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Abstract: Land degradation induced by soil erosion is widespread in semiarid regions globally and
is common in the agro–pastoral ecotone of northern China. Most researchers identify soil erosion
by wind and water as independent processes, and there is a lack of research regarding the relative
contributions of wind and water erosion and the interactions between them in what is referred to here
as compound soil erosion (CSE). CSE may occur in situations where wind more effectively erodes
a surface already subject to water erosion, where rainfall impacts a surface previously exposed by
wind erosion, or where material already deposited by wind is subject to water erosion. In this paper,
we use the Chinese Soil Loss Equation (CSLE) and the Revised Wind Erosion Equation (RWEQ) to
calculate the rate of soil erosion and map the distribution of three types of soil erosion classified
as (i) wind (wind-erod), (ii) water (water-erod), and (iii) CSE (CSE-erod) for the study area that
spans more than 400,000 km2 of sand- and loess-covered northern China. According to minimum
threshold values for mild erosion, we identify water-erod, wind-erod, and CSE-erod land as occurring
across 41.41%, 13.39%, and 27.69% of the total area, while mean soil erosion rates for water-erod,
wind-erod, and CSE-erod land were calculated as 6877.65 t km−2 yr−1, 1481.47 t km−2 yr−1, and
5989.49 t km−2 yr−1, respectively. Land subject to CSE-erod is predominantly distributed around the
margins of those areas that experience wind erosion and water erosion independently. The CSLE and
RWEQ do not facilitate a direct assessment of the interactions between wind and water erosion, so
we use these equations here only to derive estimates of the relative contributions of wind erosion and
water erosion to total soil erosion and the actual mechanisms controlling the interactions between
wind and water erosion require further field investigation. It is concluded that CSE is an important
but underappreciated process in semiarid regions and needs to be accounted for in land degradation
assessments as it has substantial impacts on agricultural productivity and sustainable development
in regions with sandy and/or loess-covered surfaces.

Keywords: soil erosion rates; regional soil erosion map; land degradation; CSLE model; model
simulation
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1. Introduction

Land degradation induced by soil erosion is prominent in semiarid regions glob-
ally [1–5]. The agro–pastoral ecotone of northern China has characteristics that are typical
of a semiarid climate transition zone in that the ecological environment of the region is
fragile, and inappropriate land-use management has resulted in severe accelerated soil
erosion in the region [6–8]. Soil erosion types commonly include erosion by water, wind,
freeze-thaw processes, and combinations of processes in what we refer to here as compound
soil erosion (CSE). Interactions between aeolian and fluvial systems have been studied at
various scales [9,10] but there is little information on their relative importance and how they
may interact to affect accelerated soil erosion. CSE occurs when wind and water erosion
processes interact and the mutual effects of these erosive forces are combined. This ensues,
for example, when wind acts on a surface already affected by water erosion/deposition,
or when rainfall impacts a surface previously exposed by wind erosion/deposition. CSE
typically occurs in landscapes where erosion gullies are filled by wind-blown sediments, or
where gullies develop on wind-eroded surfaces; such situations are common in the typical
sandy and loess-covered areas of northern China. Indeed, many sand- and loess-covered
areas are influenced by both wind and water erosion processes, and CSE must therefore
be considered as a potentially important component of land degradation in semiarid
regions [11].

Situations whereby wind and water erosion processes act in concert with each other
occur commonly in semiarid regions, especially on windward slopes in hilly topography
and in association with gullies [12,13]. Several studies have suggested that CSE intensity
is increasingly important as an element of landscape evolution, both in China [7,14] and
elsewhere [8,15–17]. However, processes whereby wind and water erosion act together are
highly complex and have not so far been adequately accounted for in terms of distribution
or impact [8]. Thus, measurement and mapping of the scale and distribution of CSE are
needed to improve the reliability of estimates of soil erosion and land degradation in
vulnerable semiarid regions.

Studies of soil erosion in ecological transition zones tend to consider water ero-
sion [18,19] or wind erosion [20–23] as spatially and temporally independent processes. A
small number of studies, however, have indicated that wind and water erosion processes
may occur at the same locality sequentially, or even overlapping in time, and therefore
influence the rate of soil loss [14,24–26]. Zou [14], for example, describes CSE as charac-
teristic in more than 5% of the region studied and has defined quantitatively the ‘CSE
belt’ in northern China, while Yang [25] also identified the distribution of “cross-erosion”
(in Chinese, this is equivalent to CSE as used here). In some studies, CSE is suggested
to augment the rate of soil loss compared to other areas [7,14], and this has also been
demonstrated experimentally in laboratory simulation studies [27–30]. Tuo et al. [27] found
that the relative proportions of different grain sizes were different in places where CSE
occurred, while Yang et al. [28] reported that wind actually subdued water erosion on
slopes under moderate rainfall intensities. In summary, most soil erosion studies conducted
to date have focused independently on wind or water erosion, and few have taken into
account the compound effects of both processes acting in concert [8,31].

