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Abstract: Online learning has become a vital option for ensuring daily instruction in response to the
emergence of the COVID-19 epidemic. However, different from conventional massive online learning,
inadequate available data bring challenges for instructors to identify underachieving students in
school-based online learning, which may obstruct timely guidance and impede learning performance.
Exploring small-sample-supported learning performance prediction and personalized feedback meth-
ods is an urgent need to mitigate these shortcomings. Consequently, considering the problem of
insufficient data, this study proposes a machine learning model for learning performance prediction
with additional pre-training and fine-tuning phases, and constructs a personalized feedback genera-
tion method to improve the online learning effect. With a quasi-experiment involving 62 participants
(33 in experimental group and 29 in control group), the validity of the prediction model and personal-
ized feedback generation, and the impact of the personalized feedback on learning performance and
cognitive load, were evaluated. The results revealed that the proposed model reached a relatively
high level of accuracy compared to the baseline models. Additionally, the students who learned with
personalized feedback performed significantly better in terms of learning performance and showed a
lower cognitive load.

Keywords: learning performance prediction; personalized feedback; online learning; machine
learning

1. Introduction

Against the background of the COVID-19 pandemic, online learning has become a vital
alternative learning mode worldwide [1,2]. As learners and instructors have been separated
physically, the convenience and flexibility of online environments have guaranteed basic
educational needs [3,4]. However, the socially isolated features of online learning settings
have also caused challenges for instructors in monitoring their learners’ progress and in
identifying learners who are at risk [5]. Therefore, learning performance prediction, as a
method that can predict students’ final performance and offer helpful information for the
teachers/instructors to guide the learners as early as possible, has received much attention
in recent years [6,7]. In addition, the development and improvement of novel data-driven
techniques, i.e., machine learning, also make it possible to achieve accurate performance
prediction.

Machine learning is the study of pattern recognition and prediction by exploring the
construction of algorithms that can learn from and make predictions on data. Thus, machine
learning-based performance prediction offers vast potential for solving the aforementioned
problems through estimating the future performance of learners based on learning process
data [8]. It has been regarded as a particularly beneficial basis for providing timely guidance
to prevent students from failing their exams [9]. However, most of them require massive
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amounts of data for model training, to ensure the accuracy of the prediction results. In
school-based online learning scenarios, it is difficult to collect a large number of training
sample data. Accordingly, constructing an accurate performance predictive model with a
small amount of sample data has become an urgent challenge for promoting online learning
under the conditions of the pandemic.

Scholars have noted that most studies focus on constructing a prediction model [10]
and that few studies have emphasized further feedback or intervention [11]. As a vital
component of the learning and teaching process, online learning feedback becomes one of
the essential connections between individual learners and instructors and their peers [12].
Through feedback, online learners are allowed to pinpoint their current learning state
and make adjustments [13]. In terms of the effects of online feedback on learning perfor-
mance, a systematic literature review has been conducted [13,14], and the findings were
heterogeneous [15].

As noted by numerous researchers, complex and changing online learning environ-
ments might result in a high level of mental effort and a large mental load, resulting in
the potential problem of cognitive overload [16]. Learning feedback could be a useful
learning support against complicated online learning processes and could alleviate the
cognitive burden [17]. Researchers have been striving to explain how learning feedback
works and have found that it may reduce the cognitive load and help to improve learning
performance [18]. However, the effects of online learning feedback on cognitive load are
still uncertain according to related research [17,19]. Therefore, in order to ameliorate online
cognitive overload, it is necessary to analyze whether personalized feedback could work to
alleviate the cognitive load.

In parallel to the rising need for online learning, personalized feedback is increas-
ingly gaining global attention. Using small amounts of data from real online learning
scenarios, this study attempted to propose a deep learning-based learning performance
prediction method, and designed a personalized feedback generation approach. Then, a
quasi-experiment was implemented among 62 college students, to verify the impacts of
the proposed feedback on learning performance and cognitive load in the context of online
learning.

2. Literature Review

This section reviews learning performance prediction from traditional machine learn-
ing methods to deep learning technologies. Then, as the main application of learning
prediction, we briefly introduce the line of research on personalized feedback.

2.1. Machine Learning for Learning Performance Prediction

Learning performance prediction aims to forecast the future results of learner achieve-
ments and mainly includes two levels (fail or pass), three levels (low, middle, high), and nine
levels (according to the grades to divide) [20]. Against the background of the burgeoning
application of artificial intelligence in the education field in recent years, machine learn-
ing is becoming an increasingly popular option for carrying out performance prediction
tasks [21]. Logistic regression, decision trees, Bayes network, and support vector machines
are common and useful techniques that have been widely used for prediction tasks [22–24].
For instance, based on student behavior regarding assignments, Olivé et al. [25] attempted
to put forward a neural network that can be generalized to different courses, to identify
at-risk students on an online learning platform in advance.

There has been a growing emphasis on using deep learning to predict learning per-
formance for more accurate performance. Concentrating on the problem of unproductive
persistence in online learners, researchers applied a long short-term memory network with
traditional decision trees and logistic regression, for the early detection of unproductive
persistence behaviors with a higher degree of accuracy [26]. Due to the correlation of
curriculum content, the learning process presents sequence characteristics that are typical
of the preceding and following lessons. Therefore, as variants of a recurrent neural network
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(RNN) with gate units, the long short-term memory (LSTM) network and gated recurrent
unit (GRU) achieve great performance by capturing the long-term dependency features
of sequence data. Through simplifying the complex design of LSTM cells to have higher
efficiency, previous studies have utilized the GRU model in many cases. For example, He
et al. [27] proposed a GRU-based joint neural network to predict student performance in a
specific course, and the results found that GRU performed better than the relatively more
complex LSTM model. Ravanelli et al. [28] revised the GRU and proposed a simplified
architecture that turned out to be more effective than RNN and LSTM for automatic speech
recognition.

