artificial intelligence, which uses
knowledge and reasoning processes to solve complex decision-making problems [23,24].
ES includes two parts: a knowledge base and inference engine [25]. The knowledge base
stores knowledge expressions about the problem domain. To build the knowledge base of
STHS, three steps are taken: (1) represent all historical generation scenarios by eigenvectors;
(2) implement scenario clustering to yield representative scenarios; and (3) extract knowl-
edge expressions from the PBM iterations of representative scenarios and save them in the
database. The inference engine works based on the knowledge base. With the inference
engine, initial values of multipliers are reasoned using the linear combination of optimal
solutions in the knowledge base, which can accelerate the convergence of PBM. Then, when
PBM declares a null step in iterations, the solution space is reasoned from the knowledge
base, and the values of Lagrange multipliers are updated by performing an orthogonal
design (OD) in the solution space [26,27]. The OD can not only avoid solving quadratic
programming, but also behave like a “mutation operator” to increase the likelihood of
reaching global optimum. The proposed IPBM is applied to a large-scale hydrothermal
system in China to make daily generation schedules. Compared with standard PBM in
different scenarios, IPBM can yield better objective function values in less time, verifying
its superiority in global search ability and computational efficiency.

2. Problem Formulation
2.1. Study Area

The studied hydrothermal power system is in Guizhou Province, China, serving
around 34.75 million people in an area of 176,000 km2. Figure 1 illustrates the geographical
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distribution of the system. In the system, generating capacities of hydropower and thermal
power are 9849 MW and 25,950 MW, respectively. The hydropower part includes 45 units
in 13 hydropower plants, and the thermal part consists of 65 units in 22 thermal plants.
The hydropower plants are located in the Wujiang river system, including 4 basins with
53 billion m3 average annual runoff. In the Wujiang river system, the wet season is in the
period of May–October, and the dry season is in November–April. Since Guizhou is rich in
coal resources, all the thermal plants are coal-fired plants. Detailed information about the
system is presented in the appendix, including: (1) basic parameters of thermal units; and
(2) basic characteristics of hydropower plants.
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Although these plants belong to different generation companies, they are operated
by a central dispatching center in a centralized manner. Moreover, according to local
government policy, the operation objective of the hydrothermal system is to minimize coal
consumption to achieve energy-saving and emission reduction. For such a large system,
a small improvement in operations will translate into huge benefits, making STHS an
important problem.

2.2. Optimization Model
2.2.1. Objective Function

The objective function minimizes the coal consumption of the hydrothermal system
over the whole scheduling horizon:

min
pi,j,t ,pk,m,t ,ui,j,t ,uk,m,t

T

∑
t=1

NTP

∑
i=1

Ni
TU

∑
j=1

(
ai,j p2

i,j,t + bi,j pi,j,t + ci,j

)
ui,j,t∆t (1)

where t, i, j, k, and m = indices of time period, thermal plant, thermal unit, hydro plant,
and hydro unit, respectively; T = number of time periods; NTP = number of thermal
plants; Ni

TU = number of thermal units in plant i; pi,j,t = power output of thermal unit j
in plant i at period t (MW); pk,m,t = power output of hydro unit m in plant k at period t
(MW); ui,j,t = binary variable indicating whether or not thermal unit j in plant i is operating
at period t; uk,m,t = binary variable indicating whether or not hydro unit m in plant k
is operating at period t; ai,j (t/MW2h), bi,j (t/MWh), and ci,j (t/h) = fuel consumption
coefficients of thermal unit j in plant i, respectively; ∆t = time conversion variable (h).

It is important to point out that because hydro units and thermal units are closely
coupled by electrical constraints (Equations (2) and (3)), the schedules of both hydro
units and thermal units will affect the objective function. Thus, the decision variables in
Equation (1) are pi,j,t, pk,m,t, ui,j,t, and uk,m,t.
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2.2.2. Constraints

In STHS, constraints that should be satisfied are grouped into system-wide electrical
constraints, thermal power constraints, and hydropower constraints, which are formulated
as follows.

1. System-wide electrical constraints

NTP

∑
i=1

Ni
TU

∑
j=1

pi,j,t +
NHP

∑
k=1

Nk
HU

∑
m=1

pk,m,t = Dt (2)

NTP

∑
i=1

Ni
TU

∑
j=1

pmax
i,j ui,j,t +

NHP

∑
k=1

Nk
HU

∑
m=1

pmax
k,m uk,m,t ≥ (1 + α)Dt (3)

where NHP = number of hydro plants; Nk
HU = number of hydro units in plant k; Dt = system

load demand at period t (MW); pmax
i,j and pmax

k,m = the maximum output limits of thermal
unit and hydro unit (MW), respectively; α = the constant representing the percentage of
spinning reserve in load demand.

Equation (2) sets the power balance constraints. Equation (3) sets the spinning re-
serve constraints.