Previous studies by the present research group have focused on a number of aspects
of soil erosion in northern China, including modeling [32], quantification of the impacts of
wind speed variability [33], experimental studies using a wind tunnel and a rainfall simula-
tor [28], and a pilot study of the combined influence of wind and water erosion [29]. This
paper aims at developing a more refined understanding of the mechanisms of CSE and—in
deploying the Chinese Soil Loss Equation (CSLE) [34,35], which has been developed for
estimating annual soil erosion by water in China, and the Revised Wind Erosion equation
(RWEQ) [36], which has been developed as a tool for identifying practices that control
windblown soil loss—to map the distribution and rates of erosion in a selected study area of
different soil erosion types, including CSE. The study provides valuable theoretical insights
into the interaction between aeolian and fluvial processes and the nature of integrated soil
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erosion processes in general. In so doing we offer practical insights for improving soil
conservation in an important food production area of China.

This aim is achieved through the following objectives: (i) To apply standard models of
soil erosion to calculate the intensity of wind erosion, water erosion, and wind erosion and
water erosion combined. (ii) To map the distribution of the three erosion types. (iii) In order
to assess the accuracy of the classification of the three erosion types, 18 sites representing
the environmental characteristics across the study area were selected for ground-truthing.
At each of these sites, field investigations included detailed observations of local conditions
which were recorded photographically. (iv) To compare the results with those of other
relevant soil erosion results.

2. Materials and Methods
2.1. Study Area

The research was conducted in the agro–pastoral ecotone of northern China (Figure 1)
which is identical to that studied by Lin et al. [32]. The study area (107◦0′0′′ E–125◦0′0′′ E,
38◦0′0′′ N–48◦0′0′′ N) includes 84 counties in the Inner Mongolia Autonomous Region,
Liaoning Province, Heilongjiang Province, Jilin Province, and Hebei Province, encompass-
ing a total area of 4.40 × 105 km2. The area falls at the margins of the monsoon zone
with a mean annual precipitation of 250–500 mm, which, along with 25–50% interannual
precipitation variability, restricts agriculture to irrigated crop production and pasture. In
general, the topography is undulating which, coupled with low rainfall and disturbance
following replacement of natural vegetation, has promoted soil degradation in the form of
water erosion, wind erosion, and CSE.
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There are great differences in the types of landforms in the study area. The northern
end is the Hulunbeier Plateau (650–750 m), the southeast is the transition zone between the
Northeast Plain and the Inner Mongolia Plateau, namely, Horqin Sandy Land (200–700 m),
the northwest is the southern margin of the Inner Mongolia Plateau (1300–1800 m), and
the southwest is Daqingshan Mountains (1400–2000 m). There are two main soil types
according to the characteristics of parent material at the surface, viz., aeolian sand and
loess. Among them, the Northwest Hulunbuir Plateau, Horqin, and Hunshandake Sandy
Land are covered by immature sandy soils of aeolian origin, while loess is characterized
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by brown and chestnut soils [37]. The study area lies in the transition zone between forest
and grassland, much of which has been degraded due to inappropriate management
practices [37]. In 2010, arable land accounted for 31.01%, forest land accounted for 16.51%,
grassland accounted for 39.63%, water bodies 2.06%, construction land 2.46%, and unused
land (including sandy land) accounted for 7.86% [38].

2.2. Data

A wide range of relevant data were obtained from a variety of primary and secondary
sources as indicated in Table 1. These include meteorological, land use, soil, and vegetation
cover data, as well as a digital elevation model (DEM) at 30 m resolution from which slope
characteristics were obtained. We resampled the resolution (30 m × 30 m) of all original
data using ArcGIS software 10.5.

Table 1. List of data used in the study.

Type of Data Data Name Temporal
Resolution

Spatial
Resolution Source

Meteorological
data

DS3505—Surface Data
Hourly Global 3 h, 1961–2015 Weather station

NOAA, http://gis.ncdc.noaa.gov/
map/viewer/#app=clim&cfg=cdo&
theme=hourly&layers=1&node=gis
(accessed on 17 May 2022)

China surface climate
data daily data set
(V3.0)

Daily, 1961–2015 Weather station
China Meteorological Data Service
Center (CMDC), http://data.cma.cn/
(accessed on 17 May 2022)

Land use

China Land Use Status
Remote Sensing
Monitoring Database

1990, 1995, 2000,
2005 and 2010 1 km × 1 km

Resource and Environment Data
Cloud Platform, http://www.resdc.cn
(accessed on 17 May 2022)

Landsat TM images 2000, 2005, 2010
and 2015 30 m × 30 m USGS. http://earthexplorer.usgs.gov/

(accessed on 17 May 2022)

DEM Land elevation data 2005 30 m × 30 m
ASTER GDEM,
https://earthdata.nasa.gov/
(accessed on 17 May 2022)

Soil humidity This global ECV soil
moisture data set 1978–2014, monthly 0.25◦ × 0.25◦

European Space Agency, http://www.
esa-soilmoisture-cci.org/node/145
(accessed on 17 May 2022)

