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Abstract: Ureolytic microbial-induced calcium carbonate precipitation (MICP) is a promising green
technique for addressing sustainable building concerns by promoting self-healing mortar develop-
ment. This paper deals with bacteria-based self-healing mortar under artificial seawater incubation
for the sake of fast crack sealing with sufficient calcium resource supply. The ureolytic MICP mech-
anism was explored by morphology characterization and compositional analysis. With polyvinyl
alcohol fiber reinforcement, self-healing mortar beams were produced and bent to generate 0.4 mm
width cracks at the bottom. The crack-sealing capacity was evaluated at an age of 7 days, 14 days, and
28 days, suggesting a 1-week and 2-week healing time for 7-day- and 14-day-old samples. However,
the 28-day-old ones failed to heal the cracks completely. The precipitation crystals filling the crack
gap were identified as mainly vaterite with cell imprints. Moreover, fiber surface was found to be
adhered by bacterial precipitates indicating fiber–matrix interfacial bond repair.

Keywords: microbial-induced calcium carbonate precipitation; Bacillus; biomineralization; self-
healing mortar; vaterite morphology

1. Introduction

Concrete is one of the most widely used human-made materials for construction and
infrastructure of, e.g., highways, dams, harbors, bridges, tunnels, etc. [1,2]. However,
concrete structures are very sensitive to crack formation due to their inherent brittleness
with properties that are strong in compression but weak in tension [3–5]. The formation
of cracks in concrete is dependent on concrete’s microstructural properties, e.g., defect
and heterogeneity [6,7]. Cracking-induced physical and chemical deteriorations are the
main culprits endangering the integrity, durability, and safety of concrete structures [8–10].
The conventional crack repair method can be used after detection, but it is very difficult
to deal with cracks which are either too fine or too deeply embedded to be accessible in
infrastructures that are in continuous use. Hence, further studies on the search for a smart or
automatic method to heal the cracking of concrete structures are of great importance [11,12].
It is widely acknowledged that bacterial-based self-healing is a promising solution to
reduce the tremendous maintenance and repair costs of concrete infrastructures [13–15].

Designed to overcome the inevitable problem of crack formation in concrete structures,
self-healing concrete is an established technology which incorporates a healing agent and
which consists of carbonate-precipitating bacteria and a calcium source during the process
of mixing [16,17]. Once cracking occurs, the embedded microorganisms near the crack
zone will be activated and start to precipitate CaCO3, filling the cracking gaps. In the 1990s,
Gollapudi et al. [18] first introduced bacteria to cementitious materials to induce calcium
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carbonate precipitation to remediate cracks. Different bacteria induce calcium carbonate
precipitation through different metabolic processes: urease decomposing urea [13,19–21]
and carbonic anhydrase aiding CO2 capture [14,22–24]. Both pathways help to induce a
reaction between carbonate and Ca2+ to form CaCO3 in an alkaline environment. Owing
to the remarkably high productivity of calcium carbonate precipitation, studies on ure-
olytic MICP with applications in self-healing concrete development are being extensively
conducted via the technical route of urea hydrolysis [25,26].

For typical ureolytic MICP, urea is hydrolyzed through microbial-induced urease to
produce ammonium and carbonate ions, which leads to an increased pH in the neighboring
environment. Such local pH increase triggers the precipitation of CaCO3 in the presence of
calcium ions [27,28]. The biological–chemical mechanism of the ureolytic MICP process
is significantly dependent on the concentration of calcium ion, carbonate, and pH [29,30].
Therefore, a conventional self-healing incubation environment (i.e., water) is not the most
favorable for spore germination, as well as efficient MICP. The incubation condition for
cracked concrete specimens is a vital factor for fast crack sealing of microbial self-healing
concrete [31].

