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Abstract: Lithium-ion battery energy storage systems have achieved rapid development and are a
key part of the achievement of renewable energy transition and the 2030 “Carbon Peak” strategy
of China. However, due to the complexity of this electrochemical equipment, the large-scale use of
lithium-ion batteries brings severe challenges to the safety of the energy storage system. In this paper,
a new method, based simultaneously on the concepts of statistics and density, is proposed for the
potential failure prediction of lithium-ion batteries. As there are no strong assumptions about feature
independence and sample distribution, and the estimation of the anomaly scores is conducted by
integrating several trees on the isolation path, the algorithm has strong adaptability and robustness,
simultaneously. For validation, the proposed method was first applied to two artificial datasets, and
the results showed that the method was effective in dealing with different types of anomalies. Then, a
comprehensive evaluation was carried out on six public datasets, and the proposed method showed
a better performance with different criteria when compared to the conventional algorithms. Finally,
the potential failure prediction of lithium-ion batteries of a real energy storage system was conducted
in this paper. In order to make full use of the time series characteristics, voltage variation during a
whole discharge cycle was taken as the representation of the operation condition of the lithium-ion
batteries, and three different types of voltage deviation anomalies were successfully detected. The
proposed method can be effectively used for the predictive maintenance of energy storage systems.

Keywords: energy storage; all-solid-state lithium metal battery; solid electrolyte; interface; lithium
metal anode

1. Introduction

The world’s renewable energy (RE), represented by photovoltaic and wind power,
has been developing rapidly in recent years and is becoming one of the most viable ways
to meet soaring energy demands and address environmental concerns [1]. However, the
inherent intermittent characteristic of RE is bringing potential instability to the power grid.
Just in time, as a strong backing to ensure the consumption of renewable energy and the
reliability of the grid, energy storage has ushered in the leapfrog development [2–4]. On
15 July 2021, the China National Development and Reform Commission and the National
Energy Administration jointly issued the “Guiding Opinions on Accelerating the Develop-
ment of New Energy Storage” [5]. For the first time, the development goal of the energy
storage industry has been defined and quantified at the national level, and it is expected
that the installation scale of new energy storage will reach over 30 million kW by 2025,
i.e., from 3.28 GW by the end of 2020 to 30 GW by 2025. In the next five years, the scale of
the new energy storage market should expand to 10 times that of the current level, with a
compound annual growth rate of more than 55%. At the same time, various provinces and
cities have issued relevant policies, requiring that, in principle, the energy storage capacity
of new energy projects should not be less than 10% to 20% of the installed capacity of new
energy projects.
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The lithium-ion battery (LIB) has become one of the most important energy storage
technology routes [6,7], mainly due to its significant advantages with respect to other battery
types [8–10], such as a longer lifecycle, a faster response speed, a lower self-discharge rate,
and higher energy conversion efficiency. In China, a batch of one hundred megawatt-
scale demonstration energy storage systems (ESSs) were combined successively to the
grid in 2021, and the important application scenarios of the stable peak adjustment and
fast frequency adjustment of the large-scale LIB-ESS were verified successfully. Even
gigawatt scale energy storage systems are on the agenda in many provinces. However,
at the same time, the large-scale use of LIBs brings severe challenges to the safety of
ESSs [11,12], and this has become one of the biggest obstacles to the development of
LIBs-ESS. Some relevant research has been conducted by former scholars [13–16], such
as the estimation of the state of charge (SOC) [10,17], the healthy estimation according to
capacity decline [18–20] or internal resistance increase [21], the remaining useful life (RUL)
prediction, etc. However, the calculations require long-term battery operation data and
even full lifecycle test data [22], and there is little research on the real-time potential failure
prediction of LIBs.