Snow cover China Snow Deep Time
Series Dataset 1978–2014, daily 1 km × 1 km

National Cryosphere Desert Data
Center. http://www.cryosphere.csdb.
cn/portal/metadata/d9a9e8ae-3e8f-
4c1a-b1a6-a739a405c971
(accessed on 17 May 2022)

Soil
Soil and Terrain
Database (SOTER)
for China

2014 Vector unit

World soil information (ISRIC),
https://files.isric.org/public/soter/
CN-SOTER.zip
(accessed on 17 May 2022)

Survey data

The vegetation
Coverage in Eastern
Section of
Farming–Pasture
Ecotone of
Northern China

2015–2016 1 m × 1 m
Research group of “research on land
use and compound soil erosion by
wind and water in study area”

Erosion
verification data

Spatial Distribution
Data of Soil Erosion
in China

1995 1 km × 1 km
Resource and Environment Data
Cloud Platform, http://www.resdc.cn
(accessed on 17 May 2022)

China Soil and Water
Conservation Bulletin 2004–2015 Runoff Plots

Ministry of Water Resources, http://
www.swcc.org.cn/CountryTopics.asp
(accessed on 17 May 2022)

http://gis.ncdc.noaa.gov/map/viewer/#app=clim&cfg=cdo&theme=hourly&layers=1&node=gis
http://gis.ncdc.noaa.gov/map/viewer/#app=clim&cfg=cdo&theme=hourly&layers=1&node=gis
http://gis.ncdc.noaa.gov/map/viewer/#app=clim&cfg=cdo&theme=hourly&layers=1&node=gis
http://data.cma.cn/
http://www.resdc.cn
http://earthexplorer.usgs.gov/
https://earthdata.nasa.gov/
http://www.esa-soilmoisture-cci.org/node/145
http://www.esa-soilmoisture-cci.org/node/145
http://www.cryosphere.csdb.cn/portal/metadata/d9a9e8ae-3e8f-4c1a-b1a6-a739a405c971
http://www.cryosphere.csdb.cn/portal/metadata/d9a9e8ae-3e8f-4c1a-b1a6-a739a405c971
http://www.cryosphere.csdb.cn/portal/metadata/d9a9e8ae-3e8f-4c1a-b1a6-a739a405c971
https://files.isric.org/public/soter/CN-SOTER.zip
https://files.isric.org/public/soter/CN-SOTER.zip
http://www.resdc.cn
http://www.swcc.org.cn/CountryTopics.asp
http://www.swcc.org.cn/CountryTopics.asp
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2.3. Methodology
2.3.1. Water Erosion Model

Liu et al. [35] developed the Chinese Soil Loss Equation (CSLE) based on a refinement
of the Universal Soil Loss Equation (USLE) and Revised Universal Soil Loss Equation
(RUSLE) [39]. The water erosion model used here is based on the Chinese water erosion
forecasting model, which offers a simple and practical means of estimating soil erosion by
water and has been widely applied [40,41] in different regions of the country (Equation (1)).
The basic function is:

A = R× K× L× S× B× E× T, (1)

where A is the calculated mean spatial and temporal soil loss per unit area over time,
expressed in tonnes per square kilometer per year, t km−2 yr−1; R = rainfall-runoff erosivity
factor, viz., the rainfall erosion index plus a factor for any significant runoff from snow
melt, MJ mm ha−1 h−1 per year; K is the soil erodibility factor, t ha−1 MJ mm−1; S and
L are dimensionless slope steepness and slope length factors; B, E, and T are dimension-
less factors of biological-control, engineering-control, and tillage practices, respectively.
Biological-control (essentially the vegetation cover factor) was calculated using the method
of Lin et al. [32]. Engineering-control (E), in the form of soil conservation management
interventions, was implemented on a large scale in China in 1993, although most soil and
water conservation projects were introduced beyond the study area [42] and so for the
purposes of this study, we assume no engineering control factor. Liu et al. [35] provide
tillage practice factors (T) for cultivated land under different slopes, as shown in Table 2.

Table 2. The T value of tillage measures in different slope areas in the study area.

Slope(◦) ≤1 1–3 3–9 9–13 13–17 17–21 21–25 ≥25

Tillage 0.74 0.59 0.60 0.62 0.68 0.75 0.81 0.92

The formulas for calculating the various water erosion factors are shown in Table 3.
We used the data from Table 1 to calculate erosion factors by using the Equations (2)–(15) in
Table 3.

Table 3. Formulas for calculating various factors of water erosion equation.

