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Abstract: Various wastewater treatment technologies are available today and biological processes
are predominantly used in these technologies. Increasing wastewater treatment systems produces
large amounts of sewage sludge with variable quantities and qualities, which must be properly
managed. Anaerobic and aerobic digestion and composting are major strategies to treat this sludge.
The main indicators of biological stabilization are volatile fatty acids (VFAs), volatile solids (VS), the
carbon/nitrogen (C/N) ratio, humic substances (HS), the total organic carbon (TOC), the carbon
dioxide (CO2) evolution rate, the specific oxygen uptake rate (SOUR), and the Dewar test; however,
different criteria exist for the same indicators. Although there is no consensus for defining the stability
of sewage sludge (biosolids) in the research and regulations reviewed, controlling the biological
degradation, vector attraction, and odor determines the biological stabilization of sewage sludge.
Because pollutants and pathogens are not completely removed in biological stabilization processes,
further treatments to improve the quality of biosolids and to ensure their safe use should be explored.

Keywords: biological stabilization; biosolids; organic matter; sludge management; sewage sludge;
wastewater treatment

1. Introduction

The increasing population will increase municipal wastewater (MWW) generation,
and existing sanitation strategies should focus on increasing the wastewater treatment
coverage by selecting appropriate treatment technologies based on local conditions [1,2].
On average, although 70% of the MWW generated in high-income countries is treated,
only 38%, 28%, and 8% are treated in middle-, middle–low-, and low-income countries,
respectively [3,4].

Zhang et al. [5] and Collivignarelli et al. [6] showed that the characteristics of sewage
sludge, such as the solid concentration, organic matter (OM), nutrients, heavy metals, and
pathogens, vary depending on the following parameters:

(i) The characteristics of the wastewater (e.g., the biochemical oxygen demand—BOD5,
the chemical oxygen demand—COD, and the total suspended solid—TSS).

(ii) The type of the wastewater collection system (e.g., a sanitary sewer, storm water, or
combined systems).

(iii) The type (e.g., biological or chemical) and stage (i.e., primary, secondary, or mixed) of
the wastewater treatment process from which the sludge originates.

(iv) The sludge stabilization processes (e.g., anaerobic and aerobic digestion, composting,
and chemical and thermal treatment).
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(v) The operation conditions, wastewater treatment, and sludge stabilization processes
(e.g., the temperature and the sludge retention time).

According to UN-Habitat [7] and Wijesekara et al. [8], the worldwide annual produc-
tion of sewage sludge was estimated to be 100 million tons (Mt) in 2017 and is projected to
reach 175 Mt by 2050.

The final disposal is an important aspect in sewage sludge management because it can
affect the environment (e.g., greenhouse gas emissions or the accumulation of heavy metals
in soil), economy (e.g., transportation costs and the area requirement in the final disposal),
and society (e.g., public acceptance, land occupation, and public health) [8,9] differently.

For promoting the safe management of sewage sludge, the impact of the treatment’s
operating conditions, the properties of the MWW on the sludge’s characteristics, and the
efficiency of the stabilization processes according to the regulations of each country or
region must be evaluated to identify the potential use of sludge [10,11].

The stabilization degree of the sewage sludge achieved can be identified by specific
bacteria promoting the biodegradability of OM (biological stabilization), the chemical oxi-
dation of OM (chemical stabilization), and the effect of heat stabilizing the volatile fraction
(thermal stabilization) [12–14]. Biological processes constitute the most used strategy for
sludge stabilization worldwide [15]. About the microbiological and parasitological quality,
further treatments (hygienization) reduce the presence of pathogens in biosolids to ensure
safe practices for reusing biosolids in agriculture [16,17]. Currently, several studies have
revealed the detection of particles of SARS-CoV-2 in MWW and sewage sludge during the
pandemic (COVID-19) [18,19].

The terms sewage sludge and biosolids are often used interchangeably [20]. World-
wide, the term biosolids indicates a stabilized sewage sludge, which achieves this condition
by one or more treatments and meets the regulations for beneficial use [6,12]. The circular
economy approach prioritizes implementing biosolids-reuse strategies, such as agricultural
use, which promotes the replacement or reduction in using chemical fertilizers, resulting in
economic and environmental benefits [21–23]. Reusing biosolids in agriculture is the most
used disposal option in some countries such as the United Kingdom (79%), Spain (64%),
Australia (55%), and the United States (36%) [24,25].

In Latin America, interest in this topic and the potential use of biosolids with a high
agricultural vocation has been growing [26]; although systematic review articles discussing
the treatment of municipal wastewater [1–3,26], processes for sludge treatment [5], and
the reuse and assessment of sludge [6,11,15,20,23,25] have been published, this manuscript
presents a bibliometric analysis and a comprehensive reflection on the research trends
related to the technologies in municipal wastewater treatment plants (WWTPs) and their
influence on the biological stabilization of sewage sludge. The different indicators and
criteria are analyzed for the biological stability of the reported sludge and their relationship
with sewage water treatment technologies, unveiling no consensus in defining sewage
sludge (biosolids) stability or any standardized treatment process indicators.

2. Methods

Based on a bibliometric analysis (2001–2021), the sources of information were two
databases, i.e., Scopus and SciELO (from international and Latin American contexts, re-
spectively). The keywords and search equation were defined in English, Portuguese, and
Spanish using boolean operators (“AND” and “OR”) [27] and were placed between the
keywords to perform the search, e.g., (“municipal wastewater” OR “wastewater treatment”)
AND (“sewage sludge” AND “biosolids” AND “sludge stabilization” OR “biological stabi-
lization” OR “sludge management”) AND (“regulations” OR “organic matter” OR “vector
attraction” OR “stability indices” OR “stability indicator”). Figure 1 shows the stages
developed in the methodology according to the preferred reporting items for systematic
reviews and meta-analyses (PRISMA) [28].
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Figure 1. Stages of systematic reviews. Source: adapted from Shah et al. [28].