Previous researchers have mainly focused on the incubation period of self-healing
concrete, either with humid air or a water environment, i.e., fully immersed in water
or subjected to wet–dry cycles [32–35]. According to [13], specimens were alternately
submerged in tap water for 1 h and then exposed to humid air at room temperature for 11 h.
Despite the fact that specimens were in a water environment for only 2 h per day, a complete
crack sealing was achieved after four weeks of incubation. Kalhori and Bagherpour [36]
compared different incubation environments’ effects on concrete compressive strength,
whereby water, reactive solution and suspension of bacteria, and urea and calcium chloride
were utilized for healing conditions. It was revealed that the compressive strength of
specimens immersed in bacterial suspension was approximately 30% higher than that of
those immersed in water or reactive solution. More recently, Hamza et al. [33] dealt with the
soil incubation effect on mortar self-healing performance considering typical underground
concrete structures. The experimental results implied that microbial self-healing concrete
generally proceeds in a similar fashion within saturated natural soil to that of concrete
incubated in humid air and water [33]. Although research to date has focused on water
environment incubation, few reports on the effect of seawater on self-healing can be found.
Palin et al. [3] chose artificial seawater for incubation to simulate a marine environment
of coastal and offshore structures. In total, 93% permeability reduction was realized for
0.6 mm width cracks in cementitious composites.

In reality, marine and seashore infrastructures are more likely to deteriorate and cor-
rode since they are exposed to seawater chemical attack. The development of self-healing
concrete is urgently needed for marine environments. Additionally, Ca2+ in seawater might
provide an additional calcium resource, promoting CaCO3 precipitation [37]. Whether the
crack sealing of self-healing concrete in an artificial sea water environment can be acceler-
ated and how concrete of different ages behaves need to be investigated. In this research,
an ureolytic, alkali-tolerant spore-forming Bacillus strain was used for bio-self-healing
mortar to evaluate its crack-sealing performance under artificial seawater incubation. Beam
mortar specimens were subjected to bending to generate ideal cracks at the bottom. Flex-
ural strength evaluation and crack-filling material identification were also conducted to
characterize crack-sealing performance with artificial seawater incubation.

2. Ureolytic MICP

The detailed biochemical reaction process at a single-cell level is explicitly plotted
in Figure 1. The Bacillus microorganism generates urease, acting as the enzyme helps
to hydrolyze urea to ammonia and carbon dioxide. The production of ammonia causes
the pH of the bacteria-surrounding environment to increase, which promotes CaCO3 in
calcium-rich conditions. Precipitation accumulation on the bacterial surface is due to the
nucleation effect, since the negatively charged cell surface might attract Ca2+ ions.
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Figure 1. MICP mechanism diagram at a single-cell level.

2.1. Characterization of Bacillus Strain

The Bacillus growth profile is represented in terms of optical density of the microbial
culture medium at 37 ◦C, as shown in Figure 2a. The Bacillus microorganism grows rapidly
in the first 16 h and then enters the stationary phase, whereas bacterial density is about
6 × 107 cells/mL, corresponding to a 8.6 OD600 value. Meanwhile, the bacterial solution
pH also increases with bacterial growth and finally stabilizes at about 10. This phenomenon
stems from the fact that bacterial cells decompose urea and produce a large amount of
hydroxide, which thus increases solution pH for the sake of calcium carbonate precipitation.
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Figure 2. Bacillus strain characterization: (a) bacterial growth profile; (b) bacterial cell image by AFM.

The microscopic morphology of the Bacillus used in this study was observed via atomic
force microscopy (AFM). With Bruker Veeco Multimode 8 AFM (Digital Instruments—
Germany), the Bacillus sample, prepared by scratching bacterial strain on mica sheet to
a smooth surface, was tested using a microfabricated silicon tip/cantilever. Microscopic
cell characterization with a 3-dimensional sketch is depicted in Figure 2b. The rod-shaped
bacteria were about 1.4 µm in length and 0.8 µm in diameter.
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2.2. Biomineralization

The MICP capacity and property determine the crack-sealing potential of self-healing
mortar. In a broad view, the ureolytic MICP mechanism studied herein is a sort of biomin-
eralization characterized with CaCO3 production. Providing a sufficient Ca2+ source, the
Bacillus strain was cultured at 37 ◦C in the incubator and vibrated at 220 rpm for 24 h. After
centrifugation, the mineral precipitation crystals were separated and collected from the
medium, which were further analyzed with a scanning electron microscope (SEM) and
X-ray diffraction (XRD).