Factor Formulas References

Rainfall erosivity (R)

β = 0.8363 + 18.144
P(d12)

+ 24.455
P(d12)

(2)

[43]

α = 21.586β−7.1891 (3)

Rhal f m = α
m
∑

k=1
(Pk)

β (4)

Ryear =
24
∑

i=1
Rhal f mi

(5)

R = 1
n

n
∑

i=1
Ryeari

(6)

Topographic (LS) LS =
(

As
22.13

)m(
sin(θ)
0.0896

)n (7) [44]

Vegetation cover (B)

B = Cs·Cc (8)

[32]

Cc = 1− (0.01Vc + 0.0859) exp(−0.0033h) (9)

Cc = 0.988 exp(−0.11Vc) (10)

Cs = 1.029 ∗ exp(−0.0235Vr) (11)

Cs = exp(−0.0206Vr) (12)

C = (VcrCcr + VgrCgr + Vf oC f o)/(Vcr + Vgr + Vf o) (13)

Soil erodibility (K)
K = 0.0364− 0.0013[ln(OM

Dg
)− 5.6706]

2 − 0.015exp[−28.9589(log(Dg) + 1.827)]2 (14)

[45]
Dg = exp

(
0.01×∑

n
∑

i=1
fi lnmi

)
(15)
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This is the explanation for the terms in equations of the Table 3. Four steps are involved
in calculate water erosion calculation, viz., the calculation of rainfall erosivity factor (R)
where Ryear is the annual rainfall erosion force, MJ·mm/(ha·h·a); R is the multi-year average
annual rainfall erosion force, MJ·mm/(ha·h·a); Rhalfm is the value of rainfall erosion in a
half-month period, MJ·mm/(ha·h); m is the number of days in the half-month period; Pk
is the daily rainfall (mm) on the k-th day in the half-month period; P(d12) is the multiyear
average daily rainfall (mm) with a daily rainfall excess of 12 mm; and P(y12) is multiyear
average annual rainfall (mm) with a daily rainfall excess of 12 mm. Secondly, we calculated
the topographic factor (LS), where As is the unit contribution area (m); θ is the slope,
expressed in radians; and m and n are exponents, with values ranging from 0.4–0.56 and
1.2–1.3, respectively. Thirdly, we calculated the vegetation cover factor (B), where Cc and
Cs are the canopy cover factor and the surface cover factor, respectively; Vc and Vr are
the canopy cover (%) and surface cover (%), respectively; and h is the canopy height (cm).
Based on the C factor algorithm of the standard plot, the regional C factor algorithm is
proposed, as shown in Equation (13), where C is the C factor of the km-sized grid, Vcr is
the cropland coverage (%), Vgr is the grassland coverage (%), and Vfo is the forest coverage
(%). Ccr is the vegetation cover factor of cropland, Cgr is the grassland vegetation cover
factor, and Cfo is the vegetation cover factor of woodland. Fourthly, we calculated the soil
erodibility factor (K). K is the soil erodibility (t·hm2·h/(hm2·MJ·mm); Dg is the geometric
mean diameter particle of the soil (mm); OM is the content of soil organic carbon (%); fi is
the i-th particle, mi is the arithmetic mean value (mm) of the particle size of the i-th particle,
n is the numerical classification of particle size, including SAN, SIL, and CLA. SAN is sand
content (%); SIL is the silt content (%); and CLA is clay content (%).

2.3.2. Wind Erosion Model

The Revised Wind Erosion Equation (RWEQ) [46] is frequently used for wind erosion
simulation and is regarded as a suitable tool for the large-scale prediction of wind erosion
potential [47]. The RWEQ uses a number of input factors to estimate the maximum transport
capacity (Qmax) (Equation (16)). Critical field length (S) is determined when 63.2% of Qmax
is attained (Equation (17)), and soil loss (SL) is the total transport capacity (Equation (18)).

Qmax = 109.8 ·
[
WF · EF · SCF · K′ · C

]
, (16)

S = 150.71(WF · EF · SCF · K′ · C)−0.3711, (17)

SL =
2z
S2 Qmaxe−(z/s)2

, (18)

where Qmax is the maximum transport capacity (kg/m); S is the length of the key plot (m); SL
is soil erosion per unit area (kg m−2), and 1 kg m−2 can convert to 1000 t km−2 yr−1 per year;
z is the calculated downwind distance (m), and the value of this calculation is 50 m; WF is
the wind factor (kg/m); EF is the erodible fraction (proportion of particles below 0.84 mm
in diameter); SCF is a dimensionless surface crust factor; K′ is a dimensionless random soil
surface roughness factor; and C is a dimensionless comprehensive wind erosion factor.

The formulas for calculating the various wind erosion factors are shown in Table 4.
We used the data from Table 1 to calculate erosion factors by using the Equations (19)–(26)
in Table 4.

This is the explanation for the terms in equations of the Table 4. Four steps were
used to calculate wind erosion. Firstly, we calculated wind erosion climate (WF), where
WF is the wind erosion climatic factor (kg/m); Wf is the wind factor (m/s)3; SWf is the
soil moisture factor (0–1), dimensionless; and SD is the snow cover factor, dimensionless.
U2 is the wind speed two meters above the ground (m/s); Ut is the critical wind speed,
generally set to 5 m/s; Nd is the time period for measuring the wind speed, generally about
15 days; N is the number of wind speed observations (generally no less than 500 times); and
P (Snow_depth > 25.4 mm) is the probability that the snow cover depth in the calculation
period is greater than 25.4 mm, and the calculation period is 15 days. Secondly, we
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calculated surface roughness (K′). Kr is the terrain roughness (cm); Crr is the random
roughness factor (cm); L is the relief parameter; and ∆H is the altitude difference within the
distance L. Thirdly, we calculated comprehensive vegetation (C), where SC is the vegetation
cover (%). Fourthly, soil erodibility (EF) and soil crust (SCF) factors were calculated, where
Sa is the sand content of soil (5.5%~93.6%); Si is the silt content (0.5%~69.5%); Sa/Cl is the
ratio of sand to clay (1.2%~53.0%); Cl is the clay content (5.0%~39.3%); CaCO3 is calcium
carbonate content (0~25.2%); and OM is the organic matter content (0.32%~4.74%).