The information retrieved from the databases included (i) citation information, (ii) the
abstract and keywords, and (iii) bibliographical information, including references to each
scientific paper [29]. Subsequently, with “.RIS” files of the citations, the software Mendeley-
Desktop© (version 1.19.4, Mendeley Ltd., London, UK) was used as a bibliographic man-
ager, where the publications from the databases were unified and the duplication of the
articles was identified to facilitate the organization and review of the information in the
bibliometric analysis.

With the refined information, the free version of the software RefViz© (trial version 2.1.2,
Omni Inc., Kennesaw, GA, USA) was used to review the content of the articles, support
theories and concepts, condense the results, and feed the analyzed data; subsequently,
a co-occurrence analysis was performed on the keywords, and clusters were formed
that presented similarities or proximities, allowing for the compilation and review of
the articles [27].

The results were visualized using the software VOSviewer© (version 1.6.18, Centre for
Science and Technology Studies of Leiden University, Leiden, The Netherlands), enabling
the analysis of the trends in the development of the topic under study with a minimum of
10 co-occurrences between the keywords [30].

3. Results
3.1. Bibliometric Data

The search equation identified 806 related scientific articles. Scopus found the highest
number of publications (528) followed by SciELO (278). Figure 2a shows the growth trend
of the publications from 2001 to 2021 and according to country. Particularly, in the last five
years, 60 to 100 publications have appeared per year.

Figure 2. Number of publications (a) in databases and (b) by country.
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The trend in the number of publications is related to the evolution of concepts and
programs in governments and agencies, such as zero waste, reduction, reuse, and recy-
cling in the first period (2001–2010) and the second period (2011–2021) with the inclusion
of the regulations, politics, and sludge management strategies associated with Sustain-
able Development Goals, proper planning, environmental protection, public health risks,
sustainability, recovery, a life cycle analysis, and a circular economy [6,10,11].

Brazil had the highest number of publications (28%), followed by the United States
(17%) and China (15%). Figure 2b describes the top 10 countries reporting publications,
adding the production per country in the databases (Scopus and Scielo) with the aim of
including a Latin American context in the international analysis. In the Latin American
context, Colombia ranks second after Brazil, although it only represents 6% of the pub-
lications in the period analyzed. In terms of the associated knowledge, environmental,
agricultural, biological, and engineering sciences stand out at the international and Latin
American levels.

Figure 3 shows the keywords related to the search equation: the main keywords
are labeled in a circle, with each circle’s size defining the frequency of the appearance of
these words in the analyzed articles; the larger is the circle, the greater the co-occurrence.
The color represents the time and the lines represent the links between the keywords. In
addition, the distance between two keywords indicates the strength of the relationship;
that is, the closer they are, the more connections they have [30].

Figure 3. Cluster network obtained through the bibliometric mapping of keywords.

We found 96 keywords that group research trends into three clusters: Cluster I repre-
sents the technologies in municipal wastewater treatment plants (e.g., biological treatments,
activated sludge, and bioreactors); Cluster II represents the sewage sludge characteristics
(e.g., the OM, pathogens, heavy metals, and nutrients); and Cluster III represents the bio-
logical stabilization processes of sewage sludge (e.g., composting, aerobic, and anaerobic
digestion). The development of each cluster is given below.

The keywords presenting the highest number of co-occurrences in descending order
were wastewater treatment, anaerobic digestion, sewage sludge, activated sludge, and
sludge stabilization. Regarding the research trends, some current topics are highlighted,
such as a circular economy, waste activated sludge, advanced oxidation processes, organic
compounds, and emerging contaminants. Furthermore, interest still arises around other
issues such as wastewater and sludge final disposal, biodegradation, heavy metal, and
pathogens, which is of great importance in terms of assessing the potential use of treated
wastewater, sewage sludge, and biosolids.
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3.2. Municipal Wastewater Treatment Plants (WWTPs)

The composition of MWW is associated with the eating habits of the population and
their types of industrial, institutional, and commercial activities. The OM present in MWW
constitutes proteins (40–50%), fats (5–10%), lipids (5–10%), fibers (5%), and carbohydrates
(25–50%). The quantity is related to rapid population growth, urbanization, improved
living conditions, and economic development [3,31].

Unit operations (physical) and processes (chemical and biological) have been identified
in four stages of treatment: preliminary, primary, secondary, and tertiary or advanced [32].
Regarding the reduction in the OM, the bibliometric analysis identified that biological
processes (93%) are the most studied and applied, with 63% of them associated with aerobic
and 37% with anaerobic metabolism.

Figure 4 shows the leading technologies in municipal WWTPs used in different coun-
tries, which were selected based on bibliographical information published on the two
databases accessed, prioritizing the countries identified in Figure 2b. Although the ac-
tivated sludge system is the most widely used technology in high-income countries, in
middle-income countries, stabilization ponds (SP) are the most commonly used technolo-
gies because despite the large area requirement, they have advantages such as low costs,
operational simplicity, and sludge stabilization [3,26]. They are followed by an upflow
anaerobic sludge blanket (UASB) and activated sludge systems. In low-income countries,
primary treatment technologies predominate (e.g., septic tanks, Imhoff tanks, and primary
sedimentation) [1,4].

Figure 4. Main technologies in WWTPs used in different countries. A2/O: anaerobic−anoxic−aerobic;
A/O: anaerobic−aerobic; UASB: upflow anaerobic sludge blanket; and other processes: primary treat-
ment (septic tanks, Imhoff tanks, primary sedimentation, etc.). Source: adapted from Noyola et al. [1],
Sato et al. [3], the World Bank [4], Pedroza et al. [13], Kaur et al. [33], Jin et al. [34], Rakedjian [35],
CONAGUA [36], Zhang et al. [37], Jin et al. [38], SSPD [39], and Maltos et al. [40].

In the field of aerobic treatment, activated sludge technology has different modalities,
predominantly the conventional activated sludge (CAS), sequential batch reactor (SBR),
extended aeration-activated sludge (EAAS), membrane biological reactor, the elimination
of the improved biological phosphorus (EBPR), and to a lesser extent, contact stabilization,
bed biofilm reactor (MBBR), and oxidation ditches [35,38,40].