In this paper, a new anomaly detection method is proposed for the real-time potential
failure prediction of the LIBs of ESSs; this method integrates multiple binary trees and
repeatedly estimates the density of the subset that a sample is in when it is on the isolation
path. In fact, the approach is simultaneously related to statistics-based, density-based,
and depth-based methods. Isolation density (iDensity) has the notion of density itself,
which is estimated in the isolation process of a sample and, from the aspect of statistics,
isolation density is in fact the real conditional probability density of the instance with
multidimensional features. Compared with the former studies, the contributions of this
paper are the following. (1) An unsupervised anomaly detection method is introduced
for the diagnosis of the LIBS of ESSs; compared with the conventional SOH and RUL
calculation methods, the real-time work condition of LIBs can be estimated in the case of
no prior knowledge and long-running data. (2) A new LIB anomaly detection method is
proposed in this paper; as there is no strong assumption about the data distribution, the
method can adapt to datasets with different characteristics; it does not matter if the outliers
are exposed or enclosed by the normal instances or even if they get together themselves.
(3) Unaggregated voltage variations of a whole discharge cycle, instead of the instantaneous
value, are employed for anomaly detection, then the anomalies the of the LIBs on the scales
of the features and time series can be effectively detected, simultaneously.

The paper is organized as follows: in Section 2, the related work on anomaly detection
methods and their advantages and drawbacks are discussed. In Section 3, a new anomaly
detection method is proposed, and the mathematical interpretation is discussed. In Sec-
tion 4, experiments and qualitative discussion of the proposed method are conducted by
artificial datasets with different anomalies. In Section 5, experiments and quantitative
comparisons with conventional methods are conducted by public datasets. In Section 6, as
a case study, the proposed method is used for the anomaly detection of a real ESS. Finally,
the paper is concluded in Section 7.

2. Related Work

Anomaly detection is the process of identifying the few and the different samples, with
an unsupervised or a semi-supervised method; it has become a research hotspot in many
application domains [23–25], such as fraud detection in the financial domain, intrusion
detection in the cyber security domain, system fault detection in the industrial production
domain, etc. However, there are several factors that make this apparently simple and clear
task very challenging. (1) Anomalies are usually sparse, separated, or exposed instances.
However, they cannot be well-defined, except by some basic and abstract assumptions.
(2) Due to the difficulty of sample labeling, the most common scenario for anomaly detection
is semi-supervised or unsupervised learning, i.e., identifying outliers based on their feature
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values only. (3) In the scenario of a multidimensional time series, there are usually complex
features and even time series correlations implied in the dataset.

A variety of algorithms have been proposed by previous scholars [26], and most
of the algorithms are based some explicit or implicit assumptions which determine the
performance and the boundedness of the algorithm, simultaneously. In general, the stronger
the assumptions, the less adaptable the algorithm.

Statistics-based methods have been widely used for anomaly detection. The histogram-
based outlier score (HBOS) [27] is an efficient method for anomaly detection in large
datasets. However, the basic assumption is that the features are independent of each other;
consequently, the algorithm will fail for the detection of correlation anomalies. In distance-
based methods, instances are determined to be abnormal or not by the measurement of
distance, such as, for instance, in the method of k-nearest neighbors (KNN) [28]. In the
cluster-based method, instances are determined abnormal or not by the degree of deviation
from existing clusters, such as, for instance, in the method of k-means [29]. However,
Euclidean distance is usually employed for the measurement of distance in KNN and
K-Means. Therefore, an implicit assumption that the data will conform to the spherical
distribution is introduced. The local outlier factor (LOF) [30] is a density-based method
for anomaly detection [31]. In the LOF method, the dissimilarity of the reach distances of
an instance and its k neighbors is used for the measurement of anomaly scores. However,
the employment of Euclidean distance also introduces the implicit assumption of spherical
distribution. In addition, the scope of “local” is difficult to define. Depth-based methods
determine anomalies by delimiting molecular space, such as, for example, in the isolation
forest (iForest) [32–34] method. The basic assumption is that outliers usually have a smaller
depth on the lookup path. Because this is a weak hypothesis, iForest therefore shows
better adaptability. However, iForest always tends to capture the exposed points, while the
anomalies that are enclosed by normal instances are usually difficult to detect.