Table 4. Formulas for calculating various factors of wind erosion equation.

Factor Formulas References

Wind erosion climate (WF)

W f =

n
∑

i=1
U2(U2−Ut)

2

N × Nd
(19)

[46]SW f = 1− SW (20)

SD = 1− P(Snow_depth > 25.4 mm) (21)

Surface roughness (K′)
K′ = e(1.86Kr−2.41K0.934

r −0.127Crr) (22)
[48]

Kr = 0.2× ∆(H)2

L
(23)

Comprehensive vegetation (C) C = e−0.0438SC (24) [49]

Soil erodibility (EF) EF =
29.09+0.31Sa+0.17Si+0.33 Sa

Cl−2.59OM−0.95CaCO3
100

(25) [46]

Soil crust (SCF) SCF = 1
1+0.0066(Cl)2+0.021(OM)2 (26) [46]

2.3.3. Estimation of CSE

According to the characteristics of the surface in question, CSE can be classified
into wind and water sequential erosion (WWSE) and wind and water combined erosion
(WWCE). WWCE refers to the simultaneous occurrence of wind and water erosion, whereby
the coupling effect alters the erosive ability and makes the compound erosion force dif-
ferent from when it applies only through one type of process. In WWSE, erosive forces
act alternately, whereby one erosive force transports and deposits surface materials and
prepares the material for reactivation by the other force. In this case, the overall erosion
force may also be changed.

WWSE can be calculated using wind erosion and water rates as shown in Equation (27).

SE1 = Wa + Wi, (27)

where SE1 is the WWSE rate, t km−2 yr−1, Wa is the water erosion rate (t km−2 yr−1); and
Wi is the wind erosion rate (t km−2 yr−1).

WWCE per year can be calculated using Equation (28).

SE2 = WiWa(T1) + WaWi(T2) + Wa(T3) + Wi(T3) (28)

where SE2 is the WWCE rate, t km−2 yr−1, Wa is the water erosion rate (t km−2 yr−1), Wi
is the wind erosion rate (t km−2 yr−1); WiWa is the effect of wind on water erosion; and
WaWi is the effect of water on wind erosion. According to the wind factor (Wf) and rainfall
erosivity factor (R), T1 is the length of time of wind impact on water erosion, and often
happens in June (See Section 4.1). T2 is the length of time of water impact on wind erosion,
and often happens in September (See Section 4.1). T3 is the time of sequential erosion.

2.3.4. Mapping the Distribution of Soil Erosion Types

In China, acceptable (allowable) threshold rates of soil erosion are classified as
1000 t km−2 yr−1 for water erosion, and as 200 t km−2 yr−1 for wind erosion [50–52]. We
identified all the 30 m × 30 m grid squares in the study area in which these threshold
values were exceeded according to the system illustrated in Figure 2. The erosion types on
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the field were estimated by 1 m × 1 m field investigations [32]. We mapped the erosion
types, including CSE, using ArcGIS software 10.5, accordingly. Additionally, the erosion
types were validated by photographs of typical examples of wind-erod type, water-erod
type, and CSE-erod type.
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2.3.5. Assessing Classification Accuracy of Soil Erosion Types

In order to assess the mapped accuracy of soil erosion types, we calculated the Kappa
coefficient [53] based on a confusion matrix. The Kappa coefficient is proposed here for
assessing the accuracy of classifiers. Cohen’s Kappa statistic compensates for classifications
that may be due to chance and is a widely used method in these circumstances [54]. The
confusion matrix table is used to estimate overall accuracy (Ao), determined by dividing the
total diagonal sum by the random number of points as in Equation (29), and this provides
the validation data.

Ao =
X
N
× 100%, (29)

where Ao is overall accuracy (%); X is number of diagonal values; and N is number of
random points.

Cohen’s Kappa coefficient [55] was used to determine the accuracy of the calculation
using two measurement techniques (measurement by computer and by actual survey),
whereby the coefficient varies from −1 to 1 [56], as in Equation (30).

khat =
Ao −Mt

1−Mt
, (30)

where khat is the Cohen’s Kappa coefficient; Ao is overall accuracy (%); and Mt is test
matrix product.

The matrix product is the sum of the diagonal values, while the aggregate number of
the matrix product is the sum of values in rows and columns as in Equation (31).