In Figure 3, the surface morphology of all particles is roughly round. Sequent energy
dispersive spectrometer (EDS) analysis suggests that precipitation samples mainly consist
of C, O, and Ca according to Figure 4, where Au is introduced via coating treatment. The
XRD results of collected precipitations are depicted in Figure 5 whereby vaterite (denoted
by a dot) has very sharp diffraction peaks, and some calcite (labeled with diamond) is
also detected. The underlying reason for the hybrid morphology phenomenon might be
bacterial metabolic activity (producing calcite) as well as urease catalyzing vaterite. This
hybrid morphology needs to be further explored and analyzed in the future.

Sustainability 2021, 13, x FOR PEER REVIEW 4 of 11 
 

  

(a) (b) 

Figure 2. Bacillus strain characterization: (a) bacterial growth profile; (b) bacterial cell image by AFM. 

2.2. Biomineralization 

The MICP capacity and property determine the crack-sealing potential of 

self-healing mortar. In a broad view, the ureolytic MICP mechanism studied herein is a 

sort of biomineralization characterized with CaCO3 production. Providing a sufficient 

Ca2+ source, the Bacillus strain was cultured at 37 °C in the incubator and vibrated at 220 

rpm for 24 h. After centrifugation, the mineral precipitation crystals were separated and 

collected from the medium, which were further analyzed with a scanning electron mi-

croscope (SEM) and X-ray diffraction (XRD). 

In Figure 3, the surface morphology of all particles is roughly round. Sequent ener-

gy dispersive spectrometer (EDS) analysis suggests that precipitation samples mainly 

consist of C, O, and Ca according to Figure 4, where Au is introduced via coating treat-

ment. The XRD results of collected precipitations are depicted in Figure 5 whereby va-

terite (denoted by a dot) has very sharp diffraction peaks, and some calcite (labeled with 

diamond) is also detected. The underlying reason for the hybrid morphology phenome-

non might be bacterial metabolic activity (producing calcite) as well as urease catalyzing 

vaterite. This hybrid morphology needs to be further explored and analyzed in the fu-

ture. 

 

Figure 3. SEM image of biomineralization. Figure 3. SEM image of biomineralization.

Sustainability 2021, 13, x FOR PEER REVIEW 5 of 11 
 

 

Figure 4. EDS test of MICP crystals. 

 

Figure 5. XRD analysis of biomineralization precipitation. 

3. Self-Healing Mortar Production 

Since plain mortar without fiber reinforcement is too brittle to have fracture failure, 

fiber addition might help to improve its toughness arresting cracking propagation. In 

order to obtain an ideal typical crack under bending for better crack-healing character 

assessment, fiber-reinforced mortar was prepared in this study [38]. Exhibiting good 

compatibility with cementitious matrix, polyvinyl alcohol (PVA) fibers have been widely 

incorporated to mortar production due to the favorable toughness of mortar reinforced 

with them [39,40]. 

With a size of 40 mm × 40 mm × 160 mm, self-healing mortar beam specimens were 

produced by mixing cement, fly ash, water, quartz sand (particle size ranging from 0.25 

to 0.5 mm), PVA fiber, and microbial self-healing agent. The normalized mixture pro-

portion is given in Table 1, whereas Portland cement (P.I 42.5) works as cementitious 

material, and coal fly ash type C is introduced as a mineral active fine admixture. The 

water–binder and sand–binder ratios are 0.25 and 0.45, respectively. With a dimension 

of 12 mm in length and 26 μm in diameter, the incorporated PVA fiber has 1000 MPa 

tensile strength and 8 GPa Young’s modulus. Polycarboxylic acid superplasticizer, a 

high-performance water-reducing agent, was also introduced to improve the fi-

ber-reinforced mortar fluidity [40]. In order to produce self-healing mortar with a certain 

living space (ecological niche) for bacteria, a new air-entraining agent, with triterpenoid 

saponins as its main chemical composition, was incorporated into mortar. Proper 

air-entraining agent addition can produce plenty of microbubbles with diameters rang-

Figure 4. EDS test of MICP crystals.



Sustainability 2021, 13, 4834 5 of 11

Sustainability 2021, 13, x FOR PEER REVIEW 5 of 11 
 

 

Figure 4. EDS test of MICP crystals. 