2. Thermal power constraints

pmin
i,j ui,j,t ≤ pi,j,t ≤ pmax

i,j ui,j,t (4)

pi,j,t ≤ pmax
i,j
(
ui,j,t − zi,j,t+1

)
+ SDi,jzi,j,t+1 (5)

pi,j,t − pi,j,t−1 ≤ RUi,jui,j,t−1 + SUi,jyi,j,t (6)

pi,j,t−1 − pi,j,t ≤ RDi,jui,j,t + SDi,jzi,j,t (7)

yi,j,t − zi,j,t = ui,j,t − ui,j,t−1 (8)

yi,j,t + zi,j,t ≤ 1 (9)

yi,j,t +

t+TAi,j−1

∑
η=t+1

zi,j,η ≤ 1 (10)

zi,j,t +

t+TBi,j−1

∑
η=t+1

yi,j,η ≤ 1 (11)

where pmin
i,j = the minimum output limit of unit j in plant i (MW); yi,j,t = binary variable

indicating whether or not the unit is started up at period t; zi,j,t = binary variable indicating
whether or not the unit is shut down at period t; SUi,j and SDi,j = start-up and shut-down
ramp rate limits of unit j in plant i (MW/h), respectively; RUi,j and RDi,j = ramp-up and
ramp-down limits of unit j in plant i (MW/h), respectively; TAi,j and TBi,j = the minimum
online and offline time periods of unit j in plant i (h), respectively.

Equation (4) sets the lower and upper bounds of each unit on power output. Equa-
tions (5)–(7) set the power ramping constraints of each unit, including the start-up ramp
rate limit, shut-down ramp rate limit, and normal ramp-up and ramp-down limits. Equa-
tions (8) and (9) denote the logical status of unit commitment. Equations (10) and (11) set
the minimum online and offline time periods of each unit, respectively.

3. Hydropower constraints

Qk,t = Bk,t + ∑
kh∈IUk

Rkh,t−τkh,k
(12)

Sk,t = Sk,t−1 + (Qk,t − Rk,t)∆t (13)
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Rk,t = R′k,t + R′′k,t =
Nk

HU

∑
m=1

R′k,m,t + R′′k,t (14)

{
Rmin

k ≤ Rk,t ≤ Rmax
k(

R′k,m

)min
uk,m,t ≤ R′k,m,t ≤

(
R′k,m

)max
uk,m,t

(15)

Smin
k ≤ Sk,t ≤ Smax

k (16)

Zk,t = f k
zs(Sk,t) (17)

ZTk,t = f k
zr(Rk,t) (18)

Hk,t =
Zk,t−1 + Zk,t

2
− ZTk,t − Hloss

k,t (19)

Hloss
k,t = f k

hr

(
R′k,t

)
(20)

Sk,0 = Sk,beg (21)

Sk,T = Sk,end (22)

pk,m,t = f k,m
phr

(
Hk,t, R′k,m,t

)
(23)

pmin
k,m uk,m,t ≤ pk,m,t ≤ pmax

k,m uk,m,t (24)[
pk,m,t − psmax

k,m,vz(Hk,t)
][

pk,m,t − psmin
k,m,vz(Hk,t)

]
≥ 0 (25)

where Qk,t, Bk,t, and Rk,t = total inflow, natural inflow, and total release of plant k at time
t (m3/s), respectively; IUk = the direct upstream plants set of plant k; kh = the direct
upstream plant index of plant k; τkh,k = water travel time from plant kh to plant k (h);
Sk,t = storage of plant k at time t (m3); R′k,t and R′′k,t = total power release and spillage
of plant k at time t (m3/s), respectively; R′k,m,t = power release of unit m in plant k at
time t (m3/s); Rmin

k and Rmax
k = the minimum and maximum releases of plant k (m3/s),

respectively;
(

R′k,m

)min
and

(
R′k,m

)max
= the minimum and maximum power releases

of unit m in plant k (m3/s), respectively; Smin
k and Smax

k = the minimum and maximum
storages of plant k (m3), respectively; Zk,t = forebay water level of plant k at time t (m);
f k
zs(·) = the function between storage and water level of plant k; ZTk,t = tailrace water level

of plant k at time t (m); f k
zr(·) = the function between tailrace water level and total release

of plant k; Hk,t = net water head of plant k at time t (m); f k
hr(·) = the function between head

loss and power release of plant k; Sk,beg and Sk,end = the initial and terminal storages of plant

k (m3), respectively; f k,m
pqr (·) = power output as a function of unit power release and net

head of unit m in plant k; pmin
k,m and pmax

k,m = the minimum and maximum power outputs of
unit m in plant k (MW), respectively; psmax

k,m,vz(Hk,t) and psmin
k,m,vz(Hk,t) = the upper and lower

bounds of vibration zone vz of unit m in plant k (MW), respectively. Both psmax
k,m,vz(Hk,t) and

psmin
k,m,vz(Hk,t) are related to the net water head Hk,t.

Equations (12) and (13) set the water balance constraints. Equation (14) defines the
total water release. Equations (15) and (16) set the discharge limit and storage limit, respec-
tively. Equations (17) and (18) are forebay water level and storage function, and tailrace
water level and release function, respectively, both of which are nonlinear and nonconvex.
Equations (19) and (20) define the expression of the water head, where Equation (20) is
nonlinear and convex. Equations (21) and (22) restrict the initial and terminal storages
of each plant, respectively. Equation (23) is the hydropower production function, which
is composed of a family of curves illustrating the nonlinear relationship between power
output, water head, and power release. Equation (24) denotes the power output limit.
Equation (25) sets the vibration zone limit.
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3. Method Overview and Assumptions
3.1. Lagrangian Relaxation Framework

Within the LR framework, the first step is to construct a specific dual problem by
relaxing linking constraints. Then, the next step consists of solving the dual problem.
The obtained dual solution acts as a lower bound to the primal problem, and heuristics are
adopted to convert the infeasible dual solution to a feasible solution. Through gradually
narrowing the gap between dual solution and primal solution, a near-optimal solution will
be finally found in multiple iterations.