Mt =
Mp

Mpcum
, (31)

Mp is matrix product; and Mpcum is cumulative sum of matrix product.
Accuracy was also assessed by ground-truthing during field investigation.
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2.3.6. Validation of the Soil Erosion Results

Previous soil erosion studies have not systematically considered different types of CSE.
Therefore, we compared two types of soil erosion maps which contain wind and water
erosion, viz., (i) spatial distribution raster data of Chinese soil erosion (data from Data
Center for Resources and Environmental Sciences, Chinese Academy of Sciences (RESDC),
https://www.resdc.cn/data.aspx?DATAID=259, accessed on 17 May 2022), hereinafter
referred to as the CAS-erosion map; and (ii) the First National Water Conservancy Census
General Survey of Soil and Water Conservation: Soil Erosion, which provided by Beijing
Normal University and institute of mountain, Hazards and environment CAS, hereinafter
referred to as BNU-erosion map. Both maps were made using the National Soil Erosion
Classification Grading Standard [57], and are therefore suitable for comparison with the
results of this study.

We constructed a scatter plot with a 1:1 line and data distribution of water erosion
magnitude comparing the CAS and BNU outputs with this study and then compared wind
erosion magnitude between CAS and this study using the same method.

3. Results
3.1. Soil Erosion Intensity

Annual water erosion and wind erosion rates were calculated from 1975 to 2015 for
each 30 m × 30 m grid square in the study area. According to the soil erosion intensity
rating system of the Water and Soil Conservation Department of the Ministry of Water
Resources [57], we present here the spatial results for water-erod intensity (Figure 3a),
wind-erod intensity (Figure 3b), and CSE-erod intensity (Figure 3c).
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Figure 3 and Table 5 reveal that the mean annual soil erosion rate over an ero-
sion area of 3.49 × 105 km2, which represents some 82.49% of the total study area, is
4859.96 t km−2 yr−1. The erosion area is 20.26% larger than when water erosion alone is
considered, and 48.18% larger than for wind erosion alone. The erosion rate is 11.03%
higher than in the case of water erosion alone, and 88.97% higher for wind erosion alone.
Areas of severe water erosion are concentrated in the central and northern mountainous
parts of the study area; the area of slight water erosion is associated with the Horqin and
Hunshandake sandy lands which are, in contrast, very strongly impacted by wind erosion.
Wind erosion in the western part of the study area is much more prominent than it is in
the east, mainly because the western parts form the windward slopes in the path of the
winter monsoon.

Table 5. Erosion rate and area in the study area.

Types Erosion Rate
t km−2 yr−1

Erosion Area
km2

Proportion of the Study Area
%

Water erosion 4323.67 2.63 × 105 62.23
Wind erosion 536.15 1.45 × 105 34.31
Soil erosion 4859.96 3.486 × 105 82.49

Note: The rate and area of soil erosion here is considered water erosion and wind erosion together, and no
consideration of CSE.

3.2. Soil Erosion Type Distribution

According to the method of identifying the distribution of different types of soil
erosion, water-erod (Figure 4a), wind-erod (Figure 4b), and CSE-erod (Figure 4c) are
identified.
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Figure 4 shows that water-erod, wind-erod, and CSE-erod land occurs across 41.41%,
13.39%, and 27.69% of the total area, while mean soil erosion rates for water-erod, wind-
erod, and CSE land were calculated as 6877.65 t km−2 yr−1, 1481.47 t km−2 yr−1, and
5989.49 t km−2 yr−1, respectively. Among these, water-erod is the most widely distributed,
particularly in the southeastern and northern mountainous parts of the study area, while
wind-erod squares are most prominent in the Hunshandake and Horqin Sandy Lands.
Land subject to CSE-erod is concentrated around the margins of those areas that experience
wind erosion and water erosion independently, and it is especially concentrated on the
windward slopes in the western mountainous region and in the eastern Horqin Sandy Land.

3.3. Validation of Water Erosion

We compared water erosion as presented in the CAS-erosion map, BNU-erosion map,
and the mapped outcome of our study at the county level (Figures 5 and 6).
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Figure 5. Scatter plot and data distribution graph of water erosion magnitude in the study area of be-
tween CAS and this study ((a): water-erod magnitude scatter plot; (b): water-erod data distribution).
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Figure 6. Scatter plot and data distribution of water erosion magnitude in the study area of between
BNU and this study ((a): water-erod magnitude scatter plot; (b): water-erod data distribution).
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According to the Wilcoxon Signed-Rank Test, the different maps for water erosion are
statistically similar (p < 0.05). We can see that the magnitude of water erosion based on our
study is basically consistent (R2 = 0.71) with the CAS-erosion map (Figure 5a) and with
the BNU-erosion map (R2 = 0.78) (Figure 6a) at both the CAS-erosion and BNU-erosion
maps (Figures 5b and 6b, respectively), although slight erosion by water appears to be
underestimated. In general, however, the results of this study provide a reliable estimate
of the magnitude and distribution of soil erosion and may be considered to accurately
represent water erosion intensity.

