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Abstract: Based on new policies and social changes, renewable energies have highly penetrated
electrical systems, making the system more vulnerable than before. On the other hand, it leads to
congestion and competition within the network. To this end, this paper developed a probabilistic
multi-objective-based congestion management approach and applied it to the optimal transmission
switching (OTS) strategies, to maximize system suitability and minimize total production costs. A
point estimation economic method (PEM) has been applied, as one of the best management and
economic tools to handle the uncertainties associated with a wind turbine’s power production and
load demand (LD). Results demonstrate the effectiveness and merit of the proposed technique,
compared to the existing one, which can lead to higher reliability and sustainability for the grids.

Keywords: dynamic thermal rating; probabilistic energy demand; two points approximation scheme;
wind power; congestion management; electricity optimization; MPSO multi-objective optimization;
suitability

1. Introduction

Electric utilities must use renewable energy resources, due to the growing demand
for power and the increase in the world population. The popularity of such resources
was, also, boosted by growing environmental concerns and reducing investment prices.
Renewable energy resources, such as wind, are one of the most widely used resources,
with 651 GW of installed capacity globally, in 2019 [1]. A significant challenge for network
operators is associated with wind power fluctuations [2]. Wind power resources present a
number of challenges in the transmission networks (TNs) operation, including that many
lines lack sufficient capacity for transmitting the energy, so dealing in the day-ahead power
market leads to congestion [3]. Generally, congestion of transmission happens whenever
variations in demand/production cause a transfer of power that reaches or exceeds the
transmission network’s physical capacity. Additionally, the transmission infrastructure on
the system is rapidly deteriorating. Consequently, the amount of congestion in the grid
enhances markedly, which is a major factor in the increase in power production costs and
the restriction of the use of renewable energy [4]. It is difficult and costly to construct new
transmission lines (TLs) to reduce congestion, so utilities are seeking a more cost-efficient
technology to make use of the current infrastructure [5]. The flexible AC-TS (FACTS),
high voltage DC system, and enhanced conductor system are developing transmission
technologies, which are increasing the capacity of the transmission network. Nevertheless,
a number of technologies, such as FACTS controllers and large-scale energy storage, require
significant investment. Accordingly, novel transmission technologies, designed to utilize
the potential of the current transmission infrastructure, would be more appealing and are
becoming, increasingly, used in practice. As a result, transmission service providers are
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searching for alternatives that could be used effectively for their networks. This paper uses
DTR and network topology optimization (NTO) as well as, for improving the network’s
reliability, increasing wind power’s penetration rate and reducing congestions of TL.

A network topology optimization method can be used to take advantage of the current
transmission infrastructure, to achieve a timely and significant purpose: The transmission
network’s performance and flexibility can be improved. As early as the 1980s, the concept
of changing transmission network topology was offered [6], giving system operators the
chance to temporarily remove TLs from service, giving them the flexibility they need to
manage transmission network topologies. As a precaution or corrective measure, the TL is
turned on/off to decrease voltage violations, line overloads, secure the system, and restore
the load when an outage has occurred [7]. Transmission switching is also examined, as
a means of harnessing the flexibility of the current transmission infrastructure to reduce
the operational costs of the system, in addition to being a control action or as a solution to
reduce system losses. Optimal transmission switching (OTS) was, firstly, introduced in [8],
as part of the DC optimal power flow. A binary variable shows the on/off status of TLs,
within the suggested formulation, while [9] extended the OTS real-time utilization to the
AC optimal power flow (ACOPF) context. The two-level frequent structure was presented,
using 2ˆth-order cone programming, for generating ideal switching solutions at high levels;
afterward, those solutions were screened for achieving AC reliability at low levels. The
transmission switching of power systems is proven to lower the investment cost.

Through the development of heuristic solution techniques, transmission switching
operations have become more adaptable, by finding solutions to OTS problems more
quickly. Stochastic optimal transmission switching (SOTS) requires a suitable stochastic
programming formulation. The SOTS must, explicitly, represent and consider the uncer-
tain renewable generation and loads, while determining the OTS decisions. Then, [10]
recommended an OTS model with adaptive robust optimization (RO), according to the
uncertainty of net LD, and [11] used a linearized OTS model, according to AC OPF, for
adapting to the random nature and intermittent nature of wind power for practical applica-
tions. Finally, [12] offered a very conservative TL switching solution, using an RO that just
took into account the worst-case uncertainty.