3. Isolation Density

A two-dimensional dataset is shown in Figure 1, where the blue points are considered
to be normal samples, and the red point xi is an anomalous one. At first, a random value in
a randomly selected dimension is generated, by which the samples are divided into two
parts. Then, the density of the subsets that contain and do not contain xi, i.e., d and d’,
are calculated. This process is repeated until xi is fully isolated, or the maximum isolation
depth is reached; the process is just like that shown in Figure 1a–f. As di is the sequence
of the density generated in the isolation process of xi, it is called the isolated density. The
central assumption of the proposed method is that d will always be greater than d’ in the
statistical sense.

Based on the idea of ensemble learning, xi is isolated independently by several binary
trees, and the final isolation density of xi can be expressed as:
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1
nt

nt

∑
t=1

ln(dt
i) (1)

dt
i = ∑n′

j=1 kt
i,j × dt

i,j

= ∑n′
j=1 kt

i,j ×
mt

j

Vt
j

= kt
i,1 ×

mt
1

∏n
f=1 Lt

f,j
+ kt

i,2 ×
mt

2
∏n

f=1 Lt
f,j

, . . . ,+kt
i,n′ ×

mt
n′

∏n
f=1 Lt

f,j

= 1
V0

(
kt

i,1 ×
mt

1
∏n

f=1 rt
f,j
+ kt

i,2 ×
mt

2
∏n

f=1 rt
f,j

, . . . ,+kt
i,n′ ×

mt
n′

∏n
f=1 rt

f,j

)
= 1

V0

(
kt

i,1 ×
mt

1
∏n

f=1 rt
f,j
+ kt

i,2 ×
mt

2
∏n

f=1 rt
f,j

, . . . ,+kt
i,n′ ×

mt
n′

∏n
f=1 rt

f,j

)
= 1

V0

n′

∑
j=1

kt
i,j ×

mt
j

∏n
f=1 rt

f,j

(2)



Sustainability 2022, 14, 7048 4 of 14

V0 =
n

∏
f=1

Lf,0 (3)

rt
f,j =

Lt
f,j

Lf,0
(4)

where d is the isolation density of sample x and nt and n’ denote the total number of binary
trees and the depth of the isolation path of a binary tree, respectively. k is the corresponding
weight, m is the total of the remaining samples, including xi on the isolation path, V is the
hyper-cube volume on the isolation path, L is the length of the edge of the hyper-cube,
r is the ratio of the edge length to the original length of the hyper-cube on the isolation
path, and V0 is the original volume of the hyper-cube. Superscript t denotes the tth tree,
and subscripts I, j, and f denote the ith sample, the jth isolation operation, and the f th
feature, respectively.

The final isolation density di is the total estimated on the whole isolation path. That
is, the consideration of the “outlier” of the algorithm includes not only the sample itself,
but also its domain samples. At this point, the definition of “outlier” is introduced in this
paper: the sample with a lower probability density, either by itself or in a subset including
some neighborhood samples, is considered as an outlier.
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Figure 1. Anomaly detection of two-dimensional dataset by isolation density: (a) The first isolation
operation; (b) The second isolation operation; (c) The third isolation operation; (d) The fourth isolation
operation; (e) The fifth isolation operation; (f) The sixth isolation operation.

4. Algorithm Validation by Artificial Datasets

In this section, we create two complex artificial datasets, i.e., a ring dataset and a
double-moon dataset, which are used for the validation of the proposed method.

4.1. Circle Distribution Dataset

A circle dataset is shown in Figure 2; it can be seen that there is a strong nonlinear
correlation between the two features; some anomaly points are distributed at the outside
and the inside of the circle. The detection results are shown in Figure 3. As described above,
due to the naive Bayesian assumption, HBOS is difficult to apply to the anomaly detection
of complex datasets in most cases, as is shown in Figure 3a. The iForest method finds each
sample through binary trees and detects the anomalies by the depth of the search path,
because the anomalies often have less search path depth. On this important principle, the
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points exposed to the outside of the dataset are often easily detected as anomalies, while
the points inside the dataset are often difficult to find. As is shown in Figure 3b, some of the
points at the center of circle are incorrectly detected as normal ones by the iForest method.
For the LOF method, the anomalies are judged by the relative density of the points with
their surrounding ones; this is usually used for local anomaly detection. However, if the
samples of a dataset are unevenly distributed, the LOF method often cannot provide the
right results. As is shown in Figure 3c, although the points at the dataset center are sparse
overall, the relatively dense points are still identified as normal ones, which is obviously
not the desired result. Finally, Figure 3d shows the result of the proposed method; the circle
distribution can be identified, and most of the points that do not fit the distribution are
detected as anomalies.
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4.2. Double-Moon Distribution Dataset