3.4. Validation of Wind Erosion

We compared the wind erosion assessment in this study with the CAS-erosion map
at the county level (Figure 7) and, although there is broad consistency between the two
(R2 = 0.60), the CAS map indicates somewhat higher rates overall. The main reason is that
the CAS-erosion map classified the western (windward) part of the study area as wind-erod
only, whereas our model simulation and field investigation reveal that this area also has a
high rate of water erosion and should be classified as CSE-erod.
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Figure 7. Scatter plot and data distribution of wind erosion magnitude and water erosion magnitude
in the study area ((a): wind-erod magnitude scatter plot; (b): wind-erod data distribution map).

3.5. Validation of CSE

A field investigation of soil erosion types was conducted in order to validate the model
results, and photographs of typical examples of CSE are shown in Figure 8.

Figure 8 illustrates typical examples of CSE-erod in the study area, revealing that such
erosion is associated with a range of conditions, including unpaved roads, seasonally bare
sloping farmland, sand covered loess ditches, loess-covered and sandy roads, loess and
sand mounds, and on roads covered by blown sand; evidence of disturbance due to human
activity is usually present.

Based on field observations and the accuracy assessment, Figure 8 and Table 6 reveal
that accuracy for water-erod, wind-erod, and CSE types are 100%, 100%, and 66.67%,
respectively. Overall, identification accuracy for soil erosion types is 72.22%. The calculated
Kappa coefficient of 0.61 indicates that the classification of soil erosion types is acceptable
and supported by ground-truthing during field investigation.
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by CSE in Taipusi Banner (County); 3© the sand covered loess ditch formed by CSE in Zhenglan
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affected by CSE and human activity in Huade County; 6© loess and sand mound affected by CSE
and mouse in Shangdu County; 7© loess and sand road affected by CSE in sand covered loess area
in Qahar YouyiHou Banner (County); 8© water erosion ditch affected by water erosion in Jungar
Banner (County); 9© medium coverage slope grassland affected by water erosion in Qahar Youyi
Qian Banner (County); 10© the road covered by sand effect by CSE in Xinghe County; 11© ditch affected
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15© medium-covered dune land affected by wind erosion in Horqin Zuoyinghou Banner (County);
16© the bare low-cover grass destroyed by CSE in Horqin Zuoyi Zhong Banner (County); 17© economic
forest without vegetation under the forest affected by water erosion in Horqin Youyi Zhong Banner
(County); 18© the source-bordering dune, the result from aeolian–fluvial interaction; one of the main
requirements for which is a regular source of sand from a seasonally flowing sand-bed channel in
Horqin Right Front Banner (County)).

Table 6. Accuracy of identifying the distribution of soil erosion types.

Ground-Truthing
No Erosion Water Erosion Wind Erosion CSE Total User Accuracy (%)

Identifying the
soil erosion
type results

No erosion 0 1 0 2 3 0
Water erosion 0 6 0 0 6 100
Wind erosion 0 0 3 0 3 100

CSE 2 0 0 4 6 66.67
Total 2 7 3 6 18 72.22
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4. Discussion
4.1. Effectiveness and Seasonality of CSE

It is apparent from our results (Figure 4) that CSE is most closely associated with the
wind erosion and water erosion transition zone, i.e., the agro–pastoral ecotone of northern
China. Typical CSE landforms are formed when a water eroded gully is infilled by sandy
loess during the drier winter and spring months, or where a water-eroded gully forms
during the summer monsoon season and, in both instances, this elevates the overall rate of
erosion (Figure 9a,b,e,f). Water-eroded gullies also develop from wind-eroded depressions
in the sand-covered loess area on windward slopes in the study area. Moreover, water
erosion under high rainfall intensities during the summer monsoon results in exposure
of material at the surface that is relatively easily eroded by wind in the following winter
and spring, again thereby increasing total soil erosion (Figure 9c,d). Such phenomena are
common in the part of the study area where CSE is most prominent.
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The underlying driving forces of CSE are rainfall and wind erosivity acting in con-
cert with surface conditions. The combination of such forces results in wind and water
compound erosion (WWCE) and wind and water sequential erosion (WWSE). In order
to resolve these processes further, we first calculated the mean monthly rainfall erosivity
(Figure 10a) and wind erosivity (Figure 10b) from 1975 to 2015, followed by computing the
combined effects of each force (Figure 11).
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Figure 10. Mean monthly rainfall erosivity and wind factors in the study area (1975–2015) ((a): rainfall
erosivity; (b): wind erosivity factor).
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Figure 11. Graph showing the monthly sequence of water and wind factors in the study area.

Figures 10 and 11 illustrate that rainfall erosivity is higher during the summer months
from May to August, with a maximum monthly rainfall erosivity value of approximately
800 MJ mm ha−1 h−1 in July, while wind factors are higher during late winter and spring
months, from March to May, with a maximum monthly wind factor value of approximately
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700 (m/s)3 in April. A marked seasonal pattern is therefore evident whereby wind erosion
is dominant from January to May and October to December, and water erosion from July
and August; CSE is most likely during the transition months of June and September.