In the context of STHS, Equations (1)–(25) are denominated the primal problem.
The hydropower part and thermal power part are coupled by Equations (2) and (3). There-
fore, the following dual function is constructed by relaxing Equations (2) and (3) via
Lagrange multipliers λDt and λRt [28,29]:

LD(λDt , λRt) = min
pi,j,t, pk,m,t
ui,j,t, uk,m,t


F +

T
∑

t=1
λDt

(
Dt −

NTP
∑

i=1

Ni
TU
∑

j=1
pi,j,t −

NHP
∑

k=1

Nk
HU
∑

m=1
pk,m,t

)

+
T
∑

t=1
λRt

(
Dt + Rt −

NTP
∑

i=1

Ni
TU
∑

j=1
pmax

i,j ui,j,t −
NHP
∑

k=1

Nk
HU
∑

m=1
pmax

k,m uk,m,t

)
 (26)

Subject to: Equations (4)–(25).
After regrouping relevant terms, independent thermal and hydro subproblems can be

split from Equation (26). Detailed forms of these subproblems can be found in [15]. To solve
the thermal and hydro subproblems, MILP is adopted [30]. The reasons for using MILP are
as follows: (1) the nonlinearity in hydro and thermal subproblems can be eliminated with
piecewise linear techniques; (2) MILP is efficient in solving small-scale problems; and (3)
MILP is easily programmed based on general mathematical solvers.

Moreover, the heuristic technique in [31] is adopted to transform the dual solution
into a feasible solution, which fixes the hydropower solution first and then adjusts the
thermal unit schedule using a priority-list approach. Finally, the iteration of LR stops if any
of Equations (27) and (28) are satisfied:

rdgn =
F∗n − LD∗n

LD∗n
≤ RDG (27)

√√√√ T

∑
t=1

[(
λn

Dt
− λn−1

Dt

)2
+
(

λn
Rt
− λn−1

Rt

)2
]
< ∆λ (28)

where n = the iteration index; rdgn, F∗n and LD∗n = the relative duality gap, the primal
value (t), and the Lagrangian dual value (t) at iteration n, respectively; RDG = the supplied
minimum relative duality gap; λn

Dt
and λn

Rt
= the values of λDt and λRt at iteration n,

respectively; ∆λ = the supplied minimum multiplier variation.

3.2. Standard Proximal Bundle Method

In the dual function (Equation (26)), subgradients with respect to λDt and λRt are
gDt = Dt −

NTP
∑

i=1

Ni
TU
∑

j=1
pi,j,t −

NHP
∑

k=1

Nk
HU
∑

m=1
pk,m,t

gRt = Dt + Rt −
NTP
∑

i=1

Ni
TU
∑

j=1
pmax

i,j ui,j,t −
NHP
∑

k=1

Nk
HU
∑

m=1
pmax

k,m uk,m,t

(29)

Let n be the current iteration index. The notation is simplified by denoting λ =[
λD1 , · · · , λDT , λR1 , · · · , λRT

]
and g =

[
gD1

, · · · , gDT
, gR1

, · · · , gRT

]
. PBM generates two
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related iteration sequences:
{

LD
(
λnk
)

, gnk
}

nk<n
and

{
¯
λ

nk}
nk<n

, where nk = past iter-

ation index; λnk and gnk = the multiplier vector and subgradient vector at iteration nk,

respectively; LD
(
λnk
)

= the dual value associated with λnk;
¯
λ

nk

= the best multiplier vector

so far at iteration nk, which provides the maximum dual value LD

(
¯
λ

nk)
. The sequence

{
LD
(
λnk
)

, gnk
}

nk<n
is the so-called “bundle”, while the sequence

{
¯
λ

nk}
nk<n

denotes

the stability centers in the bundle [32].
Having the bundle, a cutting-planes model is formulated at iteration n

LD̂n(λ) = min
nk<n

[
LD
(
λnk
)
+ gnk

(
λ− λnk

)T
]

(30)

Then, the next iterate λn+1 is obtained by solving the quadratic programming [33]

λn+1 = argmax
λ

[
LD̂n(λ) +

1
2

µn‖λ−
¯
λ

n

‖
2]

(31)

where µn = the penalty parameter, controlling the distance from λn+1 to
¯
λ

n

.
With the obtained λn+1, the ascent condition is checked:

LD
(
λn+1

)
≥ LD

(
¯
λ

n)
+ εδn+1 (32)

where ε = the parameter defining the minimum increase in dual value; δn+1 = LD̂
(
λn+1

)
−

LD

(
¯
λ

n)
measuring the increase predicted by the cutting-planes model.

If Equation (32) holds, update the stability center sequence by setting
¯
λ

n+1

= λn+1

(serious step). Otherwise, set
¯
λ

n+1

=
¯
λ

n

(null step). Invoke PBM iteratively in LR iterations
until the stopping rule (Equations (27) and (28)) is met.

Although PBM is known for its stability and accuracy, there are still some drawbacks:
(1) The time cost of solving quadratic programming. A quadratic programming problem
in the form of Equation (31) needs to be solved at each iteration to generate a new iterate.
The scale of the quadratic programming increases with the size of the bundle, which
could be quite time-consuming in later iterations. (2) As the iteration proceeds, the ascent
condition is hard to satisfy. As a result, many null steps are declared, causing PBM to easily
fall into local optimum. (3) Initial values of Lagrange multipliers have an influence on the
computational efficiency of PBM, which has not been fully discussed in the literature [33].