The UASB is the most widely used anaerobic system, particularly in middle- and
low-income countries with a tropical climate, such as Brazil, India, and Colombia [1,33].
Generally, the post-treatment requirement of these systems in the case of low- and medium-
load MWW for non-compliance with the discharge regulation [41,42] has led to the growth
of dual technologies (mainly anaerobic followed by aerobic; A/O, A2/O) [37,40,43], which
have benefits such as low energy and chemical consumption, a reduced sludge quantity



Sustainability 2022, 14, 5910 6 of 21

to be disposed, low equipment requirements, high operational simplicity, and sludge
stabilization in the same anaerobic phase by avoiding the additional use of the biological
stabilization processes of sewage sludge [2,34].

Table 1 shows a comparative analysis of the main characteristics of the biological
systems (used for MWW treatment) documented in the articles and identified in 567 of the
806 publications, such as the activated sludge (e.g., CAS, EAAS, and SBR) and anaerobic
treatment (e.g., UASB).

Table 1. Main characteristics of biological treatment technologies documented in articles.

Characteristics CAS EAAS–SBR UASB

Kinetics of organic
matter conversion

CnHaObNc + 5O2
↓

CO2 + H2O + NH3 +
biomass

CnHaObNc + 7O2
↓

CO2 + H2O + H+ + NO3
−+

biomass

CnHaObNc
↓

CH4 + CO2 + H2O + NH3 +
biomass

Area requirement
(m2/inhabitant) 0.2–0.3 0.25–0.35 0.1–0.2

Sludge retention time (SRT) 4–15 days 18–30 days 30–40 days
Hydraulic retention time
(HRT) 5–14 h 18–36 h 6–14 h

Removal efficiency of COD 80–90% 90–95% 60–70%
Removal efficiency of BOD5 85–95% 80–98% 60–80%
Energy requirements Reduced High Low to moderate
Temperature influence Average High High
Biological stabilization of
sludge Low and insufficient Sufficient High

Complementary biological
stabilization processes of
sludge

Necessary Not required Not required

Sludge production (L/per*d) High (8.2) Medium (3.3–5.6) Low (0.2–0.6)

COD: chemical oxygen demand; BOD: biological oxygen demand; CAS: activated sludge conventional; SBR:
sequential biological reactor; EAAS: extended aeration activated sludge; and UASB: anaerobic upflow reactor
with sludge mantle. Source: adapted from Noyola et al. [1], von Sperling et al. [41], and Chan et al. [42].

The type of treatment system or metabolism employed influences the quantity and
quality of the sludge, i.e., it affects the sewage sludge stabilization, and thereby the sludge
management (e.g., the costs, technologies, and usage) [42,44]. High SRT (>18 days) sys-
tems result in a low quantity of produced sludge and the development of biological
stabilization processes in sewage sludge [32,43]; however, although researchers such as
Cokgor et al. [45] and Fisher et al. [46] indicate that the biological stabilization of sewage
sludge in EAAS or a SBR is sufficient and comparable to anaerobic processes (e.g., UASB),
other researchers [47,48] indicate that the sludge produced from EAAS cannot be consid-
ered digested or stabilized because of the influence of the temperature and the SRT on the
endogenous decay coefficient.

3.3. Sewage Sludge Characteristics

The annual sludge production in the three countries is as follows: (i) Brazil, with
1.5–3.0 million tons (Mt) for 188 million inhabitants and 20–40% produced from MWW
treatment (43% with SP and 30% with UASB reactors); (ii) the United States, with approxi-
mately 17 Mt for 298 million inhabitants and 60–80% produced from MWW treatment (75%
with CAS technology); and (iii) China, with 12 Mt for 1313 million inhabitants and 40–60%
produced from MWW treatment (21% with CAS and 31% with dual systems) [7,25,49,50].

In Germany, the annual sludge production is 2.3 Mt, followed by India and South
Africa (2.3 Mt and 1.0 Mt, respectively), and the United Kingdom (1.05 Mt) [25]. In Latin
American countries, the sludge production is approximately 0.64 Mt in Mexico [36] and
0.37 Mt in Colombia based on the main municipal WWTPs located in Bogotá, Cali, and
Medellin [39].
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Historically, sewage sludge management has focused on the final disposal practices,
such as incineration and landfill disposal on soil or even in the ocean [51]. However, to
adopt practical sustainable solutions, the general requirements (e.g., the production and
monitoring frequency), the sewage sludge’s physical, chemical, microbiological, and para-
sitological characteristics, the environmental and operating conditions of the stabilization
processes (e.g., the temperature, SRT, and efficiency), and good management practices
(e.g., application rates and agricultural use) must be developed and controlled [9,52].

According to Lu et al. [53] and Kumar et al. [20], sewage sludge contains 50% car-
bohydrates (sugar, starch, and fiber), 20% fat, representing approximately 30–40% OM, a
carbon–nitrogen ratio (C/N) of 10–20%, high levels of heavy metal ions (Cu and Zn), and a
pH normally between 6.5 and 7.0. The sewage sludge contains the nutrients necessary for
developing agricultural crops, such as nitrogen (N: 3–8%) and phosphorus (P: 1.5–3%) in
large quantities and potassium (K: 0.1–0.7%), calcium (Ca), and magnesium (Mg) in low
quantities, which increases the potential agricultural use [10,25].

In the sewage sludge, the OM content can be quantified indirectly in terms of volatile
solids (VS) [14]. This variable depends on the treatment from which the sludge originates;
thus, primary sludge has a higher VS content than secondary sludge originating from
both aerobic and anaerobic treatment systems due to the degradation of OM in biological
reactors [54,55].

Depending on aspects such as urban development, industrial activities, the character-
istics of the population, and the sewerage service, sewage sludge may contain several toxic
substances, such as heavy metals; thus, their presence must be analyzed because some of
these metals are essential in agricultural use (such as Zn and Cu). In large proportions,
metals such as Ni and Cd can have toxicity effects in soil, and the low mobility of such
metals increases their concentration in the soil [25]. Other metals (i.e., As, Cr, Hg, Mo, Pb,
and Se) can cause potential risks to human, animal, and plant health [44,56].