Along with optimizing stochastic and robust programming, probable power flow
has proven effective at examining the uncertain nature of electric power systems as well,
and is used widely. Point estimation methods (PEM) are adapted, by such methods,
to a wide range of applications [13]. Generally, Static line ratings (SLRs) are used to
plan and operate many TLs. Severe weather conditions limit TS ratings, in this case. It
might be difficult to fully utilize the TLs, due to this conservative method [14]. Therefore,
transmission service providers are exploring alternatives, in order to optimize the use of
the transmission network. As an example, one of those methods uses the DTR of TLs,
which is dependent on the actual climate, for creating conditions of actual loading [15].
Taking the benefit of the cold temperatures and high winds that occur during such events
will enable grid operators to significantly increase the thermal limit of TLs with DTR [15].
TS operators benefit most from this solution, as by utilizing current assets for TLs, capital
investment in this part of the system is much less, in comparison to reconstructing more
resilient systems from scratch. Power systems have been the subject of many DTR study
programs. DTR’s integration into real-time operations improved congestion management
(CM) as well as related costs throughout such alterations and events in [16]. Moreover,
Ref. [17] discussed the aging impact of transmission overhead lines based on the DTR
technique, and its parametric uncertainty towards line failure probability. Despite this,
the majority of research exists on the basis of fixed networks. Coordinating DTR and
other new transmission-control technologies should be investigated further. The OTS and
DTR share a similar benefit, namely that, together, they can add more power over the
transmission network, by mitigating system limitations and decreasing operational costs.
In summary, the co-optimization of these two technologies in the power system would
increase its efficiency effectively. Power system reliability has been enhanced recently, by
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combining DTR and OTS with other technology. In addition, Ref. [18] discussed DTR
progress scheduling with NTO deployment and its reliability evaluation, while Ref. [19]
suggested combining OTS and DTR in a unit commitment problem, to increase power
distribution uniformity. Moreover, Ref. [20] discussed the effects of OTS and dynamic
thermal ratings on decreasing emission of carbon dioxide, particularly in the case of
diversifying energy resources. A key aim of this research is to schedule the power system
day-ahead, by simultaneously implementing OTS and DTR. Compared to the previous
investigations, there are still a limited number of suitable limitations, which are, directly,
incorporated into the formulation of OTS problems, for assuring that an OTS problem is
truly networked, and that the load and wind power are random and variable.

The probable multi-objective CM, according to the PEM using the DTR and OTS
methods, is presented in the present study, which supports utilities in making better use
of current transmission infrastructure, by providing better congestion relief efficiencies.
In total, two levels of the problem are planned. Firstly, MPSO examines choices from a
range of possible switching schemes for TLs, and, then, it sends the results to the next level.
In the next step, (2PEM + 1) has been applied, for solving the probable optimum power
flow problems that have been utilized to estimate the expected costs of production and the
reliability index, related to various strategies.

The paper consists of the following parts: Part 1 provides an overview of the study.
Part 2 deals with the modeling of system uncertainties. Part 3 introduces the probabilistic
power flow (PPF) estimation process (2PEM + 1). Part 4 discusses the problem formulation.
Part 5 presents the MPSO algorithm, whereas Part 6 covers the test system and scenarios.
Part 7 concludes the paper.

2. Modeling of Uncertainties

The increasing uncertainty associated with load and renewable energy sources is
one of the major characteristics of modern power grids. There are various methods to
handling uncertainty in the electrical grid, and they usually have been grouped into RO
methods, probable methods, and interval-set analyses. RO models uncertainties in the
form of intervals and uses optimization for solving state boundary issues. Interval set
decomposition involves demonstrating the uncertainty in the form of a set/interval and
using an interval set method for estimating the output boundary. In probabilistic models,
uncertain parameters are modeled as random variables, with known probability density
functions, and propagations of uncertainty are modeled through analytic methods or Monte
Carlo simulation. The present paper uses the probabilistic method, since this can be a widely
applied method, in order to handle uncertainties in electrical grids [1] (See Appendix A).

Regarding the distribution types, please note it that it is widely accepted in the
literature, [1,21], that normal distribution and the Weibull type can be used for modeling
the behavior of the load and wind speed/power. Nevertheless, it should be noted that
any other PDF function can be used in the same manner, without loss of generalization. In
other words, we can use other PDF types in quite the same way as we used the normal or
Weibull functions. Meanwhile since these assumptions are made based on long-term big
data, there is no way to check their accuracy in this work. In fact, in practice, we need to,
first, make an initial data analysis to find the most-fitting PDF, based on our real-time data,
and, then, start working with our model.