 

Figure 5. XRD analysis of biomineralization precipitation. 

3. Self-Healing Mortar Production 

Since plain mortar without fiber reinforcement is too brittle to have fracture failure, 

fiber addition might help to improve its toughness arresting cracking propagation. In 

order to obtain an ideal typical crack under bending for better crack-healing character 

assessment, fiber-reinforced mortar was prepared in this study [38]. Exhibiting good 

compatibility with cementitious matrix, polyvinyl alcohol (PVA) fibers have been widely 

incorporated to mortar production due to the favorable toughness of mortar reinforced 

with them [39,40]. 

With a size of 40 mm × 40 mm × 160 mm, self-healing mortar beam specimens were 

produced by mixing cement, fly ash, water, quartz sand (particle size ranging from 0.25 

to 0.5 mm), PVA fiber, and microbial self-healing agent. The normalized mixture pro-

portion is given in Table 1, whereas Portland cement (P.I 42.5) works as cementitious 

material, and coal fly ash type C is introduced as a mineral active fine admixture. The 

water–binder and sand–binder ratios are 0.25 and 0.45, respectively. With a dimension 

of 12 mm in length and 26 μm in diameter, the incorporated PVA fiber has 1000 MPa 

tensile strength and 8 GPa Young’s modulus. Polycarboxylic acid superplasticizer, a 

high-performance water-reducing agent, was also introduced to improve the fi-

ber-reinforced mortar fluidity [40]. In order to produce self-healing mortar with a certain 

living space (ecological niche) for bacteria, a new air-entraining agent, with triterpenoid 

saponins as its main chemical composition, was incorporated into mortar. Proper 

air-entraining agent addition can produce plenty of microbubbles with diameters rang-

Figure 5. XRD analysis of biomineralization precipitation.

3. Self-Healing Mortar Production

Since plain mortar without fiber reinforcement is too brittle to have fracture failure,
fiber addition might help to improve its toughness arresting cracking propagation. In order
to obtain an ideal typical crack under bending for better crack-healing character assessment,
fiber-reinforced mortar was prepared in this study [38]. Exhibiting good compatibility
with cementitious matrix, polyvinyl alcohol (PVA) fibers have been widely incorporated to
mortar production due to the favorable toughness of mortar reinforced with them [39,40].

With a size of 40 mm × 40 mm × 160 mm, self-healing mortar beam specimens were
produced by mixing cement, fly ash, water, quartz sand (particle size ranging from 0.25 to
0.5 mm), PVA fiber, and microbial self-healing agent. The normalized mixture proportion
is given in Table 1, whereas Portland cement (P.I 42.5) works as cementitious material, and
coal fly ash type C is introduced as a mineral active fine admixture. The water–binder and
sand–binder ratios are 0.25 and 0.45, respectively. With a dimension of 12 mm in length and
26 µm in diameter, the incorporated PVA fiber has 1000 MPa tensile strength and 8 GPa
Young’s modulus. Polycarboxylic acid superplasticizer, a high-performance water-reducing
agent, was also introduced to improve the fiber-reinforced mortar fluidity [40]. In order
to produce self-healing mortar with a certain living space (ecological niche) for bacteria,
a new air-entraining agent, with triterpenoid saponins as its main chemical composition,
was incorporated into mortar. Proper air-entraining agent addition can produce plenty of
microbubbles with diameters ranging from 10 to 600 µm, providing suitable space habitats
(ecological niches) for microorganisms [21,41].

Table 1. Normalized mixture proportion of self-healing mortar.

Cement Fly Ash Water Sand Superplasticizer Air-Entraining Agent PVA Fiber

0.9 0.1 0.3 0.36 0.4% 0.01% 1% 1

1 Volumetric content of the mortar.

To guarantee sufficient healing agent near the crack, dilution water with 10% volume
well-cultivated Bacillus strain culture was used for self-healing mortar preparation. The
specific casting procedures are as follows: (1) Mix the dry binder materials, i.e., cement
and fly ash, with fine aggregates in the stirring pot to achieve the binder–sand mixture.
(2) Dissolve the water-reducing agent, air-entraining agent, and healing agent into water,
and slowly pour the liquid into the binder–sand mixture. (3) Add PVA fibers to the fresh
cementitious mortar with even distribution. It took about 8 min to obtain self-healing
mortar with favorable fluidity, which was cast into triplet beam modules. After adequate
vibration, the samples underwent a curing regimen and preserved in a standard curing
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room with a constant 20 ◦C temperature and ~95% relative humidity. A total of 24 h
later, beam samples were demolded. For the sake of comparison, 3 triplet modules were
prepared with every 3 beam samples cured for 7 days, 14 days, and 28 days, respectively.

4. Crack-Sealing Evaluation

To form one localized cracking, a 3-point-bending test was conducted with a 220 kip
Instron servo-hydraulic testing system in stroke control mode. As illustrated in Figure 6,
the foregoing beam specimen was subjected to downward force with both ends supported,
whereby the span is 140 mm. An extensometer was attached to the beam bottom to measure
the instant messages of the crack mouth opening displacement (CMOD). To guarantee the
quasi-static loading condition, a constant loading rate of 0.5 mm/min was applied to the
middle of the beam top surface. For all bending tests, the vertical loading cell was stopped
once CMOD reached 0.5 mm.
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4.1. Incubation with Artificial Seawater

After the 3-point-bending test, beam specimens were fractured with a localized crack-
ing where 0.4 mm width cracks occurred at the bottom. As suggested in [3], artificial
seawater compositions, i.e., 1.5 g/L CaCl2, 10.6 g/L MgCl2, 9.0 g/L NaSO4, and 24.1 g/L
NaCl, were prepared to simulate major constituents of natural seawater condition. The
artificial seawater incubation environment was implemented by putting cracked samples
to wet–dry cycles. Thus, adequate oxygen and carbon dioxide from atmosphere were
available to the microorganism spores to germinate and reproduce. Continuous supply of
calcium resource was provided by external artificial seawater. After 4 weeks of incubation,
the 7-day-, 14-day-, and 28-day-old self-healing mortar samples were all found to seal to
some extent. It was interesting to find that 7-day-old surface cracking was cured after
1 week of incubation, while the 14-day-old ones required 2 weeks to be fixed. Since tradi-
tional incubation with tap water takes about 4 weeks to seal cracks [21], putting cracked
samples in artificial seawater might help them to seal faster due to sufficient calcium supply.
Unfortunately, the 28-day-old counterpart failed to achieve complete sealing as indicated
in Figure 7. For the 7-day-old sample, the bacterial cells are more active due to less time
in harsh living environment inside concrete. However, microorganisms in the 28-day-old
sample were killed or spored, leading to a poor sealing performance. Hence, it might
be argued that the artificial seawater environment might accelerate the healing process.
Nevertheless, cracks in relatively old samples cannot be completely sealed.
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Figure 7. Self-healing of cracked samples with different age.

4.2. Flexural Strength Evaluation

After 28 days of incubation, the healing capacity of beam specimens was evaluated via
a second-time 3-point-bending test to get the regained flexural strength attribute to crack
sealing. The obtained second-time bending flexural strength, defined as healing strength in
Table 2, is compared against residual flexural strength, which is defined as stress state of the
end of first time bending. The 7-day-, 14-day-, and 28-day-old flexural strength is measured
as 7.45 MPa, 7.85 MPa, and 9.02 MPa, respectively. In average, 14-day-old specimens
exhibited 0.74 MPa regained strength, while 7-day-old ones only recovered 0.43 MPa
strength. It is clear that a huge scatter exists for the regained strength, ranging from
0.12 MPa to 0.66 MPa for 7-day-old cracked beams. However, the 14-day-old specimens
have a broader regained strength variation between 0.21 MPa and 1.67 MPa. The standard
deviation of regained strength for 7-day-, 14-day-, and 28-day-old samples is 0.28, 0.81,
and 0.08 MPa. In general, the flexural strength of 14-day-old samples is better recovered
than that of the 7-day-old ones, despite a slower crack-sealing rate. Corresponding to
crack-sealing results in Figure 7, the 28-day-old specimens show a negligible strength
regaining since they failed to achieve complete remediation. Noting that batch No. 28-3
might suffer further damage during transportation, the regained strength is negative.

Table 2. Repeated 3-point-bending test results of mortar beams (unit: MPa).

Batch No. Flexural
Strength

Residual
Strength

Healing
Strength

Regained
Strength Average Standard

Deviation

7-1 7.71 1.38 2.04 0.66
0.43 0.287-2 7.04 1.19 1.31 0.12

7-3 7.61 1.03 1.55 0.52

14-1 7.97 1.47 3.14 1.67
0.74 0.8114-2 7.51 1.32 1.67 0.35

14-3 8.07 1.23 1.44 0.21

28-1 8.38 1.73 1.83 0.10
0.06 0.0828-2 9.11 1.45 1.56 0.11

28-3 9.58 1.56 1.52 −0.04

Figure 8 shows the loading and reloading mechanical responses of beam specimen
batch No. 14-1. The loading response is linearly elastic until the peak, followed by a sudden
drop due to matrix fracture. As cracking begins and propagates, the PVA fibers crossing
the crack gap are activated to bridge the matrix, preventing further cracking. As a result, a
relatively ductile behavior is observed in the sequent bending response. The MTS machine
kept loading to bend the beam until the crack mouth opening reached 0.5 mm, which
corresponds to the residual strength as labeled by a red square. The final crack opening
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on the bottom was measured as 0.43 mm. After remediation, the sealed beam was bent
again with a mechanical response curve in blue. The healing strength of the second-time
bending corresponding to the peak noted by the red cycle was found to be much greater
than residual strength. Such strength regaining might be attributed to the self-healing
effect, i.e., the precipitation filling the crack gap to paste the fractured matrix.
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4.3. Characterization of Precipitation

The post-damage beam specimens were broken into halves for further identification
of the cracking surfaces. Afterwards, some white precipitations were carefully scraped and
collected for a sequent SEM test. Some bacterial imprints were found in the crystals as
depicted in Figure 9a, providing clues for the biomineralization occurring during crack
sealing. In Figure 9b, it is implied that vaterite is the main morphology of calcium carbonate
precipitations. This finding is in accordance with precipitation obtained from ureolytic
MICP and crack-sealing precipitation of self-healing mortar in [28,42,43]. It is believed
that vaterite precipitations filling the crack gap helped to rebuild the cohesion between the
fractured surfaces.
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Moreover, the PVA fibers after pullout from the matrix were also tested via SEM.
Zooming in different scalings, Figure 10 shows fiber surface details, i.e., damage mode
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of the fiber and the adhering attachments. Clear circumferential fracture together with
scratches on the rough surface result from debonding and sliding friction between fiber
and surrounding matrix [44,45]. It is interesting to find a few tiny vaterite CaCO3 crystals
adhering to the fiber surface. This phenomenon could be accounted for by the bond repair
hypothesis that microcracks around the fiber–matrix interface are also healed thanks to
ureolytic MICP during incubation.
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5. Conclusions

The main purpose of this study was to explore ureolytic MICP with application to self-
healing mortar development. The artificial seawater incubation process was investigated
with a crack-sealing evaluation. Several conclusions are drawn as follows: (1) CaCO3 of
ureolytic MICP with Bacillus in this study is mainly vaterite with some calcite. (2) The
produced self-healing mortar has a flexural strength of 9.02 MPa. (3) With artificial seawater
incubation, the 0.4 mm width crack is autonomously healed more rapidly, at least for this
experimental setting. For 7-day-old cracked samples, it took a week to seal the crack
while 14-day-old remediation required 2 weeks. The shorter incubation time in a seawater
environment might inspire researchers to develop self-healing mortar with a rapid crack-
sealing performance. (4) The healing-induced flexural strength regaining ranges from
0.12 MPa to 1.67 MPa for young self-healing mortar. However, the 28-day-old samples
failed to heal completely. (5) With bacterial imprints, vaterite is the main morphology of
CaCO3 filling the cracking gap. Calcium carbonate precipitation crystals adhere to the PVA
fiber surface, suggesting a fiber–matrix bond repair.
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