An important aspect associated with the beneficial or toxic effects of the heavy metals
present in sewage sludge corresponds to pH because it influences their solubility. Par-
ticularly, acidic media can increase the solubility of heavy metals in sludge samples and
make them dynamically toxic; thus, a high risk may be associated with the acidic pH
range [57]. For pharmaceutical products such as disinfectants, laundry detergents, pes-
ticides, dyes, paints, preservatives, food additives, personal care products, and organic
pollutants, concern has increased owing to a risk to public health [24,58,59].

Pathogens present in sewage sludge originate from human feces and directly relate
to the diet and health of the population. They can also originate from animal sources,
whose excrement is disposed into the sewage system (e.g., dog and cat feces), or through
vectors in the sewers, mainly rodents [25]. These microorganisms grouped in bacteria,
including fecal coliforms, Escherichia coli, Campylobacter, and Salmonella sp. [14,60] and
parasites, including helminth eggs, represent a risk to human health. Their presence is high
in low- and middle-income countries [61]. Viruses, another group of pathogens present in
sewage sludge, are subjected to the technical capacity of each country for their detection
(e.g., enteric viruses) [62].

Recent reports have identified the presence of SARS-CoV-2 genetic material in MWW
and sewage sludge and have investigated its elimination in MWW treatment systems [18].
The particles of SARS-CoV-2 in primary and secondary sludge has been identified in the
MWW of the United States [63], Turkey [64], and Spain [19]. However, no epidemiological
data establishing a direct relationship between sewage sludge and the risk of a SARS-CoV-2
infection are currently available [18,65].

3.4. Biological Stabilization Processes of Sewage Sludge

The sewage sludge line (Figure 5) is an essential component of municipal WWTPs,
and all stages of sludge treatment can account for 40−60% of the total operating costs [66].
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Figure 5. Sewage sludge treatment alternatives. Source: adapted from Silva-Leal et al. [16],
Jin et al. [34], and the NRC [67].

The thickening reduces the water content of the sludge and increases the density
and solid content. Additionally, anaerobic/aerobic digestion (biological stabilization)
reduces the OM, vector attraction, and odor; dewatering reduces the remaining moisture
content in sewage sludge, facilitating its transport and final disposal. Further treatment
(hygienization) eliminates pathogens [6,10,12]. Table 2 summarizes the advantages and
limitations of the most common biological stabilization processes and the characteristics of
the material generated in each process.

Table 2. Advantages and limitations of biological stabilization processes and characteristics of the
sludge generated.

Process Advantages Limitations Characteristics of the
Sludge Generated Reference (s)

Anaerobic digestion
(AnD)

Reduction in the
biological degradation
(organic matter) and
attraction of vectors,
pathogens, and odor.
Potential to use the
main gas generated
(CH4).

High investment costs,
relatively slow degradation of
organic matter process, high
maintenance and qualified
operator requirements; the
process depends on the
temperature and the SRT.
Limited degradation capacity
of heavy metals and complex
organic compounds.
Excess moisture.
Emission of greenhouse gases
if biogas is not used as a source
of renewable energy.

Requires dewatering in
addition to requiring
further treatment
(hygienization) to
eliminate pathogens
and potentiate
unrestricted uses in
agriculture.

[5,32,50,55,68,69]

Aerobic digestion
(AeD)

Rapid reduction in the
biological degradation
(organic matter) and
attraction of vectors,
pathogens, and odor.

High operating costs, odor
formation, high maintenance
and qualified operator
requirements; the process
depends on the temperature
and the SRT.
Limited degradation capacity
of heavy metals and complex
organic compounds.
Excess moisture.
Emission of greenhouse gases.

Requires dewatering in
addition to requiring
further treatment
(hygienization) to
eliminate pathogens
and potential
unrestricted uses in
agriculture.

[50,55,69]
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Table 2. Cont.

Process Advantages Limitations Characteristics of the
Sludge Generated Reference (s)

Composting

Reduction in the
biological degradation
(organic matter) and
attraction of vectors.
Significant reduction in
pathogens.
Reduction in sludge
volume (up to 60% in
20 days)

Complex management by the
volume of sludge generated;
the process depends on the
temperature, lack of
availability of microorganisms,
and the presence of
unstabilized pathogenic
materials.
Limited degradation capacity
of heavy metals and complex
organic compounds. Heavy
metals are only transformed
into less mobile forms.
Emission of greenhouse gases.

Low moisture material;
however, the sewage
sludge requires
dewatering before the
composting process. It
produces value-added
products in C, N, and P
for horticultural,
nursery, and landscape
uses.

[5,50,55,69,70]

The stabilization process primarily results from the OM degradation, which has been
physically classified as soluble and particulate and biochemically classified as biodegrad-
able and non-biodegradable. The soluble biodegradable fraction, commonly referred to
as a rapidly biodegradable fraction, is related to the compounds that can be directly ad-
sorbed for synthesizing new cellular materials, such as VFAs, simple carbohydrates, amino
acids, and alcohols [43,48]. The particulate biodegradable fraction, known to be slowly
biodegradable, is related to the macromolecules that must be broken down into simpler
forms before being used by microorganisms [71].

According to the United States Environmental Protection Agency (USEPA) [12], the
meaning of “stabilized” sludge is not used uniformly, and the reduction in the biological
degradation, attraction of vectors, odor, and pathogens determines the stabilization degree
of the sewage sludge. Fisher et al. [46] related stabilization to the OM, pathogens, and
odor reductions in sewage sludge. In addition to the content of the OM and nutrients, it is
recommended to assess the presence of inhibitory substances, such as heavy metals and
pathogens, which could negatively influence the ecosystem and public health [68,72].

Selecting the biological stabilization process depends on factors such as the sewage
sludge characteristics, intended use, and final disposal conditions [73]. The bibliometric
analysis identified that the most commonly used biological processes are anaerobic diges-
tion (AnD; 49%), composting (27%), and aerobic digestion (AeD; 11%). The chemical (7%)
and thermal (6%) stabilization are used mainly for the hygienization process.