3.3. Improved Proximal Bundle Method

To overcome the difficulties of PBM, an IPBM incorporating the ES technique with PBM
is proposed in this section. The ES component in IPBM mines information from historical
operational records of hydrothermal units to guide the solution of a current problem.
The ES consists of two parts: a knowledge base and inference engine, where the knowledge
base is a repository of facts storing the knowledge about the STHS problem domain, and
the inference engine provides reasoning about the information in the knowledge base to
find a solution [25].
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In the solution of Lagrangian dual, the main task is to determine the optimal values of
Lagrange multipliers to reduce the relative duality gap (RDG). Thus, the trajectories of RDG
and multiplier values in the iteration are regarded as a kind of knowledge. By extracting
knowledge expressions and building the knowledge base, decision support can be provided
for STHS from the inference engine. Specifically, initial values of multipliers can be obtained
by using a linear combination of optimal multiplier values in the knowledge base, providing
a good lower bound to the primal problem. Moreover, when a null step is claimed in IPBM,
the solution space of STHS can be narrowed based on the knowledge base. Then, OD is
carried out in the solution space to derive new updates of Lagrange multipliers, which can
not only avoid solving quadratic programming, but also increase the likelihood of reaching
a global optimum. Hence, the difficulties that standard PBM encountered are alleviated
in IPBM.

Details about the ES technique are presented in the following.

3.3.1. Knowledge Base

To build the knowledge base, knowledge expressions are extracted from PBM itera-
tions of historical scenarios. Since different generation scenarios correspond to different
iteration processes, scenarios are firstly quantified by eigenvectors. Then, considering the
large number of historical generation scenarios, cluster analysis is necessary to avoid the
“scenario explosion” and the noise interference to the reasoning stage. Finally, knowledge
expressions are extracted from the PBM iterations of representative scenarios and are stored
in the database. Detailed steps of building the knowledge base are described as follows.

(1) Representation of generation scenario

The generation scenario is characterized by operational constraints. Through inter-
viewing experienced operators and analyzing the form of Equations (2)–(25), constraints
and their associated factors are summarized in Table 1. In Table 1, constraints related to
unit type and reservoir features usually do not change with scenario, or change slightly,
while the rest of the constraints are dynamic. Therefore, the generation scenario is charac-
terized by the load demand curve, natural inflows, and initial and terminal water levels of
hydropower plants.

Table 1. Constraints and their associated factors.

Constraint Associated Factor

(2), (3) Load demand curve
(4)–(11) Thermal unit type

(12) Natural inflows
(13)–(20) Reservoir features
(21), (22) Initial and terminal water levels
(23)–(25) Hydro unit type

To quantitatively represent the generation scenario, the following eigenvector η is for-
mulated:

η = [η1, η2, η3,η4,η5] (33)

η4 = [B1, · · · , Bhb, · · · , BHB] (34)

η5 = [PE1, · · · , PEhb, · · · , PEHB] (35)

where η1 = total energy demand (MWh); η2 = peak load (MW); η3 = peak–valley difference
in the load demand curve; η4 = the vector of basin natural inflows; η5 = the vector of basin
storage energy; hb = hydro basin index; Bhb = total natural inflows of hydro basin hb over
the whole planning horizon (m3/s); HB = the number of hydro basins; PEhb = average
storage energy of hydro basin hb over the whole planning horizon (MWh).
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In Equation (33), elements η1, η2, and η3 depict the characteristics of the load demand
curve; η4 denotes the natural inflows of basins; η5 means the average storage energy, which
is a function of the initial and terminal water levels of hydropower plants [34].

(2) Cluster analysis of historical generation scenarios

To obtain representative scenarios from massive historical generation scenarios, cluster
analysis is necessary. First, the eigenvectors are normalized to eliminate the influence of
dimension. Then, k-means clustering and silhouette coefficient are adopted to achieve
scenario clustering [35]. By maximizing the silhouette coefficient of the clustering results,
an optimal clustering result can be obtained. In each cluster, scenarios are sorted in
ascending order according to the Euclidean distances from the centroid, and the scenario
that has the minimum distance is selected as the representative scenario of the cluster.

(3) Knowledge expression extraction

For each representative scenario, standard PBM is used to solve the Lagrangian dual.
Knowledge expressions are extracted from the PBM iterations in the form of Equation (36):

KEnk =
[
nk, rdgnk,λnk

]
, nk ≤ nkmax (36)

where nk and nkmax = the iteration index and maximum iteration index in the process,
respectively; λnk and rdgnk = the multiplier vector and relative duality gap at iteration
nk, respectively.

Finally, all knowledge expressions and scenario eigenvectors are saved in the database
to form the knowledge base, as illustrated in Figure 2.
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3.3.2. Inference Engine

The inference engine works on the basis of the knowledge base. Similar genera-
tion scenarios mean that they have similar problem domains. Therefore, assuming that
the PBM iterations of similar scenarios are alike, initial values of Lagrange multipliers,
and new updates of Lagrange multipliers when null steps occur, can be reasoned by the
inference engine.