Figure 4 is a more difficult dataset, i.e., a double-moon distribution dataset. Many
features are embodied in this dataset: strong nonlinear correlation, inside anomalies, and
uneven distribution. The detection results are shown in Figure 5. As mentioned above,
HBOS is not suitable for datasets with dependency variables; as is shown in Figure 5), the
points in the regions of A and B are incorrectly detected as anomalies. iForest is not suitable
for datasets with enclosed anomalies; as is shown in region A of Figure 5b, the points
enclosed by the adjacent ones are incorrectly detected as normal. In addition, the LOF is
not suitable for datasets with uneven distribution; as is shown in Figure 5c, the points at
the regions of the lower left and upper right are incorrectly detected as normal. Finally, the
detection results of the proposed method are shown in Figure 5d; for the regions that the
conventional methods fail, the proposed method still can detect the normal or anomalous
samples effectively.
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5. Algorithm Validation by Public Datasets

Public datasets are used for the validity of the proposed method in this section.
The public datasets are from the University of California Irvine (UCI) machine learning
repository [35], which is a collection of databases, domain theories, and data generators
that are used by the machine learning community for the empirical analysis of machine
learning algorithms.

5.1. Evaluation Criteria of Algorithm Performance

Criteria are introduced in this section to evaluate the performance of the proposed
method; they are accuracy a, recall r, precision p, F1 score f 1, the Matthews correlation
coefficient MCC, and mean score f m. Their formulas are described as follows:

a =
TP + TN

TP + TN + FP + FN
(5)

r =
TP

TP + FN
(6)

p =
TP

TP + FP
(7)

f1 =
2× p× r

p + r
(8)

fm =
p + r

2
(9)

MCC =
TP× TN − FP× FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
(10)

where TP (true positive) is the number of positive samples that are correctly identified, FP
(false positive) is the number of negative samples that are incorrectly identified as positive
ones, FN (false negative) is the number of positive samples that are incorrectly identified as
negative ones, and TN (true negative) is the number of negative samples that are correctly
identified. At the same time, the receiver operating characteristic (ROC) is usually used to
describe a series of false positive rates (FPRs) at different true positive rates (TPRs), and the
area under the curve (AUC) can be regarded as a comprehensive index, which is defined as:

AUC =
∫ 1

0
FPR(TPR)d(TPR) (11)

TPR =
TP

TP + FN
(12)

FPR =
FP

FP + TN
(13)

In this paper, positive samples denote the abnormal samples, while negative samples
denote the normal samples.

5.2. Wisconsin Breast Cancer Dataset

The original Wisconsin breast cancer dataset contains 32 dimensional features with
a sample size of 569. The features are computed from a digitized image of a fine needle
aspirate (FNA) of a breast mass. They describe the characteristics of the cell nuclei present
in the image. There 367 samples of the modified dataset in this paper, among which the
proportion of abnormal samples is 2.72%, and the feature dimension is 30. The detection
results of each algorithm are shown in Table 1, where the bold characters in the table are
the optimal results under the corresponding standards (the same as below).
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Table 1. Detection results of Wisconsin breast cancer dataset.

Methods a r p f 1 fm mcc auc

HBOS 0.931507 0.830000 0.732910 0.773643 0.781455 0.739036 0.973333
iForest 0.941096 0.740000 0.819343 0.771269 0.779672 0.742948 0.987619

LOF 0.956164 0.870000 0.834545 0.846955 0.852273 0.825007 0.987143
Our method 0.960274 0.890000 0.849261 0.860406 0.869630 0.843569 0.993016

Bold fonts indicate the best values of each criterion of the four methods for the Wisconsin breast cancer dataset.