In the European Union, 50% of municipal WWTPs use AnD as a sewage sludge
stabilization strategy, 18% use AeD, and 8% use other chemical and thermal stabilization
processes (e.g., lime application and thermal drying), whereas 24% of municipal WWTPs
do not perform any stabilization process [15]. In the United States, 45% of municipal
WWTPs use AeD processes, 21% use AnD processes, 20% use other chemical and thermal
stabilization processes, 4% use composting, and the remaining 10% do not implement a
stabilization process [7,74]. In Canada (particularly Ontario), 34% and 16% of municipal
WWTPs use AeD and AnD processes, respectively [38].

In countries such as Brazil, China, Colombia, and India, AnD represents 35–40% of
municipal WWTPs, whereas AeD and composting are only applied to 5–10% of the total
municipal WWTPs, with the remaining not implementing a stabilization process [7,33,55].

The pathogens removal occurs through various mechanisms (e.g., the external energy
requirements, cellular decomposition—heterotrophic and autotrophic, endogenous respi-
ration, the death–regeneration of microorganisms, the predation of bacteria by complex
microorganisms, and cell lysis due to adverse environmental conditions—pH, toxic com-
pounds, or temperature) [45,48]. Bacteria die in 1 to 3 months; protozoa and helminth eggs
survive up to one year in sewage sludge [60] and enteric viruses and somatic phages persist
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for 9 to 14 months depending on the temperature and stabilization process of the sewage
sludge. Martín-Díaz et al. [62] indicate that somatic phages are a more accurate indicator of
the fecal contamination load and the risk of enteric viruses.

The exposure time and temperature conditions to achieve a high reduction efficiency
of bacteria and viruses are as follows: (i) for AnD, at least 15 days at 35–55 ◦C or 60 days
at 20 ◦C; (ii) for AeD, 10 days at 50 ◦C, 40 days at 20 ◦C, or 60 days at 15 ◦C; and (iii) for
composting, at least 15 days at 55 ◦C [50,75]. However, these processes show a low reduc-
tion efficiency (45%) of protozoa and helminths; further, complementary hygienization
processes are necessary for their removal [16,23,72].

In the case of small municipal WWTPs, the main concern of operators is to reduce
health and environmental risks in terms of toxicity [66]. The potential toxicity can be as-
sessed using the seed germination index (phytotoxicity), which provides information about
the impact of various hazardous substances and allows for the assessment of sensitivity to
individual plant species [56]. Phytotoxicity tests are valuable tools to assess the influence
of the stabilization degree on seed germination and root elongation; thus, toxicity tests are
included in the directives of relevant agencies (e.g., the USEPA, OECD, and ISO) [76,77].

Although the sewage sludge converted in biosolids contains less N, P, and K than
commercial fertilizers, they are considered organic fertilizers in agricultural activities
owing to their contribution of OM and nutrients [53], and the land application depends
on the amount of N provided, which must be transformed from its organic to inorganic
form (i.e., mineralization). This practice reduces the long-term environmental pollution
caused by N and P accumulation in the case of chemical fertilizer application and would
help farmers by lowering the cost of agricultural inputs and increasing the income from
crop production [21,22,72]. Rigby et al. [78] reported a mean mineralizable N fraction for
biological stabilized sewage sludge: approximately 29.8% organic N for AnD, 47.2% for
AeD, and 6.7% for compost.

Indicators Used to Evaluate the Biological Stabilization of Sewage Sludge

The effect of biological stabilization processes on the proportion of the OM, availability
of nutrients, and reduction in pathogens in sewage sludge has prompted efforts to under-
stand the efficiency of the implemented processes, thought indicators, stabilization degree
according to the regulatory requirements related to the degradation of OM, control of vector
attraction and odor, as well as the physical, chemical, microbiological, and parasitological
characteristics of sewage sludge [11,12,22,30,69,79].

With relation to the indicators of the biological stabilization of sewage sludge, the
bibliometric analysis identified 218 publications (Figure 6).

Volatile fatty acids (VFAs) and VS are the primary indicators used [80–82]. The VFAs
can provide useful information on the OM content and is a control parameter mainly used
in the stability process during AnD [46]; however, it is not the single indicator to describe
the stabilization degree of the sewage sludge [83]. In the case of VS, the organic fraction of
the total solids (TS) present in the sewage sludge also quantifies the stabilization degree and
vector attraction reduction [14,48]. The performance of the stabilization process is assessed
using the relationship between volatile and total solids (VS/TS) or the volatile solids
reduction (VSR) using the Van Kleeck and mass balance methods. Here, the minimum
threshold of VS/TS is ≤60–65% and VSR are regularly used to consider the stabilized
sludge of ≥38–40% [12,84,85].
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Figure 6. Main indicators of biological stabilization identified by the bibliometric analysis. VFAs:
volatile fatty acids, C: carbon, N: nitrogen, TOC: total organic carbon, CO2: carbon dioxide, and
SOUR: specific oxygen absorption rate.

However, different methods and criteria exist for interpreting the same indicator
(e.g., VSR) [85]. According to Özdemir et al. [48], evaluating biological stabilization based
on VS represents the only indicator of endogenous decomposition, and it is far from
accurate or acceptable. It does not consider the effect of different mechanisms and par-
ticulate matter fractions in sewage sludge during the stabilization period. Table 3 shows
the main indicators recommended for each biological stabilization process (AnD, AeD,
and composting).

Table 3. Sewage sludge biological stabilization indicators reported in literature and regulations.