(1) Inferring the initial values of Lagrange multipliers

The similarity between two scenarios can be measured by the Euclidean distance
between their eigenvectors:

∆dsn =

√
(η* − ηsn)(η* − ηsn)

T (37)

where η* = eigenvector of scenario to be solved; ηsn = scenario sn in the knowledge base.
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Initial values of multipliers can be obtained by using a linear combination of optimal
multiplier values of different scenarios. The weighting coefficient is inversely proportional
to the Euclidean distance and is determined as follows:

wsn =
1/∆dsn

∑
sk∈SN

(1/∆dsk)
(38)

where SN = the set of scenarios in the knowledge base.
Hence, the initial values of multipliers are obtained (Figure 3a):

λini = ∑
sn∈SN

wsnλsn (39)

where λsn is the optimal multiplier vector of scenario sn.
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(2) Inferring new updates of Lagrange multipliers when null steps occur

In the iteration process of PBM, when Lagrange multipliers fail to improve the value
of objective function sufficiently, a null step will be declared. Assume that a null step
occurs at iteration nu; the relative duality gap is rdgnu; and the most similar scenario in
the knowledge base to the scenario to be solved is scenario se. The RDG measures the
optimality of a dual solution. If two iterations have a close RDG, this means that they
are at a similar stage in the whole iteration process. Therefore, rdgnu is used to match the
knowledge expression in the knowledge base, as follows:

nk∗ = argmin
nk
|rdgnk − rdgnu|, nk ≤ NK (40)

where nk∗ = the iteration index in scenario se that has the closest RDG to rdgnu; NK = the
maximum iteration index in the iterations of scenario se.
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With the obtained iteration index nk∗, the range of multiplier values is derived: λmax
l = max

{
λnk

l

}
nk∗≤nk≤NK

λmin
l = min

{
λnk

l

}
nk∗≤nk≤NK

(41)

where λmax
l and λmin

l = the upper and lower bounds of the lth element in vector λ, respec-
tively; λnk

l = the value of the lth element in vector λ at iteration nk.
The obtained range is also the solution space of Lagrangian dual. Figure 3b depicts

the procedure to infer new updates of Lagrange multipliers when null steps occur.
Having the solution space, a complete enumeration of state combinations of multiplier

values can guarantee an optimum. However, the enumeration suffers from the “curse of
dimensionality”. Supposing that each of the multipliers is discretized into A states, there
will be A2T state combinations to deal with, which is hard to deal with. Thus, the concept
of orthogonal design (OD) is introduced. The OD is an experimental design method
for multiple-factor experiments, which samples a representative subset from complete
combinations based on the orthogonal array [36]. For an experiment of X factors and Y
levels per factor, there exists an orthogonal array shown as LC

(
YX) = (

ai,j
)

C×X, where
L denotes the OD, YX is the number of complete combinations, and C is the number of
combinations to be tested in the OD. LC

(
YX) is a matrix with C rows and X columns, and

each row represents a combination of levels. Due to the orthogonality, the array LC
(
YX)

ensures that the sample combinations are scattered uniformly in the state space. Figure 4
depicts the difference between complete and orthogonal combinations of an experiment
that has three factors with three levels per factor. It can be observed that the orthogonal
combinations are representative and uniformly distributed in the state space. Moreover,
the scale of orthogonal combinations is much smaller than complete combinations.
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Additionally, before implementing the OD, constraint violation needs to be checked.

|gDt | ≥ κDt (42)

gRt < 0 (43)

where κ = the minimum power deviation (MW). If Equation (42) holds, it means that the
power balance constraint at period t is broken. If Equation (43) holds, it means that the
spinning reserve constraint at period t is broken.

Lagrange multipliers corresponding to broken constraints can be regarded as experi-
ment factors. By scattering multipliers corresponding to broken constraints into several
levels, a multiple-factor experiment is formed. Accordingly, an OD is executed to yield
sample combinations. Keeping multipliers corresponding to unbroken constraints fixed,
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new updates of multipliers are obtained by combining sample combinations of broken mul-
tipliers with fixed unbroken multipliers. In this way, the computational burden of solving
quadratic programming is avoided. More importantly, the OD behaves like a “mutation
operator” to increase the likelihood of reaching global optimum. Then, after solving hydro
and thermal subproblems with the obtained multiplier updates, arrange the dual values in
ascending order, and update the bundle and stability centers sequences. Continue to solve
the dual problem by PBM until a next null step is declared or the iteration stops.

3.4. Procedures of the Proposed IPBM

Procedures of the proposed IPBM within the LR framework are summarized as follows:

Step 1: Build the knowledge base. First, represent historical generation scenarios by eigen-
vectors. Then, implement cluster analysis with k-means clustering and silhouette
coefficient to obtain representative scenarios. Finally, extract knowledge expres-
sions from PBM iterations of representative scenarios and save them in the database.

Step 2: Relax linking constraints to form the Lagrangian dual by Equation (26).
Step 3: Solve the dual problem.

(a) Set the iteration index n = 1.
(b) If n is equal to one, determine the initial values of multipliers by Equation

(39). Otherwise, update the multipliers by PBM.
(c) Solve hydro and thermal subproblems by MILP with the given multipliers.

Then, set n = n + 1. If n is equal to two, go to Step 4.
(d) If the ascent condition (Equation (32)) holds, a serious step is declared and

go to Step 4. Otherwise, a null step is declared and update the multipliers
by inference engine.

(e) Solve the hydro and thermal subproblems by MILP. Then, according to the
results, arrange the dual values in ascending order, and update the bundle
and stability center sequences.

Step 4: Primary recovery. Generate a feasible solution by the heuristic used.
Step 5: Convergence test. If the stopping rule is met (Equations (27) and (28)), terminate

the iteration. Otherwise, go to Step 3(b).

4. Case Study and Results
4.1. Parameter Settings and Performance Metrics of IPBM

The whole planning horizon of STHS is 24 h, with 1 h for each period. To build the
knowledge base, historical operational data from 2013 to 2019 are used. There are 2380 gen-
eration scenarios at the daily scale after data correction, which are then clustered into 33
representative scenarios. Knowledge expressions are extracted from PBM iterations of
these 33 representative scenarios. The knowledge base is based on MySQL Database 5.7
and structured query language. The proposed IPBM is encoded in Java language and
implemented on a PC-Intel@2.60GHz. The MILP subproblems are solved with Gurobi 8.1.1
optimization solver. The OD is implemented using SPSS Statistics. Parameters associated
with the computational simulation are set as follows: RDG = 0.5%, ∆λ = 10−4, ε = 10−2,
and κ = 10−2.