5.3. Pen Handwriting Dataset

The pen handwriting dataset is a digit database which collected 250 samples from
44 writers and has a total of 10,992 samples with 16 features. There are 809 samples of
the modified dataset, and the feature dimension is 16, among which the proportion of
abnormal samples is 11.1%. The detection results of each algorithm are shown in Table 2.

Table 2. Detection results of handwriting dataset.

Methods a r P f 1 fm mcc auc

HBOS 0.537888 0.220000 0.828515 0.347421 0.524257 0.225380 0.784804
iForest 0.749689 0.612222 0.911301 0.731437 0.761762 0.550313 0.935055

LOF 0.954037 0.958889 0.959321 0.958873 0.959105 0.907339 0.991252
Our method 0.970186 0.982222 0.965763 0.973698 0.973993 0.940066 0.992113

Bold fonts indicate the best values of each criterion of the four methods for the handwriting dataset.

5.4. Statlog (Shuttle) Dataset

The shuttle dataset contains 58,000 samples and 9 numerical attributes. The examples
in the original dataset were in time order, and this time order could presumably be relevant
in classification. However, this was not deemed relevant for the StatLog purposes; so, the
order of the examples in the original dataset was randomized. There are 46,464 samples
of the modified dataset in this paper, and the feature dimension is 9, among which the
proportion of abnormal samples is 1.89%. The detection results of each algorithm are shown
in Table 3.

Table 3. Detection results of space shuttle dataset.

Methods a r P f 1 fm mcc auk

HBOS 0.980532 0.960934 0.852222 0.903246 0.906578 0.894501 0.989560
iForest 0.984245 0.976310 0.872326 0.921358 0.924318 0.914444 0.996031

LOF 0.985353 0.986902 0.874377 0.927207 0.930640 0.921199 0.998799
Our method 0.986128 0.999772 0.879417 0.933989 0.939595 0.929800 0.999225

Bold fonts indicate the best values of each criterion of the four methods for the space shuttle dataset.

5.5. KDD Cup 1999 Dataset

This is the dataset used for “The Third International Knowledge Discovery and Data
Mining Tools Competition”, which was held in conjunction with KDD-99. The task is to
build a network intrusion detector, i.e., a predictive model that can distinguish between
“bad” connections (known as intrusions or attacks) and “good” normal connections. The
original dataset contains 4,000,000 samples with 42 features. There are 620,089 samples
of the modified dataset in this paper, and the feature dimension is 38, among which the
proportion of abnormal samples is 0.17%. The detection results of each algorithm are shown
in Table 4.
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Table 4. Detection results of KDD 1999 dataset.

Methods a r p f 1 fm mcc auc

HBOS 0.916730 0.858935 0.971104 0.910599 0.915020 0.840357 0.992173
iForest 0.765162 0.551711 0.962672 0.701344 0.757191 0.586455 0.952720

LOF 0.951331 0.922148 0.979244 0.947828 0.950696 0.906384 0.990327
Our method 0.992158 1.000000 0.984612 0.992233 0.992306 0.984464 0.999962

Bold fonts indicate the best values of each criterion of the four methods for the KDD 1999 dataset.

5.6. Banknote Authentication Dataset

The banknote authentication data were extracted from images that were taken from
genuine and forged banknote-like specimens. For digitization, an industrial camera usually
used for print inspection was used. The final images have 400 × 400 pixels. Due to the
object lens and the distance to the investigated object, gray-scale pictures with a resolution
of about 660 dpi were gained. The Wavelet Transform tool was used to extract features
from the images. The dataset contains a total of 1372 samples with 4 features, 44.4% of
which are anomalies. The detection results are shown in Table 5.

Table 5. Detection results of banknotes dataset.

Methods a R p f 1 Fm mcc auc

HBOS 0.791616 0.84918 0.867229 0.857918 0.858205 0.4678 0.829684
iForest 0.895018 0.978852 0.890506 0.932472 0.934679 0.716576 0.907079

LOF 0.975091 0.982787 0.98367 0.983179 0.983228 0.935519 0.994111
Our method 0.983961 0.99459 0.983991 0.989248 0.989291 0.958014 0.997232

Bold fonts indicate the best values of each criterion of the four methods for the banknotes dataset.