Stabilization
Process Indicator Advantages (A) and

Limitations (L) Unit Criterion Reference (s)

Anaerobic
(AnD) and
aerobic (AeD)
digestion

Volatile fatty acids (VFAs) *

A: Process quality control, safe
quality of the end products
L: Complicated operating
procedures and applicable for
anaerobic digestion only

mg COD/g OM <430 [45,86–92]

Volatile solids (VS)
A: Simple testing methods
L: Procedure control and
laboratory assembly

% VS/TS
<65 [45,86,90,93]

≤60 [45,85,86,90,94]

% VSR
≥38 [12,45,52,86,90,93,95–100]

≥40 [45,74,85,86,90,101–103]

Additional VS when it is
anaerobically batch-digested in
the laboratory (40 days at
30–37 ◦C) *
Additional VS when it is
aerobically batch-digested in the
laboratory (30 days at 20 ◦C) **

A: Indicates process efficiency
L: Complicated operating
procedures

% VSR ≤15 [12,45,52,86,90,95,96,98–100]

% VSR ≤17 [12,45,52,86,90,95,96,98–100]

Humic substances (HS) ***

A: Indicates ecological value of
end products
L: Complicated operating
procedures

mg/gVS ≥150 [45,81,86,90]

Specific oxygen uptake rate
(SOUR) **

A: Process quality control
L: Complicated operating
procedures, applicable for aerobic
digestion only, and ignores the
value of end products

mg O2/g TS−h ≤1.5 [12,45,52,86,90,93,95–100]

mg O2/g VSS−h ≤2.5 [83,104]
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Table 3. Cont.

Stabilization
Process Indicator Advantages (A) and

Limitations (L) Unit Criterion Reference (s)

Composting

Volatile solids A: Simple testing methods
L: Procedure control % VSR ≥50 [45,75,86,90,101–103]

Carbon/nitrogen ratio (C/N) A: Simple testing methods
L: End-products quality control − <12 [45,86,87,90,105]

Total organic carbon (TOC)
A: Simple testing methods and
end-products quality control
L: Need delicacy management

% >5 [45,86,90]

CO2 evolution rate

A: End-products quality control
L: Unreasonable organic
degradation rate and ignores the
value of end products

mg CO2/g
OM−d

<2 (Very stable)
2–4 (Stable)
>4 (Unstable)

[45,70,73,86,90]Specific oxygen uptake rate
(SOUR)

A: Process quality control
L: Complicated operating
procedures, applicable for aerobic
digestion only, and ignores the
value of end products

mg O2/g VS−d
<3 (Very stable)
3–10 (Stable)
>10 (Unstable)

Self−heating (Dewar test)

A: Indicates ecological value of
end products
L: Applicable for composting
only and ignores the value of end
products

Dewar index
(∆T ◦C)

<10 (Very stable)
10–20 (Stable)
>20 (Unstable)

* Applies only to AnD, ** applies only to AeD, *** applies also to composting. TS: total solids, VS: volatile solids,
VSR: reduction in volatile solids, ∆T ◦C: temperature difference.

In terms of the C/N, Nikaeen et al. [87] suggested that a value less than 12 reflects an
advanced degree of OM stabilization. In addition to the TOC, a decreasing trend of the
C/N with time indicates OM degradation and sludge stabilization. Thus, the C/N should
be combined with other analytical tests and indices to characterize the quality of the final
product. Because the C/N is not an appropriate stability indicator, its development during
the biological stabilization process must be illustrated [68].

Humic substances (HS) and respirometric methods are alternatives to evaluate sewage
sludge stabilization. The first are based on biological stabilization processes that degrade
simple organic compounds (proteins, polysaccharides, lipids, etc.) and synthesize complex
organic compounds (i.e., HS) [81,88].

Respirometric methods measure the biodegradable OM content and sludge stabil-
ity [90]; O2 consumption and CO2 generation are measured as dominant indices, but
the amount of CO2 released from a biological activity is commonly used to estimate
stability in co-composting processes with other organic materials [106]. Another respiro-
metric method is SOUR in which microorganisms use O2 while consuming OM (AeD
processes). 1.5-mgO2/g TS-h or 2.5-mgO2/g VSS-h values indicate considerable stabi-
lization [104,107,108]. However, it requires a procedure configuration, monitoring, and
procedure, including extended experimental periods [83].

The self-heating tests (Dewar test) of the compost can be used to estimate the microbial
respiration and remaining OM indirectly. The increase in temperature within the container
for several days is related to the microbial activity and stability of the compost [70,106].

Table 4 presents the indicators of biological stabilization in different studies in terms
of municipal WWTPs and the biological stabilization processes of sewage sludge. In 57%
of the studies listed, the most related stabilization indicators were VFAs, VSR, and VS/TS
in the case of stabilization through AnD. In AeD studies (23%), the stabilization indicators
are mainly associated with VSR and VS/TS, and in the case of composting (the remaining
20%), the most commonly used criteria were the TOC and C/N. Indicators such as HS,
SOUR, and the Dewar test were the least applied to determine biological stabilization in
sewage sludge, owing to the requirement of complex procedures in the laboratory [86–88].

Moreover, the anaerobic processes, MWW treatments (e.g., UASBs), and sludge diges-
tion (e.g., AnD) generate biologically stabilized sludge according to the indicators VFAs,
VSR, VS/TS, HS, TOC, and C/N.
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Additional stabilization processes are required for sewage sludge with an SRT of less
than 12 days (CAS). A study in CAS systems reported SOUR values of 3–4.5 mgO2/g
VS-h, indicating unstabilized sludge, whereas the EAAS and SBR systems with an SRT of
>18 days reported values very close to the stabilization of the sludge, i.e., between 0.9 and
2.0 mgO2/g TS-h [83,107].

Tas [90] and Cokgor et al. [45] evaluated sewage sludge samples from CAS + AeD
systems with similar initial loads in different climatic periods and reported the values of
the VSR and TOC as 44% and 73%, respectively, in summer. In autumn, a VSR of 31%
and a TOC of 43%, and in winter, a VSR of 28% and a TOC of 55% were reported. As
the temperature decreased, the efficiency decreased in the VSR and TOC, which directly
affected the stabilization degree.

Mei et al. [81] analyzed 16 municipal WWTPs that used AnD and composting as
biological sludge stabilization processes. The VSR rates varied between 0.5% and 80.2%.
The increase in the HS ranged between 19% and 81% in different cases, showing a close
relationship between the stabilization processes and sewage sludge characteristics.