To evaluate the performance of IPBM, three metrics are adopted: (1) dual value,
representing the global search ability of IPBM; (2) primal value, representing the objective
optimality after repairing the infeasible dual solution by heuristics; (3) computational time,
representing the computational efficiency of IPBM. Among these metrics, the dual value is
a positively oriented metric—the larger the better—while the remaining two metrics are
negatively oriented metrics—the lower the better.

Based on the above settings, two improvements in IPBM, inferring initial values of
Lagrange multipliers and inferring new updates of multipliers when null steps occur, are
firstly tested. Then, the robustness of IPBM is demonstrated in comparison with standard
PBM in 12 different cases.
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4.2. Performance Testing of IPBM

A typical case in the spring of 2019 is selected as the generation scenario to manifest
the performance of IPBM. In this scenario, water levels of hydropower plants are at the de-
scending period before flood season. Both the load demand and water inflows are at a low
level. The energy demand and peak load demand are 2.95 × 105 MWh and 1.51 × 104 MW,
respectively. The peak–valley difference is 40.2%. Average natural inflow and total storage
energy of hydropower plants are 264 m3/s and 4.65 × 106 MWh, respectively.

4.2.1. Effects of Inferring the Initial Values of Lagrange Multipliers

Conventionally, initial values of multipliers are set to the marginal cost corresponding
to the solution of a simplified economic dispatch, or set to zero directly. Therefore, to test
the effect of initial multipliers, three techniques are compared:

(1) Zero value (ZV), where multipliers are set to zero directly;
(2) A simplified version of economic dispatch (SED), which relaxes the integer constraints

and is described in [15];
(3) The proposed method by expert system (ES1).

Moreover, to keep the single variable principle, PBM is adopted to update multipliers
during the process.

Table 2 shows the comparison of different initial multiplier generation techniques.
In the stage of initial multiplier generation, the initial dual value of ES1 is 103,000 t, far more
than those of ZV and SED, which means that ES1 provides the best lower bound of dual
value at the beginning period. In the stage of iterative calculations, dual values of three
techniques converge to a close value, around 111,303 t. Figure 5 shows the evolution process
of dual value by three techniques. In Figure 5, as the iteration proceeds, the difference
in dual value caused by initial multipliers becomes smaller and smaller. However, the
number of iterations differs a lot, causing the differences in computational time, which are
782 s, 423 s, and 359 s for ZV, SED, and ES1, respectively. Moreover, the primal values of
the three techniques are basically the same. The primal value of ES1 is only 0.03% less than
that of ZV.

Table 2. Comparisons of different initial multiplier generation techniques.

Stage Item ZV SED ES1

Initial multiplier generation Dual value (t) 30,470 94,337 103,000

Iterative calculations
Dual value (t) 111,300 111,301 111,303

Primal value (t) 113,796 113,780 113,761
Time (s) 782 423 359
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Therefore, the conclusions are drawn: (1) the quality of initial values of multipliers has
a significant influence on the computational time, but little influence on the final objective
function value; and (2) initial values of Lagrange multipliers obtained by ES1 are better
than those by ZV and SED, demonstrating the superiority of ES1.

4.2.2. Effects of Inferring New Updates of Multipliers When Null Steps Occur

To test the effect of multiplier updates when null steps occur, four techniques are com-
pared:

(1) Subgradient method (SG) (as in [37]);
(2) Cutting-planes method (CP) (as in [38]);
(3) Standard PBM;
(4) The proposed method by expert system (ES2).

To keep the single variable principle, initial multiplier values of four techniques are
given by ES1.

Table 3 lists the outcomes of the four techniques. Figure 6 illustrates the detailed
evolution process of dual value. From Table 3, compared with SG and CP, PBM and ES2 can
find better dual values and take less time. Figure 6 shows that the dual values of SG and
CP oscillate violently during the iteration process, while PBM and IE2 present considerable
stability. After using heuristics to obtain feasible solutions, the primal values of PBM and
ES2 are less than those of SG and CP.

Table 3. Comparisons of different multiplier updating techniques.

Item SG CP PBM ES2

Dual value (t) 105,260 109,540 111,303 111,835
Primal value (t) 122,461 116,137 113,761 112,472

Time (s) 833 646 359 318
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To further illustrate the superiority of ES2 over PBM, the effect of the expert system
is analyzed. Table 4 lists the iterations of serious steps and null steps during the whole
iteration process. ES2 converges in 41 iterations, while PBM takes 44 iterations. At the
11th and 32nd iterations of ES2, null steps occur. Subsequently, two orthogonal designs
are executed, which are L20

(
216) and L8

(
27), respectively. In Table 4, the item L20

(
216)

→ [12–31] means that there are 16 broken constraints among the relaxed constraints.
An experiment of 16 factors and 2 levels per factor is thus formed, where 20 multiplier
combinations are sampled by the OD. These 20 multiplier combinations correspond to
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20 iterations (from iteration 12 to 31) in the process. The item L8
(
27)→ [33–40] in Table 4

has a similar meaning with the item L20
(
216)→ [12–31].

Table 4. Detailed evolution steps of PBM and ES2.