The efficacy of CSE in increasing soil erosion has been demonstrated experimentally.
Yang et al. [28] used a wind tunnel and rainfall simulator under laboratory conditions
to explore the combined effects of water erosion and subsequent wind erosion on a bed
surface. Firstly, the influence of wind erosion on subsequent water erosion was examined,
simulating conditions that are mainly associated with water-eroded gullies in the study
area. Elevated wind speeds were shown to clearly alter the microtopography of the gullies,
and extended the gully walls laterally, thereby exacerbating water erosion on the bed sur-
face [28]. Yang et al. [29] then studied the effect of water erosion on a wind-eroded surface.
In this case, water erosion had the effect of suppressing wind erosion due to the formation
of a lag layer following rainfall [29], an observation further supported by Draut’s [58] study
that indicated that aeolian processes were effective locally in counteracting gully erosion.

4.2. The Contribution of This Study to Soil Erosion Research

Previous studies of CSE have been conducted at a large spatial scale, and the existence
of mixed pixels has made it difficult to assign them accurately to CSE. The use of higher
resolution (30 m) pixel data in this study, however, assists in resolving this such that a
more accurate representation of the distribution and rate of soil erosion in the study area
is possible. According to the National Soil Erosion Classification Grading Standard, we
present here a new soil-erosion map of the study area at much greater spatial resolution
(Figure 12). The identification and assessment of CSE reveals a higher rate of soil erosion in
general, as well as greater prominence of strong and extremely strong erosion in particular.
Water erosion dominates in the central and southern mountains, while slight water erosion
is distributed mainly in the northeastern parts of the study area.
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4.3. Uncertainty of Effects of Wind-on-Water and Water-on-Wind

This paper reports that the influences of wind on water and water on wind can ei-
ther augment or suppress total erosion, depending on the circumstances [28,29]. This
uncertainty is in part due to differences in the spatial scale of the model, and of field and
laboratory observed data. For example, the wind-on-water and water-on-wind experimen-
tal results of the slope mechanism experiment are not suitable for upscaling [28]. However,
it is evident from laboratory studies that wind erosion may amplify water erosion, and
that water erosion may reduce subsequent wind erosion [28,29], indicating that wind on
water and water on wind can offset each other. Furthermore, after exploring the combina-
tion of external wind- and water-erosion factors using weather station data, it is notable
that most of the weather stations should be characterized by wind and water sequential
erosion (WWSE), suggesting that wind and water erosion become superimposed in space.
Moreover, the months associated with high rainfall erosivity values and high wind factor
values do not generally overlap in time, since wind erosion plays the dominant role from
January to May and again from October to December, while water erosion is an important
force from July to August. Overall, this suggests that the influence of wind-on-water and
water-on-wind would most likely occur in the months of June and September.

Nevertheless, uncertainties remain. Firstly, it is not clear if the influence of wind-on-
water and water-on-wind erosion may be offset. Secondly, when the sediments deposited
by wind erosion enter into gullies, the kinetic energy required for water erosion would
increase [59], which is an issue that warrants further investigation. Thirdly, Mohammed
et al. [60,61] found that all factors (i.e., inclination, rainfall, and land use) had a significant
(p < 0.001) effect on soil loss, and that human activities, such as land use [61] and the
selection of vegetation type [62], play an effective role in mitigating soil-erosion rates.
Further research on the degree to which wind-to-water and water-to-wind may suppress
or accentuate erosion is also needed under human activities. In the present study, there
are constraints due to spatial and temporal resolution of some data; for example, while the
main influencing factors (topography, rainfall erosivity, and wind factors) for CSE-erod are
available at 30 m resolution, other data are only available at a coarser scale, meaning that
the calculated soil-erosion rates must be considered as estimates only.

5. Conclusions

This paper uses the Chinese Soil Loss Equation (CSLE) and the Revised Wind Erosion
Equation (RWEQ) to calculate the rate of soil erosion and map the distribution of three
types of soil erosion classified as (i) wind (wind-erod), (ii) water (water-erod), and (iii) CSE
(CSE-erod) for a study area that spans more than 400,000 km2 of sand- and loess-covered
landscapes in northern China. The main conclusions are as follows: Firstly, according
to minimum threshold values for mild erosion, we identify water-erod, wind-erod, and
CSE-erod land as occurring across 41.41%, 13.39%, and 27.69% of the total area, while
mean soil erosion rates for water-erod, wind-erod, and CSE-erod land were calculated as
6877.65 t km−2 yr−1, 1481.47 t km−2 yr−1, and 5989.49 t km−2 yr−1, respectively. Secondly,
land subject to CSE-erod is distributed especially around the margins of those areas that
experience wind erosion and water erosion independently, and the erosion area is 20.26%
larger than when considering water erosion alone, and 48.18% larger than when considering
wind erosion alone, while the erosion rate is 11.03% higher than in the case of water erosion
alone, and 88.97% higher for wind erosion alone. Thirdly, CSE-erod is an important but
underappreciated process in semiarid regions, and it needs to be accounted for in land
degradation assessments, as it has substantial impacts on agricultural productivity and
sustainable development in regions with sandy and/or loess-covered surfaces.
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