In addition to the analysis of the biological stability, regulations associated with the
control of the vector attraction and odor of the sewage sludge are defined to determine the
sludge’s final disposal and use as well as to avoid the propagation of toxic compounds and
pathogens in the environment. These regulations vary between countries, but in general,
these set the limits for the maximum concentration of heavy metals and pathogens [51,61].
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Table 4. Summary of the revised information on the indicators of biological stabilization reported in different publications.

Municipal
WWTPs

Sludge
Type

Stabilization
Process

Operational Variables of the Process * Indicators of Biological Stabilization

T
(◦C)

HRT
(h)

SRT
(d) pH VFAs

(mgCOD/gVS)
VSR
(%)

VS/TS
(%) C/N HS

(mg/gVS)
TOC
(%)

SOUR
(mgO2/g

TS-h)

Dewar Test
(∆T ◦C) Reference (s)

Anaerobic
SS NA 35–40 15 20 7.3 - 46–60 42 - 186–273 - - - [81,109]
SS NA 54–55 15 20 7.6 - 38 51 - 146.1 - - - [81,109]

UASB SS NA 35 24–48 18–33 8.2 160–320 55–68 60−65 9.0 - - - - [50,54,110,111]
CAS SS NA - - 4–8 - - - 73–87 - - - 3–4.5 - [107,111]

CAS
SM Anaerobic

digestion
12–22 - - 7.0–7.9 - 49−52 60 6.1–17 - 13.8 - - [50,72,76,112]

SS 25–50 - 5–12 8–10 140–520 52 - - - - - - [59,82,113]
Aerobic SS Composting - - - 6.4–6.7 - 50–80 - - 242–334 - - - [82,114]

Anaerobic SS Composting 35 - - 7.3–7.6 - 43.5 45–47 10 - 2.0 1.4–1.1 10–20 [80,87,115]
Aerobic SS NA - - - 6.5–9.0 - 56−63 44 8.9–15 - - - - [50,70]
EAAS SS NA 20–25 20 18–30 7.1–7.8 - 32–40 60–70 5.4–5.9 - - 0.9–1.5 >20 [47,48,79,107,116]
SBR SS NA 20 - 24–40 6.8 - 34–38 60−70 6.0 - - 1.8–2.0 - [76,83,117]
CAS SM Aerobic

digestion
20 - 18–35 - - 26–31 65−80 - - - − - [90,118,119]

Anaerobic SS 35 20 - 6.8–6.9 - - 29 - - - <1.5 - [120]
CAS SS Aerobic

digestion
59–61 5–15 - 7.8–8.3 - - 25–37 - - - - - [109]

Anaerobic SS 35–65 20 - 6.3–6.9 - 44–24.5 62–70 - - - - - [121]

* They correspond to the sludge stabilization process; however, when the municipal WWTPs do not use this process, the operation variables of the municipal WWTPs are reported.
WWTPs: wastewater treatment plants, T: temperature, HRT: hydraulic retention time, SRT: sludge retention time, VS: volatile solids, TS: total solids, SOUR: specific oxygen absorption
rate, VFAs: volatile fatty acids, VSR: reduction in volatile solids, TOC: total organic carbon, C/N: carbon/nitrogen ratio, HS: humic substances, SS: secondary sludge, SM: mixed sludge,
UASB: upflow anaerobic sludge blanket, CAS: conventional activated sludge, EAAS: extended aeration activated sludge, and SBR: sequential biological reactor.
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The first known regulation on the subject was the Directive 86/278−EEC of the
European Community [24,122], which introduced limits for the quality of sewage sludge
to protect public health. Based on this directive, each country in the region has issued
a regulation that, in some cases, has provided stricter limit values and included more
restrictions, mainly for pathogens and heavy metals [51,68,77]. In other countries, such as
Russia, China, New Zealand, and South Africa, guidelines have also been developed to
classify sewage sludge to determine its suitability for agricultural use [21,34].

In Latin America, the regulations are mainly based on the Standard for the Manage-
ment and the Disposal of Sewage Sludge and Biosolids (40CFR Part 503) issued by the
USEPA in 1993 [50,123].

Owing to the low pathogen removal efficiencies of the biological stabilization pro-
cesses, Silva-Leal et al. [16] and Collivignarelli et al. [66] indicated that biosolids obtained
from a biological stabilization process (i.e., AeD and AnD) should consider further hygi-
enization or disinfection treatments (e.g., thermal drying and chemical treatment) to take
advantage of the biosolids in restrictive uses (e.g., agriculture). Recently, Peccia et al. [63]
and Ducoli et al. [17] indicated that for the safe use of biosolids, hygienization is more
relevant during the COVID-19 pandemic.

4. Future Perspectives

Sludge management is key as it represents a considerable part of the yearly operative
costs in municipal WWTPs. Biological stabilization processes are associated mainly with
OM degradation. Likewise, from a regulatory viewpoint, as sludge stability is also related
to the reduction in the attraction for vectors, the analysis of all the physical, chemical,
microbiologic, and parasitological characteristics associated with the sewage sludge must
be guaranteed.

Despite biological sludge stabilization being widely researched, as identified in the
512 reported articles, only 218 of them address the indicators and criteria to pinpoint the
degree of stability, thus evidencing legal gaps and the lack of standardized criteria that
may serve as a tool for water utility managers. Additionally, there is no consensus among
researchers regarding the stabilization of sludge from aerobic systems such as EAAS and
SBR. Moreover, it is important to continue researching the influence of operational and
environmental factors in the degree of sludge stabilization.

Due to the increasing worldwide production of sludge and the fact that sludge is
considered a unique, complex, and dynamic product, it is indispensable to characterize and
follow-up on these products for their adequate reuse and/or final disposal. Its management
should be including strategies framed in sustainable development and circular economy
objectives, which are focused on waste reduction and reuse. Thus, future work development
could be steered toward evaluating aspects such as:

(i) How the implemented MWW treatment technology and sludge stabilization process
influence the degree of stabilization and characteristics of the sewage sludge. Different
stabilization indicators should be included in the sewage sludge, contributing to the
safe use of sewage sludge and biosolids and minimizing the environmental impacts
and public health risks.