Item PBM ES2

Serious steps [1–10, 26] [1–10]
Null steps [11–25, 27–44] [11, 32, 41]

Orthogonal design /
L20
(
216)→ [12–31]

L8
(
27)→ [33–40]

From Figure 7, during the first OD, the improvement of the dual value by ES2 is 407 t
more than that by PBM. During the second OD, the two methods improve little. Finally,
the dual value of ES2 converges to 111,835 t, 532 t more than PBM, which verifies the better
global searchability of ES2. Moreover, since ES2 take less iterations and orthogonal designs
in ES2 to avoid solving quadratic programming, the computational efficiency of ES2 is
better than PBM.
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In summary, compared with SG, CP, and PBM, ES2 shows extraordinary stability
during the iteration process. Due to the advantage of the expert system, ES2 obtains the
best objective function value in the least time, demonstrating its superiority in global search
ability and computational efficiency.

4.3. Comparison with Standard PBM in Different Generation Scenarios

To demonstrate the robustness of IPBM, 12 typical generation scenarios from 2019
are chosen, of which the load demand and water inflow characteristics are summarized
in Table 5. The scenarios are distinguished as follows: the first number refers to the
scenario index (from 1 to 12), the second term is associated with the load demand level
(LLD = low load demand; MLD = medium load demand; HLD = high load demand),
and the third term means the water inflow condition (DS = dry season; WS = wet sea-
son). The conclusion is obtained by comparing the performance of IPBM with PBM in
12 scenarios.

Table 6 lists the results for STHS by PBM and IPBM. From Table 6, it can be noticed
that IPBM outperforms PBM in all scenarios in terms of dual value, primal value, and
computational time. For dual value, the maximum and minimum relative differences are
0.64% in scenario 5_LLD_DS and 0.01% in scenario 4_LLD_DS, respectively, indicating that
IPBM can provide a better lower bound for a primal problem. In terms of primal value, the
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average relative difference in 12 scenarios is −0.89%, which means that the average coal
consumption reduction is 748 t by IPBM. Moreover, the computational time of IPBM is less
than that of PBM in each scenario, verifying its high computational efficiency.

Table 5. Description of 12 selected generation scenarios.

Generation
Scenario

Load Demand Condition Water Inflow Condition

Energy Demand
(105 MWh)

Peak Load
(104 MW)

Peak–Valley
Difference 1 (%)

Natural Inflows 2

(m3/s)
Storage Energy 3

(106 MWh)

1_LLD_DS 3.17 1.61 43.22 203.7 3.62
2_LLD_DS 2.82 1.47 49.04 233.9 3.27
3_LLD_DS 3.22 1.67 46.56 200.2 2.74
4_LLD_DS 2.98 1.49 42.31 189.5 1.99
5_LLD_DS 2.95 1.51 44.69 449.9 1.62

6_MLD_WS 3.32 1.72 45.33 3007.8 2.06
7_LLD_WS 2.75 1.45 50.61 2262.2 8.04
8_MLD_WS 3.61 1.83 42.88 1454.5 7.14
9_MLD_WS 3.72 1.89 40.45 1072.5 8.28
10_LLD_WS 3.26 1.72 46.56 955.5 7.42
11_HLD_DS 3.83 1.92 37.37 382.7 7.54
12_HLD_DS 4.61 2.33 40.37 247.6 6.65
1 (Peak load—valley load)/peak load × 100%. 2 The sum of natural inflows of four basins. 3 The sum of storage energy of four basins.

Table 6. Comparative analysis of 12 scenarios.

Generation
Scenario

Dual Value (t) Primal Value (t) Time (s)

PBM IPBM Rel. Diff. 1 PBM IPBM Rel. Diff. 1 PBM IPBM Rel. Diff. 1

1_LLD_DS 106,552 106,599 0.04% 108,430 107,409 −0.94% 491 400 −18.58%
2_LLD_DS 65,519 65,698 0.27% 66,816 66,418 −0.60% 541 448 −17.18%
3_LLD_DS 92,059 92,242 0.20% 94,027 93,359 −0.71% 465 377 −18.97%
4_LLD_DS 93,195 93,200 0.01% 94,708 94,183 −0.55% 499 342 −31.44%
5_LLD_DS 77,932 78,428 0.64% 79,516 78,961 −0.70% 392 330 −15.88%

6_MLD_WS 65,110 65,449 0.52% 66,687 65,780 −1.36% 553 382 −30.95%
7_LLD_WS 71,019 71,065 0.06% 72,631 71,879 −1.04% 361 326 −9.68%
8_MLD_WS 59,663 60,006 0.58% 61,109 60,497 −1.00% 527 421 −20.20%
9_MLD_WS 68,236 68,369 0.19% 69,897 69,276 −0.89% 548 379 −30.85%
10_LLD_WS 85,241 85,365 0.15% 86,673 85,862 −0.94% 442 301 −31.90%
11_HLD_DS 93,683 93,740 0.06% 95,179 94,329 −0.89% 568 448 −21.13%
12_HLD_DS 114,868 115,278 0.36% 117,465 116,203 −1.07% 550 375 −31.81%

1 The relative difference between PBM and IPBM, calculated by (value of IPBM—value of PBM)/value of PBM × 100%.

Figure 8 illustrates the relative difference between the primal value and natural inflow
in different scenarios. It can be observed that the relative difference is approximately posi-
tively correlated with the natural inflow. From scenario 2_LLD_DS to scenario 5_LLD_DS,
both the natural inflow and relative difference are at a low level. From scenario 6_MLD_WS
to scenario 10_LLD_WS, the natural inflow and relative difference are at a high level, and
gradually decrease. The maximum relative difference is 1.36% in scenario 6_MLD_WS.
The relative difference in the primal value reflects the improvement in the objective func-
tion of IPBM compared with PBM. Therefore, the improvement in the IPBM objective
function is more significant in large-inflow scenarios. The reason is that when the natural
inflow is high, the corresponding hydropower potential is large. IPBM can improve the
water use efficiency and yield more hydropower energy. As a result, coal consumptions in
large-inflow scenarios are greatly reduced.
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5. Conclusions