5.7. Multi-distribution Dataset

The multi-distribution dataset contains four normal distributions (one of which has
low density), a micro cluster, and local anomalies. There is a total of 3000 samples with
2 features, 1.23% of which are anomalies. The detection results of the four methods are
shown in Table 6.

Table 6. Detection results of multi-distribution dataset.

Methods A r p f 1 fm mcc auc

HBOS: 0.978833 0.781081 0.868213 0.820983 0.824647 0.811803 0.991721
iForest 0.950500 0.275676 0.788182 0.406651 0.531929 0.446883 0.978098

LOF 0.992667 0.978378 0.9118 0.943145 0.945089 0.940343 0.999726
Our method 0.993167 0.978378 0.919928 0.947388 0.949153 0.944749 0.999141

Bold fonts indicate the best values of each criterion of the four methods for the multi-distribution dataset.

6. Anomaly Detection of Lithium-ion Batteries

In this section, the anomaly detection of a real energy storage system of lithium-ion
batteries is conducted. The ESS is constructed for the consumption of the renewable energy
of a nearby wind-power plant, which consists of 12 battery compartments in parallel. A
battery compartment consists of four battery piles in parallel. A battery pile consists of five
battery clusters in parallel. A battery cluster consists of 18 battery packs in series. Finally, a
battery pack is composed of 12 batteries in a series.

6.1. Description of Lithium-ion Battery Dataset

A difficulty for the anomaly detection of the lithium-ion batteries of an ESS is that
the number of measurement parameters is very small. For the studied ESS, there are only
three independent measurement parameters for lithium-ion batteries, i.e., voltage, current,
and temperature. In addition, for the larger-scale ESSs, even temperature measurements
are inadequate. So, in this paper, in order to increase the number of features, the voltage
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variation of the battery discharge process is taken as its characteristic sequence and is used
for series-based anomaly detection.

A discharge process of the ESS was started on 1 November 2020 at 14:11, and it ended
on 1 November 2020 at 15:10; it lasted 60 min. The real voltage variations are shown in
Table 7, and the parameter variations are shown in Figure 6 at the same time, where the
blue lines are the voltage variations of the lithium-ion batteries, and the red line is the
current of the battery pile. As can be seen, as the discharge process goes on, the voltages of
the batteries decrease gradually. Because the battery adopts a constant power discharge
strategy, its current increases gradually as the voltage decreases. Because none of the
voltages exceeded the threshold, no threshold-based alarm was triggered; however, some
voltage trends seem to be quite different from the overall trend. We may not know the exact
reasons behind these phenomena at that time. However, it is always helpful to identify
them accurately when they occur.

Table 7. Battery voltages during a real discharge process.

Batteries x1 x2 x3 x4 x5 x60

battery 1 3.246 3.244 3.242 3.242 3.241 . . . 3.047
battery 2 3.248 3.245 3.243 3.242 3.242 . . . 3.035
battery 3 3.230 3.227 3.224 3.224 3.223 . . . 3.027
battery 4 3.247 3.244 3.242 3.242 3.241 . . . 3.033
battery 5 3.227 3.224 3.223 3.222 3.221 . . . 2.979

. . . . . . . . . . . . . . . . . . . . . . . .
battery 216 3.249 3.248 3.246 3.246 3.245 . . . 3.054
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6.2. Anomaly Detection of Lithium-ion Batteries

In this section, the voltage variations of the batteries are used for anomaly detection,
and the results are shown in Figure 7, where the blue lines are the detected normal lithium-
ion batteries, and the red lines are the anomalous ones; that is, a total of 11 batteries,
which are significantly different from the other samples, showed detected anomalies by the
proposed method.
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As described above, at the beginning of discharge, the voltages of the batteries are
consistent, relatively, and the maximum difference of voltage is about 0.04 V. However, as
the discharge process progresses, the voltage difference becomes gradually larger, and at
the end of the discharge, the maximum difference of voltage is about 0.27 V.

As can be seen, the batteries with detected anomalies present very different character-
istics, i.e., some voltages of the batteries fluctuate wildly in the discharge process, while
some voltages changed only as a sawtooth wave.

6.3. Result Analysis

Furthermore, all of the battery anomalies are shown in Figure 8, separately. It can
be seen that the 11 samples have different abnormal forms, respectively. The blue lines
indicate that the voltages of the batteries are fluctuating wildly in the discharge process;
as can be seen, at a certain stage of discharge, the battery voltage fluctuates violently
and deviates significantly from a normal value. The red lines indicate that the voltages
of the batteries are fluctuating in a sawtooth wave; as can be seen, the voltage variation
of the battery shows a certain regularity. In addition, the green line changes seem to be
smoother; however, by careful analysis, they are still different from the other batteries. At
the beginning of discharge, the voltage is lower than the others, while at the ending of
discharge the voltage is higher than the others. Compared with the other curves, the green
line is considered to be anomalous discharge behavior.

These abnormal behaviors could be a precursory manifestation of some underlying
failure; for instance, the sawtooth wave oscillations may be caused by a sensor fault; the
violent changes may be caused by a sensor fault or some sort of potential battery failure,
while the smooth deviations from the normal values are more likely to be caused by battery
degradation. However, due to the complex battery fault characteristics, long laboratory
testing cycles, and some practical factors, sufficiently effective prior knowledge of the faults
of the batteries is often not available.

The proposed potential failure prediction method in this paper is actually a fault
prediction method based on unsupervised learning, which can identify abnormal batteries
in advance before unknown potential faults occur. However, the abnormal causes of the
identified batteries need to be carefully studied by experts or even by experiments; they
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may be caused by battery degradation or simple sensor errors. We cannot easily draw
conclusions about the causes of the anomalies now; this is the focus of our subsequent
research process.
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7. Conclusions

With the rapid development of renewable energy in China and the intensive intro-
duction of energy-storage-related policies, the installation capacity of the energy storage
system in China has increased rapidly. At the same time, the safety problem of the main
equipment of the energy storage system, i.e., the lithium-ion battery, is gradually being
exposed. So, in the absence of sufficient prior knowledge, it is very important for the safe
operation of the energy storage station to detect the abnormal running state of the batteries
in time through unsupervised learning methods.

In this paper, a new method based on isolation density was proposed for anomaly
detection and was fully verified by datasets with different types of anomalies. Finally, the
anomaly detection of a real lithium-ion battery energy storage system was conducted, and
11 batteries were detected as being abnormal ones, including different kinds of anomaly
conditions. The results are concluded as follows:

(1) A new anomaly detection method based on isolation density was proposed in this
paper and was fully verified by manual datasets and public datasets containing
different types of anomalies.

(2) Isolation density can be viewed as the sparse degree or probability density of the bat-
tery, from the aspects of density or statistics, respectively. As it inherently involves the
idea of ensemble learning, without any prior assumption about the data distribution,
the method is characterized by high adaptation and can effectively be used for the
detection of many kinds of anomalies.

(3) The voltage variations during a whole discharge process of the batteries are taken
as the features of the work condition. Then, through the proposed method and time
series data of the voltages, the batteries with different abnormal discharge states are
effectively detected.

(4) The abnormal discharge states can be divided into three classes: violent changes,
sawtooth wave oscillations, and smooth deviations from normal values.
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Nomenclature

Abbreviations
AUC area under the curve
ESS energy storage system
FN false negative
FP false positive
FPR false positive rate
LOF local outlier factor
ROC receiver operating characteristic
LIB lithium-ion battery
RE renewable energy
SOC state of charge
TN true negative
TP true positive
TPR true positive rate
Mathematical Symbols
di the isolation density of sample xi
dt

i the insolation density of sample xi on the tth insolation tree
dt

i,j the density of sample xi on the jth isolation step of the tth binary tree
k the corresponding weight of insolation density
Lf the interval length of feature
n the total number of features
nt number of binary trees
n’ depth of isolation path
p Precision
V the hyper-cube volume
xi the ith sample
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