(ii) The verification of the need to apply complementary stabilization and hygienization
processes that ensure a safe material that complies with regulations, as it is necessary
depending on the characteristics of the sewage sludge.

(iii) The agronomic potential benefits related to the proportion and availability of the
nutrients present in the sewage sludge, which must be compared with that of chemical
fertilizers.

5. Conclusions

The weather conditions, size and characteristics of the population, the population’s
economic, technical, and technological capacities, and the type of municipal wastewater
(MWW) collection, transport, and treatment systems exert an important influence on the
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characteristics of MWW and the quantity/quality of the sewage sludge generated. Further,
the characteristics of the sludge are associated with the type of sludge stabilization and/or
hygienization processes implemented.

Anaerobic technologies generally produce a stabilized sludge, whereas conventional
aerobic technologies (i.e., CAS) require complementary stabilization processes. Some
authors suggest that in aerobic systems with SRT values > 18 days, such as in EAAS and
SBR, the sludge generated can be considered stable and would not require additional
biological stabilization processes. However, the operational conditions of the system
influence the sludge stabilization degree; therefore, it is recommended to verify the sewage
sludge characteristics and the mechanisms of the biodegradation of organic matter using
different stabilization indicators.

The main stabilization indicators are volatile fatty acids (VFAs), volatile solids (VS),
the carbon/nitrogen (C/N) ratio, humic substances (HS), the total organic carbon (TOC),
the carbon dioxide (CO2) evolution rate, the specific oxygen uptake rate (SOUR), and the
Dewar test. However, it is not recommended to evaluate a single stabilization indicator.

The biological stabilization processes, such as anaerobic and aerobic digestions as well
as composting, are the most implemented and researched, improving the sewage sludge
characteristics and potential agricultural use.
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59. Markowicz, A.; Bondarczuk, K.; Cycoń, M.; Sułowicz, S. Land application of sewage sludge: Response of soil microbial
communities and potential spread of antibiotic resistance. Environ. Pollut. 2021, 271, 116317. [CrossRef] [PubMed]

60. Sidhu, J.P.; Toze, S.G. Human pathogens and their indicators in biosolids: A literature review. Environ. Int. 2009, 35, 187–201.
[CrossRef] [PubMed]

61. Da Rocha, M.C.V.; Barés, M.E.; Braga, M.C.B. Quantification of viable helminth eggs in samples of sewage sludge. Water Res.
2016, 103, 245–255. [CrossRef] [PubMed]

62. Martín-Díaz, J.; Lucena, F.; Blanch, A.R.; Jofre, J. Indicator bacteriophages in sludge, biosolids, sediments and soils. Environ. Res.
2020, 182, 109133. [CrossRef]

http://doi.org/10.1016/j.envint.2016.03.024
http://www.ncbi.nlm.nih.gov/pubmed/27045705
http://doi.org/10.1016/j.resconrec.2018.05.024
http://doi.org/10.1016/j.seppur.2020.117214
http://doi.org/10.2166/wst.2001.0698
http://doi.org/10.1016/j.cej.2009.06.041
http://doi.org/10.1002/jctb.4565
http://doi.org/10.1080/15567036.2017.1283551
http://doi.org/10.1016/j.jbiotec.2011.07.005
http://doi.org/10.1080/10643389.2019.1579620
http://doi.org/10.1016/j.biortech.2009.03.047
http://doi.org/10.1016/j.biortech.2014.10.002
http://www.ncbi.nlm.nih.gov/pubmed/25463786
http://doi.org/10.1016/j.watres.2015.04.002
http://www.ncbi.nlm.nih.gov/pubmed/25912250
http://doi.org/10.1016/j.jclepro.2020.120746
http://doi.org/10.1016/j.jenvman.2017.05.068
http://www.ncbi.nlm.nih.gov/pubmed/28571909
http://doi.org/10.1155/2012/201462
http://doi.org/10.1016/j.biortech.2013.04.081
http://doi.org/10.1016/j.psep.2016.05.022
http://doi.org/10.1016/j.envpol.2005.05.020
http://doi.org/10.1016/j.aca.2012.05.016
http://doi.org/10.1016/j.envpol.2020.116317
http://www.ncbi.nlm.nih.gov/pubmed/33383416
http://doi.org/10.1016/j.envint.2008.07.006
http://www.ncbi.nlm.nih.gov/pubmed/18790538
http://doi.org/10.1016/j.watres.2016.07.039
http://www.ncbi.nlm.nih.gov/pubmed/27470467
http://doi.org/10.1016/j.envres.2020.109133


Sustainability 2022, 14, 5910 19 of 21

63. Peccia, J.; Zulli, A.; Brackney, D.E.; Grubaugh, N.D.; Kaplan, E.H.; Casanovas-Massana, A.; Ko, A.I.; Malik, A.A.; Wang, D.; Wang,
M.; et al. SARS-CoV-2 RNA concentrations in primary municipal sewage sludge as a leading indicator of COVID-19 outbreak
dynamics. medRxiv 2020. [CrossRef]

64. Kocamemi, B.A.; Kurt, H.; Sait, A.; Sarac, F.; Saatci, A.M.; Pakdemirli, B. SARS-CoV-2 detection in Istanbul wastewater treatment
plant sludges. medRxiv 2020. [CrossRef]

65. Brisolara, K.F.; Maal-Bared, R.; Reimers, R.S.; Rubin, A.; Sobsey, M.D.; Bastian, R.K.; Gerba, C.; Smith, J.E.; Bibby, K.; Kester, G.;
et al. Assessing and Managing SARS-CoV-2 Occupational Health Risk to Workers Handling Residuals and Biosolids. Sci. Total
Environ. 2021, 774, 145732. [CrossRef]

66. Collivignarelli, M.C.; Abbà, A.; Benigna, I. The reuse of biosolids on agricultural land: Critical issues and perspective. Water
Environ. Res. 2020, 92, 11–25. [CrossRef]

67. National Research Council (NRC). Biosolids Applied to Land: Advancing Standards and Practices; National Academies Press:
Washington, DC, USA, 2002; p. 55.
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