Hydrothermal power accounts for a high proportion in power systems, making STHS
a challenge for operators. To efficiently solve the STHS problem, an IPBM combining the ES
technique and standard PBM within the LR framework is presented in this paper. In IPBM,
the ES consists of two parts: a knowledge base and inference engine. The knowledge base
is built by extracting knowledge expressions from historical generation scenarios. Based on
the knowledge base, initial values of Lagrange multipliers and new updates of Lagrange
multipliers when null steps occur are reasoned by the inference engine. In this way, the ES
provides a good lower bound to the primal problem at the beginning period. Moreover,
the ES avoids solving quadratic programs when a null step is declaimed and increases the
likelihood of reaching global optimum. To verify the effectiveness of IPBM, a case study is
conducted in a large-scale hydrothermal system in China. Results in different cases indicate
that, compared with several common methods, IPBM can obtain generation schedules with
less coal consumption in less time, demonstrating its superiority in global search ability,
computational efficiency, and robustness. Hence, IPBM proves to be an effective method
for STHS.

Due to the negative impact of dam construction on river ecosystems, the ecological
dispatch of hydropower is attracting increasing attention from researchers. Therefore, for
further studies, it is necessary to bring ecological flow constraints into the present solution
framework.
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Appendix A

Table 1 describes the basic parameters of thermal units. Table 2 lists the basic parame-
ters of hydropower plants.

Table 1. Basic parameters of thermal units.

Plant No. Unit No. Minimum Output
(MW)

Maximum Output
(MW)

a 1

(t/MW2h)
b 1

(t/MWh)
c 1

(t/h)

T1

#1 150 300 11.4 2.42 9.94
#2 150 300 5.4 2.80 10.61
#3 150 300 18.6 2.14 15.78
#4 150 300 4.2 2.72 9.06

T2 #1–#4 50 135 12.3 2.63 13.62

T3 #1, #2 330 660 11.5 2.45 12.70

T4
#1, #2 150 300 3.2 2.86 8.99
#3, #4 150 300 8.0 2.33 15.21

T5 #1, #2 300 600 14.1 1.35 63.65

T6 #1, #2 330 660 2.5 2.94 8.94

T7
#1–#3 300 600 2.9 3.70 10.52

#4 300 630 10.5 1.63 56.07

T8
#1 100 200 197.2 −2.96 53.98
#2 100 200 37.0 2.19 9.93
#3 100 200 42.8 1.55 19.42

T9

#1 150 300 2.3 2.98 4.81
#2 150 300 1.1 2.92 6.46
#3 150 300 0.6 3.06 0.96
#4 150 300 0.1 3.12 2.32

T10 #1, #2 300 600 1.4 1.70 53.61

T11 #1, #2 300 600 37.4 −0.56 74.85

T12
#1 150 300 2.9 2.94 5.74
#2 150 300 2.8 2.88 7.66

T13
#1 50 150 0.7 4.01 −10.16
#2 50 150 147.6 −1.19 33.36

T14 #1–#4 300 600 6.4 2.06 28.68

T15 #1, #2 330 660 13.2 2.34 12.88

T16 #1, #2 300 600 1.5 2.73 10.33

T17 #1, #2 150 300 0.4 3.08 4.85

T18 #1, #2 330 660 8.2 1.92 43.21

T19

#1 150 300 76.2 −0.26 33.80
#2 150 300 7.2 2.28 22.30
#3 150 300 105.6 −2.32 71.72
#4 150 300 12.5 2.27 16.08

T20

#1 150 300 0.8 3.03 3.06
#2 150 300 24.4 2.00 14.09
#3 150 300 30.8 1.61 19.70
#4 150 300 3.1 3.02 3.03

T21
#1, #2 150 300 0.8 3.16 3.79

#3 150 300 1.3 2.95 7.37
#4 150 300 2.2 3.07 3.65

T22

#1 150 300 2.9 3.34 −4.85
#2 150 300 0.4 2.50 10.43
#3 150 300 49.6 0.73 25.43
#4 150 300 9.9 2.55 7.35

1 a, b, and c are fuel consumption coefficients of thermal unit, respectively.



Sustainability 2021, 13, 4706 19 of 20

Table 2. Basic characteristics of hydropower plants.

Plant No. Unit Configuration 1 Adjustment Ability
Minimum

Storage
(106 m3)

Maximum
Storage
(106 m3)

Maximum
Outflow
(m3/s)

H1 3 × 200 Multiyearly 1137 4497 500
H2 3 × 190 + 1 × 125 Seasonally 374 864 700
H3 3 × 200 Daily 101 169 700
H4 5 × 250 Seasonally 781 2142 700
H5 5 × 600 Yearly 2662 5564 1000
H6 3 × 90 Daily 35 78 400
H7 4 × 260 Yearly 1098 3135 600
H8 4 × 180 Daily 106 137 700
H9 4 × 220 Daily 739 882 800
H10 3 × 28 Seasonally 101 348 200
H11 3 × 120 Seasonally 133 455 400
H12 2 × 100 Seasonally 115 251 200
H13 2 × 75 Daily 51 69 200

1 Number of units × unit capacity (MW).
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