In sum, deep learning has been widely used in performance prediction tasks because
of its high accuracy in sequential prediction problems. However, most of the existing
studies addressed performance validation on large-scale online learning datasets, while
applying deep learning models towards small-scale dataset prediction was relatively lim-
ited, which leads to the poor performance of model prediction and the disappointing
application in school-based online learning. Although a few data expansion methods,
e.g., oversampling [29], SMOTE [30], etc., could solve the problem of insufficient data to a
certain extent, they might change the data distribution and lead to worse results. Fortu-
nately, transfer learning provides an effective solution to this problem [31]. Therefore, this
study attempts to construct the pre-training and fine-tuning phases for GRU to improve
the model generalization ability and to achieve a high level of prediction performance for
online learning scenarios with small datasets.

2.2. Learning Feedback in Online Learning Environments

Previously published literature has made huge progress in determining which type of
feedback is the most suitable for improving online learning. Numerous studies have com-
pared the influences of different feedback delivery networks on learning motivation, par-
ticipation, and outcomes, through the use of video-based and text-based feedback [32–35].
Sources of feedback include peer feedback, teacher feedback, and system feedback [36–39].
With respect to the content of the feedback, there have been attempts to provide knowl-
edge learning suggestions, emotional and motivational support, social guidance, and a
combination of all of the above [40–43]. On the topic of feedback about knowledge learning
suggestions, three types of feedback have been proposed: knowledge of the results (right
or wrong answer), knowledge of the correct response (providing the right answer), and
elaborated feedback (the combination of the aforementioned two types with additional
explanations) [44]. It has been verified that elaborated feedback involves additional in-
formation about knowledge explanations and that it has a notable effect on knowledge
acquisition and learning performance [45].

With the increasing educational needs of online learners and the advancement of
information technology over the last few decades, personalized/individualized feedback
is gaining growing research attention [46–48]. Previous research has investigated the
effects of individualized feedback based on students’ weekly homework assignments. One
group was designed to receive grade-only feedback, while the other one received extra
information about the answers. However, no significant differences were found among the
participants in terms of learning achievement and student satisfaction [49]. Additionally,
with regard to motivation in online learning, Wang and Lehman [50] designed principles of
personalized motivational feedback according to achievement goals. The research results
revealed the effectiveness of the principles on learner motivation and satisfaction. Using a
fuzzy logic-based approach, Dias et al. [51] developed a fuzzy inference system concept
mapping model to shape intelligent online learning feedback that encompassed information
that helped students to correct errors, and it was found to positively contribute to learners’
deeper learning.

Feedback was regarded to influence learners’ cognition and further worked to impact
learning outcomes [18]. However, few studies investigated whether personalized feedback
would alleviate the cognitive load of learners or not. There are two exceptions: one is a
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study that adopted a deep learning model for learning behavior and emotion classification
and proposed a personalized feedback approach that classifies the results and encourage-
ment information. The quasi-experimental results indicated that the approach played a
positive role in knowledge building and co-regulated behavior, while no extra burden of the
cognitive load was found [46]. Another study put forward intelligent feedback based on an
analysis of learning behaviors for ethics education, and the results showed that combining
encouragement and warning feedback introduced benefits for learning engagement and
cognitive load [47].

To sum up, effective personalized feedback has the characteristics of elaboration
and combined encouragement with warning prompts. Most previous studies focused on
analyzing current learning data to form feedback, and little emphasis has been put on
investigating personalized feedback that encompasses performance prediction results and
learning suggestions. Furthermore, the empirical evidence about the effects of personalized
feedback on cognitive load is heterogeneous and limited. Therefore, aiming at the above
research gaps, this study proposes a personalized feedback generation method based on
hierarchical clustering, and explores the impact of feedback results on learning performance
and cognitive load.

3. Methods

Given the scarcity of related research, this study proposed the PT-GRU model for
the learning performance prediction task and constructed a personalized feedback gen-
eration method, to improve the online learning performance of students. After this, a
quasi-experiment was designed to capture changes in learning performance and cogni-
tive load by employing the learning performance prediction-based personalized feedback.
Consequently, we proposed the following research questions:

RQ1: To what extent can the machine learning methods be used to predict learning
performance and to generate personalized feedback in online learning?

RQ2: How does personalized feedback based on performance prediction affect learn-
ing performance and cognitive load?

According to the research questions, we proposed the PT-GRU model and constructed
a personalized feedback generation method to ameliorate the online learning effect, and
the detailed architecture of this method is shown in Figure 1.
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Figure 1. Detailed architecture of PT-GRU and personalized feedback generation method. The
architecture can be divided into three parts: the left part is the feature quantization layer, which
converts non-numeric features into computable feature representation; the middle parts are learning
performance prediction and clustering methods, which are carried out by PT-GRU and hierarchical
clustering, respectively; the right part is the personalized feedback layer, which provides students
with the prediction results and learning suggestions.
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3.1. Learning Feature Quantification

Most of the raw data in online learning environments are non-numeric, which are
challenging to analyze directly. Therefore, a series of data pre-processing and feature
quantification steps are indispensable before making learning performance predictions.
Previous studies [52,53] pertaining to the evaluation indicators and factor analysis of online
learning provided the basis for the selection of learning features. Accordingly, we employed
existing feature selection methods [54] based on the data characteristics of actual system
application scenarios, to extract and quantify learning features and learning performance.

3.1.1. Learning Features and Performance

Suppose that an online course includes m students and n lessons. For the i-th student,
we denote a sequence of feature vectors Si = (Si,1, . . . , Si,n), