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Abstract: Face masks are currently considered key equipment to protect people against the COVID-19
pandemic. The demand for such devices is considerable, as is the amount of plastic waste generated
after their use (approximately 1.6 million tons/day since the outbreak). Even if the sanitary emergency
must have the maximum priority, environmental concerns require investigation to find possible
mitigation solutions. The aim of this work is to develop an eco-design actions guide that supports
the design of dedicated masks, in a manner to reduce the negative impacts of these devices on the
environment during the pandemic period. Toward this aim, an environmental assessment based
on life cycle assessment and circularity assessment (material circularity indicator) of different types
of masks have been carried out on (i) a 3D-printed mask with changeable filters, (ii) a surgical
mask, (iii) an FFP2 mask with valve, (iv) an FFP2 mask without valve, and (v) a washable mask.
Results highlight how reusable masks (i.e., 3D-printed masks and washable masks) are the most
sustainable from a life cycle perspective, drastically reducing the environmental impacts in all
categories. The outcomes of the analysis provide a framework to derive a set of eco-design guidelines
which have been used to design a new device that couples protection requirements against the virus
and environmental sustainability.

Keywords: face masks; life cycle assessment; LCA; environmental analysis; eco-design; product
development process; circularity; engineering design; COVID-19

1. Introduction

It is almost a year since the World Health Organization (WHO) classified the COVID-19
disease caused by the new SARS-CoV-2 virus as a pandemic [1], and by March 2021, more
than 100 million people had been infected [2] around the world, causing a global emer-
gency that will continue until effective health care, prevention and/or medical treatment
solutions (e.g., vaccines) are widely implemented.

During this period, the world has seen how human interaction, work and personal
hygiene habits, as well as daily routines, have changed. The most common method of
disease diffusion is through respiratory droplets, meaning that the virus can be transmitted
while people are breathing or speaking [3,4]. There are various methods of spreading the
virus: by direct contact with surfaces/people on which these droplets have been deposited
(large droplets > 20 µm) and airborne transmission, during which infection occurs when
people inhale the droplets in the air (small droplets < 5–10 µm) [5–7]. Given this context,
the importance of using devices that can reduce the spread of these particles has become
more evident, facial masks being the most recommended and effective device to reduce
contagion, along with the limitation of contact between people (such as lockdowns carried
out in various countries) [8–10]. That is why WHO guidelines and several research studies
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recommend the use of masks both in closed and open spaces [8,11–13]. These devices act
as a physical barrier to prevent particle dispersion, thus filtering the exhalation of infected
individuals [14]. For this reason, masks should be worn during daily activities (work,
public transport, etc.) by a large part of the population during 2021, especially in places
where ventilation is not good [7,13–15].

The WHO has estimated that 89 million medical masks are needed per month [16], a
huge quantity that caused limited stocks in many countries during the initial period of the
pandemic [17–19]. Moreover, their production entails a large consumption of fossil-based
materials and the generation of large amounts of waste (difficult to manage), which can
cause an environmental issue. This problem should not be forgotten although, at this time,
efforts should be focused on solving the current health emergency. These sustainability
issues are due to the fact that masks (surgical and PPE, or personal protective equipment)
are usually disposable devices, generally produced by using different layers of nonwoven
fibers made of thermoplastic polymers [20] and sometimes functionalized to improve their
filtering properties [21,22]. This type of devices is very difficult to recycle, which makes the
end of life (EoL) of the product another critical and impactful aspect to manage since most of
the masks end up being discarded in municipal/sanitary landfills or incinerated [23], with
considerable emissions of greenhouse gases (GHGs) [24]. Furthermore, masks potentially
represent a source of microplastics, which are very dangerous for microorganisms living
in water and can reenter the human food chain, causing severe health problems [25,26].
This is the reason why studies are being promoted to obtain masks with biodegradable
materials [27], which should facilitate their end-of-life disposal.

With the aim of improving the sustainability of the health sector, the focus is being
placed on increasing the lifespan of these devices, mainly through their reuse [28]. In this
way, some governments (i.e., Spain) [29] are taking measures that promote the manufacture
and use of reusable hygienic masks (specified in UNE 0065 standard). Additionally, various
investigations have focused on giving biocidal properties to masks to increase their useful
life and reduce bio-infectious waste [30,31]. Studies such as those by McGain et al. [32] and
Ertz and Patrick [28] have exposed the economic and environmental benefits of reusing
medical devices. Klemeš et al. [33] have conducted research focused on the energy and
carbon footprint associated with masks and PPE during the COVID-19 pandemic period.
The result of this study shows that if a proper selection of materials is made, a suitable
design is used, and user guides are drawn up, reusable PPE leads to a reduction in
energy consumption and environmental footprint. Kumar et al. [34] have carried out an
environmental analysis and sustainable waste management study of PPE kits (surgical
mask, gloves, goggles, suit), considering different scenarios such as end-of-life landfill
disposal or incineration (centralized and decentralized), finding, as a result, that the most
unfavorable situation is landfill disposal. Allison et al. [35] carried out an investigation
comparing single-use masks with reusable ones, considering various scenarios, finding
that the use of reusable masks reduces the amount of waste entering general waste streams.
Results obtained by Schmutz et al. [36] and Boix et al. [37] comparing surgical and reusable
masks instead highlight the great dependence that the impact calculations have on the use
phase (personal behavior) and materials used. However, these studies do not offer a global
comparison of the different models of masks available on the market, a clear vision when
comparing the different impacts (environmental, circularity, etc.), or facilitate decision
making from the eco-design perspective.

Only a few and preliminary life cycle assessment (LCA) studies and eco-design analy-
ses have been carried out on this topic (the environmental impact of face masks) [38,39].
The main goal of this research paper is to develop an eco-design actions guide that helps
engineers and designers during the process of product development of new masks, with
the objective to reduce the negative impacts of these devices on the environment during
this pandemic period. To achieve this objective, an LCA analysis on different types of
masks was carried out: (i) M1—3D-printed mask with changeable filters, (ii) M2—surgical
mask, (iii) M3—FFP2 mask with valve, (iv) M4—FFP2 mask without valve, and (v) M5—
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washable mask. The study was performed considering the Italian scenario; Italy was one
of the first EU countries to face the pandemic emergency, therefore having the necessary
data available for the analysis. However, the study can be transferred and replicated to
other countries. This paper has the ambition to provide a scientific basis to reduce the
waste produced during this pandemic, increase the circularity of these devices (through
the study of the material circularity indicator (MCI)), and increase the overall sustainability
of face masks. All analyses enable the definition of a framework for the development of
an eco-sustainable mask, which undoubtedly can be of great relevance during the current
serious health situation in the world. The novelty of the paper is to overtake the main
limitations of general studies regarding the environmental performance of face masks,
providing a study that allows having a global vision of the impacts of the masks currently
on the market and facilitating eco-design decision making.

The rest of the article is organized as follows: Section 2 describes the methodology
followed to develop the LCA analysis, the calculation of the circularity index, as well as
the eco-design guidelines and mask development process; Section 3 presents the results
obtained for the different masks, their most critical aspects and also develops an eco-design
guide, in addition to proposing a framework for the development of a sustainable mask;
Section 4 discusses the main outcomes of the research. Finally, Section 5 summarizes the
conclusions and possible future developments.

2. Materials and Methods

The following study has been carried out using a methodology composed of three
easily identifiable phases: (i) assessment of environmental and circularity key performance
indicators (KPIs), (ii) a knowledge-based system for eco-design, and (iii) ask development
process. The workflow and the main activities of each phase are reported in Figure 1 and
detailed in the following subsections.
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Figure 1. Methodology.

2.1. Environmental and Circularity KPI Assessment

In order to meet the objectives of this study and identify critical points of these
products, LCA methodology has been used, following the ISO 14040, ISO 14044 and ILCD
Handbook, which identifies the following four phases [40]:

1. Goal and scope definition;
2. Life cycle inventory (LCI);
3. Life cycle impact assessment (LCIA);
4. Interpretation.

This type of analysis makes it possible to establish the environmental impacts and the
resources used during the life cycle of the product, including some categories that may not
be taken into account when a simpler study is conducted.

The functional unit chosen to carry out the comparison is “The use of a face mask that
complies with UNI EN 149:2009 or UNI EN 14683:2019 standards and is able to prevent the
emission of respiratory droplets, in a pandemic situation for Italian citizen during a month.” It
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was decided to take the time reference of 1 month to facilitate the calculation of the impact
during the entire pandemic due to the uncertainty that exists regarding the end of this
period, making it possible to obtain the total impact by multiplying the results obtained
by the total months. Italy has been used as the reference country due to the available data
necessary for the analysis; however, the obtained results can be transferred to other EU
countries and geographical areas.

To facilitate comparative analysis, it was established that the reference flow is a face
mask that complies with UNI EN 149:2009 or UNI EN 14683:2019 in order to consider
masks that assure a certain degree of safety for final users. The UNI EN 149:2009 is the
reference standard for PPEs that foresees a series of testing and marking requirements (e.g.,
visual inspection, leakage, compatibility with skin, flammability of material, breathing
resistance) for this kind of protective equipment dedicated to the protection of nose and
mouth. Among the required performance tests, the penetration of filter material is the
test related to droplet emission (and inhalation). The penetration of filter material is
quantified through the particle filtration efficiency (PFE) parameter by following the test
procedure in accordance with the UNI EN 13274-7:2019. According to this test, masks
can be classified into three categories: FFP1 (PFE ≥ 80% of PFE), FFP2 (PFE ≥ 94%), and
FFP3 (PFE ≥ 99%). The UNI EN 14683:2019 is the reference standard for surgical masks
that foresees requirements and test methods for such equipment, generally dedicated to
medical environments. The standard includes requirements about material breathability,
splash resistance, microbial cleanliness (bioburden), biocompatibility, and bacteria filtration
efficiency (BFE). The latter is the key parameter that allows the verification of whether
the material used to manufacture the mask is able to filtrate a reference pathogen, the
Staphylococcus aureus, with a certain efficiency: BFE ≥ 95% for Type I masks and BFE ≥ 98%
for Type II or IIR masks (which are also resistant to splashes).

The system boundaries considered in the LCA study include (Figure 2) (i) mask
production (material extraction and, for the M1 mask, the manufacturing process (additive
manufacturing)); (ii) transportation (distribution center and final user); (iii) usage phase;
(iv) maintenance (disinfection with ethanol or wash); and (v) end of life.
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Figure 2. System boundary.

Five different types of masks available on the market have been selected as follows:

• M1—3D-printed model. This commercial mask uses disposable FFP2 filters. This
technology is very widespread on the market for masks with a reusable structure.
The 3D-printed part has to be disinfected to ensure that it is safe to use. FFP2 filters
guarantee a filtration efficiency of at least 94% and must be changed every 8 h of
use [41].
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• M2—surgical mask. This type of device is for single use only and acts as a barrier to
prevent droplets from being transmitted during breathing or speaking. They mainly
protect other people, not the wearer, although they can help to prevent the user from
coming into contact with a stream of liquid. They must be discarded every 4 h of
use [41].

• M3—FFP2 with exhalation valve. This mask is for single use and is designed to
facilitate breathing through its valve. It protects the user from possible external
contamination, but it does not protect others. They must be discarded every 8 h of
use [41].

• M4—FFP2 without an exhalation valve. As in the previous case, it is for single use
but, since it does not have an exhalation valve, it protects both the user and others. It
needs to be discarded every 8 h of use [41].

• M5—washable mask. Mask can be reused several times, maintaining its filtering
efficiency for at least 50 washes. In this case, maintenance consists of washing the
product in a washing machine at a recommended temperature between 40 ◦C and
75 ◦C [42].

The life cycle inventory (LCI) must consider all materials and energy flows (inputs
and outputs) related to the functional unit so that they are quantified. The full description
of the LCI (both foreground and background data) is reported as Supplementary Materials
to make the study fully reproducible. In this manuscript, the LCI has been mainly divided
into two parts: the first one is related to the materials used and manufacturing phase, and
the second one is related to the use phase. The LCI for the materials and manufacturing
phase seeks to know exactly the components and materials that make up these products.
For this purpose, the five types of masks studied were manually disassembled, and each
component was weighed using the appropriate equipment for it. Table 1 shows the results
of the LCI manufacturing phase for each type of mask.

Table 1. Life cycle inventory (LCI) of the mask production phase.

Type Image Component Weight [g] Material Manufacturing
Process

M1
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To define the inventory of the use phase, it must be taken into account that the study
scenario is Italy where it is estimated that there is a daily need for masks of 40 million [43].
The daily mask estimation, together with the useful life of each type, allows us to know the
total masks needed during the established period of time (one month), as can be seen in
Table 2.

Table 2. Life cycle inventory (LCI) of the use phase.

Type Lifespan Units [million]

M1
Mask - 40
Filter 8 h 600

M2 4 h 1200
M3 8 h 600
M4 8 h 600
M5 50 washes 40

Considering the use phase, M1 and M5 models require some type of “maintenance.”
In the case of M1, the ethanol used to disinfect the 3D-printed mask was considered in the
inventory. On the other hand, for the M5 model, the water, electricity, and soap that are
consumed in a standard washing cycle performed with a washing machine were quantified.
Concerning the end-of-life assessment, the hypothesis that all masks are disposed of in
municipal landfills was established. For secondary data, datasets from Ecoinvent 3.5
were used.

Life cycle impact assessment (LCIA) was carried out using a specific software tool
(i.e., SimaPro 9.0.0.49). The selected impact indicators are the most suitable for the purpose
of this article. Two different methods have been used: i) ReCiPe and ii) cumulative
energy demand (CED). With the first method, it is possible to have an overview of the
environmental loads using the midpoints (12 chosen categories, see Table 3) and endpoints
(three categories, see Table 3), facilitating the interpretation of results [44]. On the other
hand, the single-issue CED method was used to complement the information provided
by ReCiPe concerning the LCIA of energy resources since CED allows us to take into
account the energy consumption related to the product (directly or indirectly) during its
life cycle [45].

Table 3. LCIA methods and indicators analyzed [44].

LCIA Method Indicator Acronym Unit

ReCiPe Midpoints

Global warming potential GWP [Kg CO2 eq]
Ozone depletion potential ODP [kg CFC11 eq]
Photochemical oxidant formation potential OFP [kg NOx eq]
Particulate matter formation potential PMFP [kg PM2.5 eq]
Terrestrial acidification potential TAP [kg SO2 eq]
Freshwater eutrophication potential FEP [kg P eq]
Terrestrial ecotoxicity potential TETP [kg 1.4-DCB]
Freshwater ecotoxicity potential FETP [kg 1.4-DCB]
Marine ecotoxicity potential METP [kg 1.4-DCB]
Human toxicity potential HTP [kg 1.4-DCB]
Fossil fuel potential FFP [kg oil eq]
Water consumption potential WCP [m3]

ReCiPe Endpoints
Human Health HH [-]
Ecosystem ED [-]
Resources RA [-]

Single Issue Cumulative energy demand CED [MJ]

Finally, the research work includes the analysis of the product circularity, sharing the
vision of the EU and its purpose of achieving a circular economy [46]. In order to evaluate
this factor, the material circularity indicator (MCI) was used. MCI studies the flow of
the product, indicating how restorative it is [47] and considering values in the range of



Sustainability 2021, 13, 4948 7 of 26

0 and 1 (0 being fully linear and 1 being fully circular). The MCI calculator tool [48] was
used to obtain the value of this parameter (in this tool, the minimum value that can be
reached is 0.1, considering this result fully linear). A key parameter for the calculation of
the MCI is the “utility,” which can be calculated using a simplified version of the method
(Equation (1)) proposed by [47] as follows:

X =

(
L

Lav

)
(1)

where

• L represents the useful life of the product;
• Lav refers to the average useful life of the industry.

2.2. Knowledge-Based System for Eco-Design

In order to minimize the consumption of resources and the impact on the planet, eco-
design has to be adopted as a design method, using a life cycle thinking (LCT) approach
in which the entire life cycle of the product is taken into account. Approximately 70% of
a product’s cost, environmental impact, and functional requirements can be determined
during the design phase, thus demonstrating the importance of eco-design in those stages
of the project [49]. The application of scientific and technological principles to design and
carrying out engineering activities in a sustainable way, together with the LCT approach
to optimize the life cycle of a product in order to protect the environment and improve
economic progress, are defined as life cycle engineering (LCE). There are different design
support tools that have been in use for years, with a broad spectrum ranging from extremely
easy to use (i.e., recommendations) to some with a very complex structure [50].

To carry out the knowledge-based system step, methodologies that have already
been shown to be effective in literature were followed. An example is the “Ten Golden
Rules” explained in the study by Luttropp and Lagerstedt, which presented a qualitative
approach to the application and creation of an eco-design guide [50]. On the other hand,
the guidelines of the international ISO 14006:2011 [51] (updated in 2020) standard were
used, establishing a methodology and a flowchart that must be followed to incorporate eco-
design during the development of a product. This methodology is based on the following
six phases:

• Define product functions;
• Environmental analysis;
• Environmental improvement strategies;
• Develop environmental objectives;
• Environmental product specification;
• Develop technical solutions.

During the environmental assessment phase, LCA analysis was used and integrated
into the eco-design application. Articles that work with both methods (LCA and eco-
design) were a source of inspiration [52,53], together with the detailed explanation and
application of the methodology set out in the ISO 14006:2011, presented in the article
by Navajas et al. [54]. Therefore, as reported in many of the reviewed existing success
experiences, after an LCA analysis, the most impactful components are usually identified
to create a database that has a key role in establishing which aspects should be the focus of
attention for achieving a significant environmental improvement while maintaining the
functionality of the product. In the present paper, to carry out this analysis and obtain
an eco-design actions guide, the same methodology was followed by first establishing
criticalities of each phase of the device’s life cycle (once the LCA and MCI analyses have
been performed) and then developing specific measures to improve these aspects. Figure 3
shows how this methodology has been customized for an application to the specific
case study.
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2.3. Mask Development process

The process workflow followed to carry out the development of a new device is
depicted in Figure 4.
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First of all, eco-design measures should be included in the list of product requirements
developed by the same authors of this paper and discussed in depth in [55], along with the
specific regulations and standards for these devices. A list of requirements is the collection
of customer’s needs that must be satisfied by the creation of a physical product or system.
In it, together with environmental aspects, other factors such as safety and ergonomic
design were also covered. Table 4 shows an example of some sustainability requirements.

Table 4. Excerpt of the list of sustainable requirements [55].

Type Requirement

Wish Might be made of sustainable materials
Demand Might be reusable
Demand Might be durable
Wish Might provide filtering status information
Wish Might be recyclable
Demand Need to allow to see the face
Wish Might be personalized
Wish Need to be cheap for daily use
Demand Need to be available for each person in very constrained time
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It is interesting to notice that pillars of sustainability other than environmental factors
have been considered. For example, the “Need to allow to see the face” has an important role
in the social aspect of sustainability (facilitating comprehension during a conversation and
improving safety in certain environments). This requirement is highly debated in the social
context; indeed, face masks decrease speech intelligibility and make communication more
difficult, especially for people with hearing loss, and few works have been developed to
tackle this issue [56–58].

The first step of development was followed by the functional analysis of the product,
applying the methodology proposed by Pahl and Beitz [59]. The Pahl and Beitz theory uses
a black box to represent the main product function, while the flows of material, energy,
and signal are transformed by the function itself passing through the black box. The main
function is then divided into subfunctions with a hierarchical structure. and a complex tree
structure is created. In order to carry out this analysis, the main function (characterized
by a black box) must be defined (“Filter air from viruses and pollutants to protect a person”),
which is also composed of various subfunctions related to each other through different
fluxes (i.e., mass, signal, and energy fluxes).

The result of the functional analysis represents the starting point for the modulariza-
tion phase, following the heuristics method for product modularization proposed by Stone
and Wood [60]. The lowest hierarchical level of the functional analysis is used to identify
modules. This step consists of grouping functions by using three separate strategies (heuris-
tics): (i) dominant flow (DF), (ii) branching flows (BF), and (iii) conversion–transmission
modules (CTM). The main objective of the identification of the modules is to group the
functions of the previous phase into categories that facilitate the identification of the
technological implementation.

To carry out the last product development phase, a morphological matrix [61] can be
used, which allows us to analyze and compare the different possible solutions for a given
problem. The morphological matrix allows generating an exhaustive set of solutions for
a given problem (in this case, each product “module”), organizing them into a matrix in
which rows identify modules and columns identify possible solutions (i.e., design options).
The morphological matrix enables the analysis of all the engineering solutions that may
occur during the development of the facial mask. It concerns the analysis and permutations
of any possible solutions generated to fulfill each module identified within the previous
step. Thus, the various solutions obtained in the morphological matrix can be combined to
obtain the final product that meets all the requirements.

3. Results
3.1. Environmental and Circularity KPI Assessment

This section presents the results obtained during the environmental and circularity
investigations. Table 5 shows the values of the LCA midpoints studied, considering the
use phase of the product and its end of life. These results show that the highest values
in all categories analyzed have been obtained for M3 (FFP2 mask with valve), then M4
(FFP2 mask without valve), followed by M2 (surgical mask), and with a large difference
of up to an order of magnitude in some categories (i.e., GWP), M1 (3D-printed mask) and
M5 (washable mask). Figure 5 shows the percentage distribution for the GWP indicator;
the rest of the ReCiPe midpoints are reported in Table 5, and the percentage distribution
is analogous.



Sustainability 2021, 13, 4948 10 of 26

Table 5. ReCiPe midpoints (H).

Impact Category Unit M1 M2 M3 M4 M5

GWP [Kg CO2 eq] 3.9 × 106 2.7 × 107 5.6 × 107 3.8 × 107 1.5 × 106

ODP [kg CFC11 eq] 1.8 6.1 1.0 × 10 8.3 2.3
OFP [kg NOx eq] 1.3 × 104 1.0 × 105 1.9 × 105 1.4 × 105 5.7 × 103

PMFP [kg PM2.5 eq] 3.7 × 103 3.4 × 104 5.7 × 104 4.5 × 104 2.1 × 103

TAP [kg SO2 eq] 9.9 × 103 8.0 × 104 1.5 × 105 1.1 × 105 4.5 × 103

FEP [kg P eq] 5.9 × 102 5.3 × 103 1.0 × 104 7.7 × 103 4.2 × 102

TETP [kg 1.4-DCB] 4.9 × 106 2.9 × 107 4.8 × 107 4.3 × 107 1.9 × 106

FETP [kg 1.4-DCB] 1.2 × 105 1.0 × 106 3.4 × 106 3.1 × 106 4.5 × 104

METP [kg 1.4-DCB] 1.7 × 105 1.3 × 106 4.7 × 106 4.3 × 106 5.8 × 104

HTP [kg 1.4-DCB] 2.4 × 106 1.4 × 107 9.6 × 107 9.2 × 107 7.5 × 105

FFP [kg oil eq] 1.2 × 106 7.3 × 106 1.7 × 107 1.1 × 107 4.1 × 105

WCP [m3] 5.4 × 104 2.0 × 105 3.9 × 105 2.9 × 105 7.0 × 104
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In order to make the interpretation of results easier, disposable masks and other ones
that allow total or partial reuse of the device were analyzed separately. The first group
refers to M2, M3, and M4; it should be kept in mind that the useful life of M2 is half of M3
and M4 but entails fewer environmental impacts for its manufacturing. M3 greatly differs
from M4 in the FFP, GWP, and OFP categories (about 36%, 32%, and 27%, respectively),
with the average difference of 20%. The variations within these two models, which have
the same lifespan, are due to, among other factors, the fact that the M3 is composed of five
different components, and the amount of plastic (PP) used is double that in the M4 case.
On the other hand, when comparing M4 and M2, it is observed that the highest differences
occur in the HTP, METP, and FETP categories (about 85%, 68%, and 67%, respectively),
with an average difference of 40%. The fact that the average difference is notably greater
in this second case is due to the completely different manufacturing and use phases of
M2 with respect to M4. In addition, the amount of material necessary to fulfill the overall
demand of face masks is significantly different for M4 and M2; thus the mask production
for M2 has a greater impact.

As regards reusable solutions, after comparing M1, which allows the reuse of the mask
structure since the filters are disposable, with M5, which can be reused up to 50 washes
without losing the filtration performance, it is observed that the greatest difference occurs
in HTP, FFP, and METP (about 69%, 66%, and 66%, respectively). By contrast, the impact
of ODP and WCP categories of M5 are higher than those of M1 (about 33% and 30%,
respectively). The fact that WCP is higher in the case of M5 is due to the cotton used during
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the mask production phase (a critical material for this indicator) and the maintenance (i.e.,
washing) required by this mask during its useful life for the purpose of disinfection.

Subsequently, a more in-depth analysis of the midpoints for each mask was carried
out. Figure 6 shows the results for M3, which exhibits the highest levels of impact.
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As can be inferred, in almost all categories, the upstream production of the mask is
the phase causing the most impact during its life cycle. Only in FETP, METP, and HTP, the
end of life causes the highest impacts. This distribution of the impacts of contributions
is quite similar to that of M1 and M4 masks (the other devices studied with FFP2 filters).
However, considering the given functional unit, which recalls the time frame of a month
for the M2 and M5, the influence of volume of masks required is higher in all categories
without any exception.

Given its great relevance, the results of the mask production phase were studied in
detail. Due to the fact that GWP is the most relevant indicator for polymers [62–64], Figure 7
shows the comparison of the different models studied in terms of GWP. As expected, M1
has the greatest value due to the amount of plastic required to produce its structure, but this
initial impact will be offset during the use phase (due to the reuse of this part of the mask).

Endpoints (HH, ED, RA) were also analyzed, allowing a global overview of how
each component affects each area of protection and thus facilitating decision making for
eco-design. As can be inferred in Figure 8, in the case of the M1 mask, the 3D-printed
structure, which is also the reusable part of this device, is the part with the greatest impact
during its production. This fact shows the importance of the material selection, seeking
durable and easy-to-disinfect solutions.
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For M2 (see Figure 9), the nose adapter (made of aluminum) is the component that
has the greatest impact on HH and ED, while in the case of RA, the material needed to
make the mask (PP and PE) represents the most critical flow.

M3 is composed of five elements, with nose protection practically negligible. Once
again, the nose adapter is the most relevant on HH and ED, while for the RA endpoint, the
valve is the component that has the greatest impact, as can be seen in Figure 10.
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The results of M4 are shown in Figure 11 and are analogous to the previous ones but
without the valve and the nose protection.

Lastly, for the M5 mask, the bands (made of cotton) have the greatest impact on HH
and ED, while for the RA endpoint, the material used as a filter causes the highest level of
impact (see Figure 12).
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Finally, in order to understand in more detail the energy resources used during the
life cycle of these devices, the results of the CED are shown (Table 6).

Table 6. Cumulative energy demand for the use phase.

Impact Category Unit M1 M2 M3 M4 M5

Non
renewable

Fossil MJ 5.4 × 107 3.3 × 108 7.6 × 108 4.8 × 108 1.9 × 107

Nuclear MJ 3.7 × 106 1.9 × 107 7.3 × 107 3.9 × 107 2.0 × 106

Biomass MJ 4.2 × 103 5.5 × 103 1.2 × 104 1.1 × 104 6.2 × 103

Renewable
Biomass MJ 3.5 × 106 3.7 × 106 1.3 × 107 7.6 × 106 1.6 × 106

Wind, solar, geothermal MJ 3.0 × 105 7.4 × 105 3.6 × 106 2.0 × 106 1.7 × 105

Water MJ 1.1 × 106 1.4 × 107 2.3 × 107 1.8 × 107 6.4 × 105

Total MJ 6.3 × 107 3.7 × 108 8.7 × 108 5.5 × 108 2.3 × 107

As in the previous cases, M3 has the highest values, followed by M4, M2, and with a
large difference (of an order of magnitude), M1 and M5. The fact that M1 and M5 are not
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disposable masks makes their demand during the whole life cycle much lower. This result
explains why their values of CED are lower, as in the other impact categories. From these
results, it can be inferred that to reduce the impacts related to resources and energy (RA
and CED), action must be taken on the filters. If the objective is the ecosystem and human
health, the nose adapter is more relevant.

After the LCA analysis, a study of the circularity of these devices was also carried out
through the MCI (Table 7). The first analyzed mask was the 3D-printed (M1) mask, for
which the utility parameter was based on lifespan. M1 is composed of the mask structure
and filter, which have a very different useful life, thus MCI was calculated separately. For
the 3D-printed structure, it is assumed that the durability is 300 times higher than an FFP2
mask, which is 8 h (X = 300). On the other hand, filters have a lifespan equal to the average
of the FFP2 devices (X = 1). In all cases, it was considered that the source of input materials
is “virgin” and that 100% of output materials have a landfill destination.

Table 7. Utility and MCI for different masks.

Type Utility MCI

M1 filter 1 0.1
M1 structure 300 1.0

M2 1 0.1
M3 1 0.1
M4 1 0.1
M5 50 0.9

As can be seen in Figure 13, the M1 structure is a completely circular product (because
of high utility), while the M1 filter (along with other disposable devices) is considered
fully linear. In order to increase the circularity of this mask, recycled or reused sources
for materials should be used, together with actions aimed at increasing utility. In general,
eco-design actions should be mainly focused on masks considered fully linear since these
devices have the worst circularity performance.

1 

 

 

 

 

Figure 13. MCI chart.
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3.2. Knowledge-Based System for Eco-Design

Through the results of various indicators revealed in the previous section and taking
into account the objectives of this study, which seeks to create a guide of eco-design actions
that allows reducing the negative impact on the environment due to the design and pro-
duction of face masks, it can be established that the best alternative studied is M5, followed
by M1. This demonstrates that totally or partially reusable products favor the reduction of
negative impacts. By following the methodology described in Section 2.2, Table 8 reports a
list of eco-design actions to make face masks a more circular and sustainable product. To
improve the usefulness of the identified guidelines, they have been divided according to
the main phases of the mask life cycle: material and manufacturing, use, and end of life.

Table 8. Eco-design guidelines.

Lifecycle Phases Criticalities Related Eco-Design Guidelines

Material and manufacturing

High impacts related to manufacturing
process (3D printing) (M1)

• To choose the most sustainable and low
energy-intensive 3D printing processes

• To evaluate if it is a large production
volume and change the manufacturing
process to a more sustainable one (i.e.,
injection molding)

High impacts due to complex structure
(M3)

• To reduce the number of components
(integrate parts with same material)

• To use as few diverse materials as possible
• To avoid outlet valve

High impacts and low circularity due to
the use of virgin materials (M1, M2, M3,
M4, M5)

• To choose more sustainable materials (i.e.,
PP instead of PE)

• To avoid coupling PP and PE for the
manufacturing of filters (nonwoven fabric)

• To use a mix of virgin and recycled input
materials (or if possible, only recycled
plastics)

• To avoid the use of Aluminum as nose
adapter

Use

Disposable products (M2, M3, M4)
• To prefer washable and reusable (fully or

partially) products

Low duration of filters (M1)

• To increase useful life of the filters by
modifying the material’s properties (i.e.,
surface activated filters) [65–67]

• To optimize weight and surface of filters
• To use washable and interchangeable filters

End of life

Multimaterial for filters that reduces
circularity (M1, M2)

• To use single materials

Difficulties in separating components and
materials (M2, M3, M4)

• To develop products according to the
design for disassembly rules

• To reduce the number of components
• To use easy to disassemble joints (i.e.,

snap-fit and press-fit)

Open loop EoL (M1, M2, M3, M4, M5)
• To develop dedicated EoL processes for

material recycling
• To organize dedicated collection systems

3.3. Mask Development Process

As can be seen, LCA and MCI help to identify the critical factors of the product (face
mask) and successively define eco-design actions that can be taken into account during the
design of new masks, thus creating a framework for the development of these products
in a sustainable manner. In this way, following the methodology proposed by Pahl and
Beitz [59], a new product can be developed in a very short time, concentrating efforts
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on critical aspects and making the reaction to this health emergency swift and efficient.
Applying the process workflow explained in Section 2.3, it is possible to obtain a mask
prototype adapted to the needs expressed in the list of requirements. The main level of
functional analysis is shown in Figure 14.
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The input flows identified in terms of material, signal, and energy can be defined
as follows:

• Fresh contaminated air: the material needed for breathing;
• Protection signal: the signal to activate the protection;
• Human force: the force required to apply the protection.

On the other hand, two outputs have been considered:

• Exhausted air: represents the result of the breathing process (contaminated air);
• Heat: generated by the breathing process.

After having defined a detailed functional structure, results of the modularization
phase that takes only the dominant flow into account can be seen in Figure 15, identifying
five modules and two auxiliaries: (i) import and regulate air, (ii) allow safely breathing; (iii)
protect and cover exposed body parts; (iv) guarantee filter efficiency; (v) guarantee filter
change; (Auxiliary 1) display filtering status; and (Auxiliary 2) personalize.

The full set of modules identified by the use of the three heuristic methods are reported
in the following Table 9.

Table 9. Modules retrieved by the use of the three heuristic methods.

ID Module Type DF CTM BF

A Import and regulate air Main X
B Allow safely breathing Main X
C Protect and cover exposed body parts Main X
D Guarantee filter efficiency Main X
E Guarantee filter change Main X
F Personalize Auxiliary X
G Display filtering status Auxiliary X
H Display protection sterilization Auxiliary X
I Extract water after virus separation Auxiliary X X
L Monitor protection efficiency Auxiliary X
M Convert air Main X X
N Dissipate exhaust air Main X X
O Block water droplets after breathing Main X X
P Ergonomic for fixation and adaptation Main X
Q Dissipate heat Auxiliary X
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The technological implementation was carried out taking into account all the eco-
design actions (i.e., type of filter material, ease of disassembly), creating a morphological
matrix. An excerpt of the results is shown in Figures 16 and 17.
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All the design steps previously described were carried out by the same authors of
this work following the design process described by [59]. In particular, a systematic re-
quirements analysis (also known as requirements engineering) was adopted, and several
tools were used to define the list of requirements (i.e., market analysis, discussion forum,
checklist) [68]. As previously mentioned, for the development of functional/modular de-
composition, the approach proposed by Pahl and Beitz [59] was adopted for the functional
analysis, while the heuristic method developed by Stone and Wood [60] was used for the
module derivation. Finally, the last step dealt with the definition of the morphological
matrix, which was carried out with brainstorming sessions between the authors of this
work, other researchers, and students of the mechanical engineering course, including
systematic analysis of the industrial patents.

After all analyses, it was possible to obtain a final mask result, combining the different
solutions identified in the morphological matrix in order to fulfill the requirements pre-
viously established and taking into account the eco-design guidelines identified through
the initial LCA and MCI analyses. The device proposed in Figure 18 is the simplest ver-
sion, which only considers the main modules, and it was developed by the authors of
this work, together with classroom work performed with the students of the mechanical
engineering course.
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Figure 18. Face mask prototype developed by the authors of this work.

In this device, respiration (inhalation and exhalation) is carried out by natural de-
pression (thus avoiding electronic devices, which increase the number of components
with the corresponding economic and environmental impacts). For the filtering phase, a
widely used N95 filter was chosen, minimizing the surface in order to reduce the amount
of material used. In addition, it was decided to activate the filter surface with metallic
oxide coating to guarantee its efficiency and antimicrobial properties [22,67]. In order to
simplify the filter changing process, a snap-fit fixing system for the mask structure and the
cover of the filter was chosen in order to have an economic and easy-to-use solution. Fur-
thermore, to optimize shape and dimensions based on the anthropometric and ergonomic
characteristics, the mask wearability was studied with a virtual human model (Figure 19).
The ergonomic analysis was performed by the authors of this work using a virtual fit
assessment method (by means of CAD environment) to design a facial mask that fits with
people presenting different anthropometric features (e.g., the distance from the ear’s tragus
up to the top point in the bridge of the nose, the height of the tip of the nose, skull width,
the distance between eyes, nose width, etc.) [69]. The study was developed using 3D face
scan data of more than a hundred people to find the most proper shape of a facial mask.
Since this phase is not the focus of this work, the ergonomic analysis is not discussed
in detail.
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4. Discussion

After the LCA and MCI analyses, it is possible to observe that a reduction of 650,000 tons
(extending results to one year) in terms of CO2 eq. emissions can be obtained in Italy by
simply choosing reusable devices such as M5 instead of disposable masks such as M3.
In this way, benefits at the environmental level and the improvement of the circularity
can be appreciated. This decision allows reducing GHGs and also leads to an economic
benefit. After the development of the new mask designed by following the proposed
methodology and the identified eco-design suggestions, an environmental impact analysis
of this innovative prototype was carried out in order to make a comparison with M1
since both are devices with similar characteristics (reusable structure of the mask and
disposable filters). For this new mask, the manufacturing process selected was injection
molding, based on the guidelines defined above, highlighting the 3D printing process as a
criticality. It was verified that the optimized model produced by injection molding using PP
as material for the mask structure obtains better results in almost all the indicators studied.
Figure 20 shows the normalized results; in this way, the percentage advantage obtainable
with the new solution can be inferred. The only category in which the new design has a
greater impact is FFP, due to the use of a fossil-based material (i.e., PP). However, these
impacts can be mitigated by substituting this type of plastic with a well-known and largely
used bio-based plastic (i.e., PLA) [70].
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Results for the use phase, when disposable filters are used, are analogous to those ones
shown in the mask production phase, confirming the design improvement. In addition,
if filters are substituted with washable ones (following the eco-design guidelines that
recommend the use of nondisposable filters), the proposed mask prototype has the lowest
impact on the use phase of all devices studied, even lower than M5 (see Figure 21). This
result is in line with recent work [71] developed on the same subject but using a different
metric than LCA (i.e., the environmental impact index (EI)). Indeed, the mentioned work
highlights that quilt and cotton are appropriate cloth-from-cotton material for making a
nonmedical mask with the highest quality of filtration efficiency and breathability while
having the lowest environmental impact, whereas polypropylene fabric is the worst mate-
rial in terms of environmental impact. Alternatively, another interesting research work [72]
tried to investigate the adoption of recycled material from reprocessed FFP2 face masks.
The study demonstrated how the reprocessed material has a lower environmental impact
and financial burden than new disposable face masks without compromising qualifications
and filtration efficiency.
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Figure 21. Normalized midpoints for the use and EoL phases (new mask prototype with washable
filters vs. washable mask).

Concerning the maintenance phase for this mask, the use of ethanol for the main
structure (mask body) and soap and water for the filters allows combining the advantages
of the M1 and M5. This significant benefit is mainly due to the fact that the greatest efforts
of the eco-design process are concentrated on the improvement of the use phase.

Summarizing, it is possible to affirm that the usefulness of this type of methodologies
and approach to developing new sustainable face masks has been clearly demonstrated by
this study. Despite the fact that to date it has only been applied in the context of face masks
development, it can be certainly used for the development of other widely used protection
devices (e.g., suits, gloves), replicating the process with the needed customizations (e.g.,
the definition of specific eco-design guidelines, use of appropriate KPIs for each product)
and obtaining environmental improvements also in these products.

Finally, some limitations of this study should be mentioned. For example, a univocal
EoL scenario was studied. If sanitary landfills would have also been considered an end-
of-life scenario, a reduction in impacts could have resulted, especially in the case of M3
and M4 devices, which are the ones that generate the most plastic waste. However, it
is clear after studying the results of this research that even if a sanitary end of life had
been considered, the values of the circularity index would not have changed since the
method used to calculate MCI makes no distinction between landfill types. To avoid
this limitation, the circularity study can be extended using other additional indicators.
Despite incineration shows high GWP (as confirmed by the study [34]) it is a promising
option for the management of this waste compared with landfilling among all the others
impact categories.
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Lastly, it should also be taken into consideration that the results of the M5 mask
vary depending on the material used and the number of times it can be washed with-
out losing filtering properties, this being a key factor for both the environmental and
circularity performance.

5. Conclusions

The present paper focuses on the proposal of an eco-design methodology to support
designers in the development of environmentally sustainable face masks. The work was
performed by using well-known methods for the environmental and circularity analysis
of products (i.e., LCA, MCI). Consolidated procedures to formalize useful knowledge on
past experiences (i.e., the definition of eco-design guidelines) and to reuse it for product
improvement projects (i.e., systematic approach to design with specific constraints due
to the pandemic situation) were followed to derive eco-design action in the development
of sustainable facial masks. To date, this study can be considered the first attempt in the
protection devices sector to contribute to the preservation of the natural environment while
facing the world COVID-19 emergency, with a preventive approach to be applied during
the design phase. More generally, considering that the risk of future unexpected events
such as the COVID-19 pandemic is not null, it can be affirmed that this kind of methodology
will be useful each time a very high demand for disposable fossil-based products (as face
masks) will be needed to face an emergency situation.

Results obtained with the first methodology step allow having an overview of the
environmental performance of five common face masks and lay the foundation for the
successive definition of design best practices. Reusable masks (M1 and M5) have clear
advantages, compared to disposable products (M2, M3, and M4). However, these products
also cannot be considered really sustainable, and different criticalities were identified
(e.g., use of fossil-based or impactful materials, open-loop end of life). The proposed
redesigned project demonstrated that by starting from the knowledge of the environmental
performance of well-known products, it is possible to obtain significantly improved face
masks in all the used KPIs by preventing observed criticalities and applying the best design
choices concerning material selection, sustainable manufacturing processes, and durability
of mask components.

Future developments will regard the following points:

• LCA analysis refinements: an extension of the environmental and circularity analyses,
which include additional details (e.g., specific inventory for the nonwoven fabrics man-
ufacturing, the inclusion of the waste collection phase within the system boundaries,
etc.) will help in a definition of more specific guidelines and actions;

• LCA analysis scenarios: additional scenarios (e.g., sanitary landfill EoL, different
typologies of washable masks, etc.) will allow defining a larger set of design guidelines
ad to provide the best solution for policymakers in this complex context;

• Consequential LCA: since the production and disposal of anti-SARS-CoV-2 masks are
becoming of global importance for the socioeconomic management of the pandemic,
an additional consequential LCA will be able to estimate how the global environmental
burdens are affected by the production and use of this product. Consequential LCA
could bring some additional important conclusions to couple with the results of
this study.

Another direction of research could be the definition of multiobjective design method-
ologies dedicated to the sustainable development of face masks looking at the promotion
of two combined targets: (i) the minimization of negative environmental impacts (as in the
present paper) and (ii) the maximization of other performance (e.g., filtration efficiency,
cost estimation, etc.).

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/su13094948/s1, Excel file.
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