2.1. Modeling of Probable Load

There are two parameters that define probability distribution functions (PDFs); the
mean (µ) and standard deviation (σ) of the uncertain parameter are described in the
following way [1]:

PDF(s) =
1

σ
√

2π
∗ exp(

(−(S−µ)2)
2π2 ) (1)
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Here, the apparent power of the load is shown by S, and the assumption is that every
bus has a mean (µ) that equals the base load and a standard deviation (σ) of ± 5% of the
base load [1].

2.2. Probabilistic Wind Modeling

Wind turbines (WTs) generate power based on the wind speed (v), which can typically
be modeled using the Weibull distribution PDF [22]:

PDE(v) =
(

k
c

)(v
c

)k−1
exp
[
−
(v

c

)k
]

(2)

Here, the scale factor is shown by c, and the shape factor of the Weibull function is
indicated by k.

The PDF of the wind speed can be supposed to be known in every region, and the
variation of wind speed to WT output power can be determined via [23]:

P(v) =


0, v ≥ vo or v ≤ vi

Pr

(
v−vi

vr−vo

)
vi ≤ v ≤ vr

Pr vi ≤ v ≤ vr

(3)

Here, vi indicates the cut-in wind speed, vr shows the rated wind velocity, vo shows
the cut-out wind speed, and Pr represents the rated power.

2.3. Probabilistic Line Rating Modeling

Various approaches exist for implementing DTR, always requiring various input
parameters. Those approaches are: [24] (1) predicting DTR based on climate forecasts and
system loading; (2) an estimate of DTR based on indirect measurements; and (3) an actual
DTR assessment based on real climatic information, as applied in this study. Therefore, the
ampacity of the line must be considered as a probabilistic variable, in which the PDF of
a thermal limit (MVA) would correspond to a generalized extreme value distribution, as
illustrated in Equation (4). [1,21].

PDF(t) = (
1
σ1

)·(1 + ξ
(t− µl)

−1
ξ

σ1
))·e

−
1+ξ

(t−µl)
1
ξ

σ1


(4)

Here, the DTR of the line is shown by t, the location parameter is represented by µl ,
the shape parameter is shown by ξ, and the scale parameter is represented by σl . Weather
conditions determine these parameters, which are computed according to [25]. Therefore,
the DTR mean has been achieved for every period (for example, season) and is applied as a
limit to the formulas of power flow [1].

3. Probabilistic Power Flow

This paper has proposed a stochastic framework based on PEM, to handle the uncer-
tainties of the problem, including the renewable sources’ output power uncertainties and
the load demand uncertainties. Therefore, Section 2 is devoted to describing this section
completely. The core idea in PEM is to replace the PDF functions with some appropriate
fitting concentration points. In this approach, the PEM solves probabilistic problems via a
deterministic process, although it needs less computation [13]. Therefore, the PEM would
decompose the stochastic problem into a 2m + 1 equivalent deterministic problem, with
different probabilities. PEMs have the advantage of requiring basic information about
random variables, in order to model them effectively. The skewness, variance, and kurtosis
of the variables are included in the data. This study uses the (2m + 1) scheme, in which
the kurtosis of the input random parameters is taken into account, and just one more
computation has been performed [26]. More details, including the complete formulations,
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are provided in this paper, which are highlighted in yellow. The PPF problem is solved
using the scheme (2m + 1), in the following way [1]:

ξl,k =
λl,3

2 + (−1)3−k
√

λl,4 − 3
4 λ2

l,3

k = 1, 2, ξl,3 = 0
(5)

pl,k = µpl + σplk = 1, 2, 3 (6)

wl,k =
(−1)3−k

mξl,k(ξl,1 − ξl,2)
k = 1, 2 (7)

wl,3 =
1
m
− 1

m(λl,4 − λ2
l,3)

(8)

Here, l, k represents the standard location, µP1 shows the mean, σPl indicates the
standard deviation, and λl,j shows the jth standard central moment of the input random
parameters pl . Based on Equation (11), location l, 3 = 0 gives pl,3 = µpl and, thus, the

locations are the same
(

µp1, µp2, . . . , µpl , . . . , µpm

)
point. Therefore, it should be pos-

sible to perform a single calculation at this location, given equivalent weight w0, in the
following way:

w0 = 1−
m

∑
l=1

1
m(λl,4 − λ2

l,3)
(9)

In addition, Equation (11) proves that the scheme yields non-real locations if λl,4 − 3
4 λ2

l,3
has a negative value. Furthermore, in power system problems, the probability distributions
have been typically applied to the normal, uniform, and binomial models; thus, the places
can always be actual.

The PPF issue, utilizing the (2m + 1) layout, is solved by modeling the power flow
input information as random variables, and calculating the weights and places by applying
Equations (11) and (13). A solution can be found in [26]:

E
(

Zj
)
=

m

∑
l=1

2

∑
k=1

wl,k(Z(l, k))j + woZj
o (10)

(l, k) = F
(
µp1, µp2, . . . , P1,k , . . . , µpm

)
, k = 1, 2 (11)

Zo = F
(
µp1, µp2, . . . , . . . , µpm

)
(12)

Here, Z(l, k) shows the output of the RVs associated with the kth concentration(
µp1, µp2, . . . , P1,k , . . . , µpm

)
of random parameters, representing the relation between the

output and input in the probable power flow (PPF). The gathering scheme determines the
dense number of definite PFs needed to be executed. Z(l, k) has been used for assessing
the raw moments of the yield, and the computation ends once entire centralizations of data
RVs have been taken into account. Afterwards, applying Equation (12), the analyzed raw
moments of the yield have been used for calculating the necessary statistical data [1].

4. Formulation of the Issue
4.1. Objective Functions

In TNs, the TL switching method reduces congestion. Through optimization, TLs that
need to be disconnected would be identified, decreasing congestion. In order to determine
the optimal switching plan, in terms of maximum probabilistic reliability and lowest cost
of production, a multi-objective-based methodology is proposed in this study. Following
are details on the objective functions.
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4.1.1. Overall Cost of Power Production

In order to realize this goal, total network savings must be maximized, via a reduction
in total power production costs, which are dependent on physical limitations, such as TL
flow limitations and voltage of bus restrictions. It should be noted that it is well perceived
that the cost function is considered in a quadratic format, since the case study is the
transmission system. From a technical point of view, this models the nonlinear opening
and closing process of the steam valves, which looks like sinusoidal curves. It is clear that
we have to use a linear equation (rather than a quadratic function), if the case study is a
distribution system. The paper uses the secondary supply bid price function:

min
ng

∑
i=1

(
ai + biPgi + ciP2

gi

)
(13)

Subject to:

Pgi + Pwi + PDi −Vi

Nb

∑
j=1

Vj
(
Gij cos δij + Bij sin δij

)
= 0 , i ∈ Nb (14)

Qgi + Qwi + QDi −V
Nb

∑
j=1

Vji
(
Gij cos δij − Bij cos δij

)
= 0 , i ∈ Nb (15)

Pmin
gi ≤ E

(
Pgi
)
≤ Pmax

gi , i ∈ NG (16)

Qmin
gi ≤ E

(
Qgi
)
≤ Qmax

gi , i ∈ NG (17)

Vmin
gi ≤ E

(
Vgi
)
≤ Vmax

gi , i ∈ NG (18)

Vmin
Li ≤ E(VLi) ≤ Vmax

Li , i ∈ NL (19)

(Sli) ≤ Smax
l ∗ γk , i ∈ NL (20)

δmin
i ≤ δi ≤ δmax

i , i ∈ Nb (21)

NL

∑
k=1

(1− γk) ≤ ϕ (22)

Here, Qgi and Pgi represent the reactive and active power production of the i generator
unit; Qwi and Pwi show the reactive and active power generation of wind farm i; QD1
and PD1 represent the reactive and active LD at load bus i; Pmax

gi , Pmin
gi , Qmax

gi , and Qmin
gi

show the maximum and minimum restrictions of the reactive and active power injection
of the ith generator agent; Vmin

gi and Vmax
gi represent the minimum and maximum limits

of the voltage magnitude at bus i; Vj∠δj and Vi∠δi show the termination buses j and i
voltages; Sl represents the power flow via the line, and Smax

l shows the loading limit; Bij
and Gij represent the substance and conductance of the branch linked between bus i and
j; ϕ, Nb, Ng, and NL indicate the groups of the switching lines number, branches number,
generator buses, and buses of load, respectively; γk shows the state of line l that can be 0 or
1 (open/close); and ai, bi, and ci represent generator fuel ratios.

4.1.2. Probable Reliability Objective

Maximum probabilistic reliability has been regarded as an additional target to opti-
mize, in the suggested multi-objective optimization problem. OTS strategy can effectively
change the structure of the grid and, thus, provide new power flow paths, through which
the optimal values of the objective functions would enhance. OTS would, then, minimize
the power losses and cost, enhancing the EENS in the system. From the market point of
view, this is very useful and can be considered as a powerful ancillary service for the market
players. The expected energy not supplied (EENS) factor has been applied as the OTS’s
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goal of OTS, showing the reliability and efficiency of the grid, in the status of structure
reconfiguration. The probabilistic analysis state enumeration method is used to calculate
the EENS factor of the TS, which can follow each OTS plan [27]. The objective function,
which should be minimized, can be described via Equation (23):

min(EENS) = ∑
s∈Ω

Pt(s)·PC(s) (23)

Pt(s) =
(

λi
λi + µi

) ψ

∏
j=1

(
1− λi

λi + µi

)
(24)

Here, PC(s) is the total load curtailment and Pt(s) is the probability of occurrence of
grid status s; Ω shows the set for grid status s; λi and µi represent the blackout and element
i maintenance rate; and the accessible parts number is shown by ψ.

Failures of TL are modeled as an independent single blackout (N − 1); therefore, just
first-order contingencies are taken into account, and, as far as is related to the cause, that
will not be affected by any concurrent failures. Reconstruction state probabilities have been
computed in Equation (24), in which the probability of occurrence of every contingency
(s) has been obtained, by multiplying the existing part’s probability by the failed part’s
probability. The overall load curtailment, PC(s), of any status s, has been computed via an
ACOPF method, as illustrated in the Equations (25)–(29) sub-problem, which can minimize
the overall load decrement of every possibility:

min ∑
i∈Nb

PCi (25)

Subject to:

Pgi + Pwi − PDi + PCi −Vi

Nb

∑
j=1

Vj
(
Gij cos δij + Bij sin δij

)
= 0 , i ∈ Nb (26)

Qgi + Qwi −QDi + QCi −Vi

Nb

∑
j=1

Vj
(
Gij sin δij − Bij cos δij

)
= 0 , i ∈ Nb (27)

0 ≤ PCi ≤ PDii ∈ Nb (28)

0 ≤ QCi ≤ QDii ∈ Nb (29)

It is necessary to determine the reactive and active power at the bus of the gener-
ator and the magnitude of the voltage of bus in the inequality restriction, according to
Equations (16)–(20).

The EENS index was assessed in networks using the (2PEM + 1) process, and the
load’s uncertainties and WT’s power have been taken into account. Figure 1 shows the
steps for calculating the EENS index, using the PEM-based approach.
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5. Solution Method
5.1. Enhanced Particle Swarm Optimization

PSO is an evolutionary optimization technique, in order to minimize an objective that
mimics the behavior of flocks of birds flying overhead or a group of fish. Particle swarm
optimizers are comprised of particles and update empirical data about a search space,
iteratively. Individuals in the population illustrate potential solutions to problems and can
be viewed as particles that move in a ψ-dimensional search space.

Particles in a general PSO algorithm will adjust their position in accordance with
their experiences and those of their neighbors, such as their current position, velocity,
and the best prior position. By including the worst experience of each particle, MPSO
enhances convergent performance of PSO and offers additional exploration capacity to
the swarm [28]. By remembering its worst experience, the particle explores the search
space more efficiently, to determine the best solution area. The MPSO algorithm updates
positions and velocities of particles, in the following way [28]:

vd
i (k + 1) = ξvd

i (k) + c1 × r1 × (Pd
best,i − Xd

i (k) + c2 × r2 × (Gd
best

−Xd
i (k)) + c3 × r3 ×

(
Xd

i (k)− Pd
worst,i

) (30)

xd
i (k + 1) = xd

i (k) + σvd
i (k + 1) (31)

Here, the current velocity of the ith particle is shown by vd
i (k), i = 1, . . ., P, where P

shows the population size; k indicates the kth iteration; superscript d = 1, . . ., ψ shows the
dimensions of the particle; Pbest,i represents the best prior location of the ith particle; Pworst,i
shows the worst prior location of the ith particle; Gbest represents the best prior location
between whole of particles in the swarm; Xd

i (k) shows the current location of the ith particle;
c1, c2, and c3 represent the acceleration factors; r1, r2, and r3 show the monotonous random
numbers among 0 to 1; and σ shows the learning factor. By using designed inertia weight ζ,
the previous updated feature is copied to the next iteration. When the greater ζ has been
chosen, the previous vd

i (k) has a significant influence on vd
i (k + 1). It should be noted that

the PSO method in Equation (30) does not include the last section on the right part. The
amount of MPSO variables have been presented in Table 1.
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Table 1. Amount of MPSO variables.

Variable P c1 c2 c3 ψ σ ζ kmax

Value 5 0.5 0.5 0.5 1 5 × 10−3 1 30

5.2. Islanding Prevention

System-wide cascading interruptions and complete blackouts can be avoided, by using
power system island detection. When the TL is disconnected, it can lead to bus isolation.
Consequently, the optimization process must include measures to avoid islanding. The
prior investigations have not included restrictions that could be directly incorporated into
the OTS problem formulation, to make sure the network connection is properly enforced. A
novel island detection process, which can provide a robust approach for connection matrix
detection, is presented in this paper [29]. Figure 2 shows the suggested MPSO algorithm.
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5.3. Suggested Method

Two levels are planned for the complete problem. During the first level, MPSO
determines the optimal TL switching strategies from various feasible ones, and the results
are transferred to the 2th level. The 2th level involves the use of the (2PEM + 1), for the
solution of the issues of the PPF, which can be necessary for determining the production
cost and reliability index for different strategies.

6. Test System and Scenarios

An IEEE RTS 96 test system [30] is applied, for illustrating the suggested approach
in cases where transmission switching is needed to reduce operating expenses and ease
congestion. Interconnections among three identical 24-bus networks make this system
possible. This system has an active power load of 8.55× 103 (MW) and a reactive power
of 1.74× 103 (MVAr). A total of 9.832× 103 (MW) active power and 2.001× 103 (MVAr)
reactive power have been added to the system. For every bus, the active and reactive power
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has been expressed as the usual PDF, whose mean (µ) equals the basic load and whose
standard deviation (σ) equals 5% of the basic load.

Table 2 gives producing unit cost and kinds of data information. Figure 3 shows a
schematic scheme of the RTS. Six wind farm generations, with 285 MW of installation
capacity, have been permitted to be linked at bus 10, with 14 in every region of the RTS.
There are 190 WTs in each wind farm. The whole optimization runs start with population
size [N = 100] and the maximum number of iterations [GN = 200], as primary control
parameters for the MO MPSO method. Pareto optimal fronts, with a maximum size of
25 solutions, were chosen. An analysis of the operational and economic advantages of
implementing the OTS approach was conducted, using two scenarios.

Table 2. Producing agent kinds and cost data.

Generator Unit U12 U20 U50 U76 U100 U155 U197 U350 U400

Size (MW) 12.00 20.00 50.00 76.00 100.00 155.00 197.00 350.00 400.00
Fuel Steam/Oil CT/Oil Hydro Steam/Coal Steam/Oil Steam/Coal Steam/Oil Steam/Coal Nuclear

Fuel ($/Mbtu) 8.4 15.17 0 1.78 8.4 1.78 8.4 1.78 0.6
Cost ($/Mwh) 85.5 149.56 0.1 17 67.95 14.71 74.75 14.96 22
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6.1. First Case Study: OTS with SLR

Figure 4 shows the Pareto optimal front for two objectives: probabilistic reliability and
the production costs for DTR. MPSO has been used to derive the Pareto optimal front, and
the fuzzy approach has been used for defining the BCS for diverse wind farm production
capacities, according to Tables 3 and 4. In order to reduce grid dispatch prices with OTS, just
one line is open (φ = 1). For the optimization issue, the line that links bus 109 to bus 111
is switched off. Eight producing sets in the grid have their output power changed by this
reconfiguration. According to Table 5, generator agents U179 and U100 decrease output,
whereas generator agents U12, U350, and U67 increase output. Reducing the generation
costs of generators, by transferring power from costly devices to low-price devices, without
compromising the network’s safety, is possible. Continuing the analysis for [φ = 2 to 4], for
every further open line, the cost of the network reduces, but at a decreasing rate. Various
wind farm capacities have been investigated in four subcases. Tables 3 and 4 show the
outcomes. As wind farm capacity increases, power production costs decrease, if the number
of switched TLs is zero. Tables 3 and 4 show that if the number of TLs increases, the mean
of the production cost of the network decreases, with an increase in the capacity of the
wind farm, due to the greater dispatch of cheaper generators, according to Figure 5. As a
consequence, if N − 1 security has been kept, EENS greatly enhances those probabilistic
indicators for the four topologies, which have disconnected lines. Figure 6 indicates that
up to four lines can be opened, without compromising the system operating constraints.
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Table 3. The BCS outcomes for OTS methods with SLR (with wind influence 0% and 10%).

ϕ 0 1 2 3 4

Wind penetration (0%)
Lines open - [111–114] [210,211];

[111–114]

[118–121];
[209–111];
[210,211]

[310,311];
[106–110];
[118–121];
[109–111]

µ[Gen.cost]
($/h) 189,685 186,439 185,285 184,633 184,125

µ[EENS]
(Mwh/y) 2.77× 103 5.831× 103 6.93× 103 7.78× 103 10.273× 103

Wind penetration (10%)
Lines open - [111–114] [210,211];

[109–111]

[110–112];
[109–111];
[215,216]

[312–314];
[106–110];
[118–121];
[109–111]

µ[Gen.cost]
($/h) 164,860 161,340 160,215 159,730 159,310

µ[EENS]
(Mwh/y) 2.49× 103 5.31× 103 6.33× 103 7.08× 103 9.273× 103

Table 4. The BCS outcomes for OTS methods with SLR (with wind influence 15% and 20%).

ϕ 0 1 2 3 4

Wind penetration (15%)
Lines open - [109–111] [210,211];

[114–111]

[118–121];
[109–108];
[210–205]

[310–305];
[106–110];
[118–117];
[109–111]

µ[Gen.cost]
($/h) 189,685 186,439 185,285 184,633 184,125

µ[EENS]
(Mwh/y) 2.77× 103 5.831× 103 6.93× 103 7.78× 103 10.273× 103

Wind penetration (20%)
Lines open - [119–114] [210,211];

[109–103]

[118–121];
[109–108];
[210,211]

[311–314];
[106–110];
[218–222];
[109–104]

µ[Gen.cost]
($/h) 164,820 143,620 142,510 140,715 140,030

µ[EENS]
(Mwh/y) 2.36× 103 5.01× 103 5.95× 103 6.69× 103 8.83× 103
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Table 5. Alterations in generator output, following switching off the line (109–111).

Generator Unit U12 U20 U50 U76 U100 U155 U197 U350 U400

Size (MW) 12.00 20.00 50.00 76.00 100.00 155.00 197.00 350.00 400.00
Fuel kind Oil/Steam Oil/CT Hydro Coal/Steam Oil/Steam Coal/Steam Oil/Steam Coal/Steam Nuclear

Fuel ($/MBtu) 8.4 15.17 0 1.78 8.4 1.78 8.4 1.78 0.6
Cost ($/Mwh) 85.5 149.56 0.1 17 67.95 14.71 74.75 14.96 22

Change in
output (Mw) 4.5 0 0 29.74 −17.37 0 −98 81.13 0
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6.2. Case Study: OTS with DTR

Based on the suggested approach in Part 5, Tables 6 and 7 illustrate the achieved
production cost and EENS index. The power, of the great-cost generator agent U197 in the
DTR, has been decreased and moved to the small-cost generator agents U155, U76, and
U100, compensating for the power loss of U197. Based on Figure 7, it can be concluded that
up to four lines can be opened without compromising N − 1 security. The BCS achieved,
for this case, shows that when opening TLs 310–311, 106–110, 118–121, and 109–111,
the overall production reduces from 141, 520 USD/h to 131, 830 USD/h, as a result of the
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greater dispatch of low-cost generators, and the system EENS of reliability relevant to the
optimum OTS method changes from 2.1× 10 3 MWh/yr to 7.53× 10 3 MWh/yr, according
to Figure 8. The dispatch cost-saving amount with OTS and DTR is 7.15%.

Table 6. The BCS outcomes for OTS methods with DTR (with wind influence 0% and 10%).

ϕ 0 1 2 3 4

Wind penetration (0%)
Lines open - [109–111] [210,211];

[109–111]

[118–121];
[109–111];
[210,211]

[310,311];
[106–110];
[118–121];
[109–111]

µ[Gen.cost]
($/h) 189,625 186,412 185,235 184,587 184,098

µ[EENS]
(Mwh/y) 2.56× 103 5.42× 103 6.44× 103 7.23× 103 9.53× 103

Wind penetration (10%)
Lines open - [119–111] [210,211];

[109–111]

[118–121];
[109–111];
[210,211]

[310,311];
[106–110];
[118–121];
[109–111]

µ[Gen.cost]
($/h) 164,710 161,240 160,215 159,510 159,205

µ[EENS]
(Mwh/y) 2.31× 103 4.91× 103 5.85× 103 6.54× 103 8.57× 103

Table 7. The BCS outcomes for OTS methods with DTR (with wind influence 15% and 20%).

ϕ 0 1 2 3 4

Wind penetration (15%)
Lines open - [109–111] [210,211];

[114–111]

[118–121];
[109–108];
[210–205]

[310–305];
[106–110];
[118–117];
[109–111]

µ[Gen.cost]
($/h) 153,101 150,05 149,520 148,490 147,850

µ[EENS]
(Mwh/y) 2.41× 103 5.01× 103 6.12× 103 6.77× 103 8.93× 103

Wind penetration (20%)
Lines open - [119–114] [210,211];

[109–103]

[118–121];
[109–108];
[210,211]

[311–314];
[106–110];
[218–222];
[109–104]

µ[Gen.cost]
($/h) 141,520 140,320 137,210 134,415 131,830

µ[EENS]
(Mwh/y) 2.36× 103 5.01× 103 5.95× 103 6.69× 103 8.83× 103

DTR provides benefits, in order to solve the grid limitations, particularly considering
the growing production and consumption of renewable energy resources. When OTS and
DTR are coordinated, system efficiency can be improved, in comparison with the SLR
scenario. Table 8 shows the exact cost of dispatch and the reliability of the grid criteria for
both SLR and DTR case studies, for wind farms with an installation capacity of 20%. As a
conclusion, DTR has a lower total system cost compared to SLR. Furthermore, as opposed
to the optimal approach, which is to open four lines, the execution of DTR allows the
dispatching of the grid generator sets to be less expensive than SLR, where the production
cost decreased 2.03% to 6.78%. Figure 9 shows the comparison between DTR and SLR.
According to Figure 10, DTR-OTS has the lowest increase in EENS, 7.71% to 8.03%, in
comparison with SLR.
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Table 8. Comparisons of BCS for OTS methods with DTR and SLR (with wind influence 20%).

ϕ 0 1 2 3 4

SLR
Lines open - [109–111] [210,211];

[114–111]

[118–121];
[109–108];
[210–205]

[310–305];
[106–110];
[118–117];
[109–111]

µ[Gen.cost]
($/h) 146,820 143,620 142,510 140,715 140,030

µ[EENS]
(Mwh/y) 2.41× 103 5.01× 103 6.12× 103 6.77× 103 8.93× 103

DTR
Lines open - [109–111] [210,211];

[109–111]

[118–121];
[109–111];
[210,211]

[310,311];
[106–110];
[118–121];
[109–111]

µ[Gen.cost]
($/h) 141,520 140,320 137,210 134,415 131,830

µ[EENS]
(Mwh/y) 2.10× 103 4.41× 103 5.23× 103 5.64× 103 7.53× 103
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Abbreviation 
ACOPF AC optimal power flow 
CM Congestion management 
EENS Expected energy not supplied 
FACTs Flexible AC-TS 
LD Load demand 
MPSO Modified particle swarm optimization  
MOMPSO Multi-objective MPSO 
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Figure 10. Comparing EENS for SLR and DTR for various OTS methods, with wind penetration of 20%.

7. Conclusions

This paper uses TS capacity as the primary source for flexibility. The technologies
employed in this paper are DTR and OTS, which have both been anticipated to contribute
to improved congestion mitigation and enhanced network utilization. As a result, the paper
proposes a simple and efficient method to solve the CM problem, by applying the OTS
approach, which considers the total cost of production as well as the system reliability index,
as multiple objectives with the greatest influence rate on wind production. A modified
IEEE RTS-96 system was used to evaluate the validity of the suggested method, and
(MOMPSO + PEM) was used to solve it. Based on the simulation outcomes, applying the
OTS approach improves the performance of the TS, by regarding the feasibility of altering
its topology. Through integration of DTR, the system can achieve a number of benefits,
including increased grid capacity. Due to simplified implementation procedures and a
lack of major infrastructure or line rebuilding, the DTR method is remarkably appealing in
systems that are, presently, suffering from a crescent status of overload. According to the
outcomes, OTS could make better use of transmission capacity by using NTO, and DTR
can improve reliability and resilience by improving grid operators’ awareness of individual
assets, thus enhancing flexibility.
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Abbreviation

ACOPF AC optimal power flow
CM Congestion management
EENS Expected energy not supplied
FACTs Flexible AC-TS
LD Load demand
MPSO Modified particle swarm optimization
MOMPSO Multi-objective MPSO
MCS Monte Carlo simulation
NTO Network topology optimization
OTS Optimal transmission switching
PEM points estimation method
PPF Probabilistic power flow
PDFs probability distribution functions
RO Robust optimization
SOTS Stochastic optimal transmission switching
SLRs Static line ratings
SLR Static line ratings
TL Transmission lines
TN Transmission network
WT Wind turbine

Appendix A

This section provides all the input data used for modeling the uncertainty effects due
to the renewable sources and load demand. There are 190 WTs in each wind farm with the
specifications as follows:

NEG Micon 1500/64 WT,
Scale parameter c = 8.549 m/s;
Shape parameter k = 1.98;
V_i = 5 m/s;
V_r = 15 m/s;
V_o = 25 m/s;
and P_r = 1.5 MW.

Regarding the PDF functions, all load buses are modeled with the normal density
function of the mean value of the base value (active power/reactive power value) and a
7% standard deviation of the base value. For the wind turbine, it is modeled by the Weibull
distribution function, with the scale parameter of the base value and the shape parameter
of 5% of the base value. It is clear that any other appropriate PDF might be applied, based
on the real dataset.
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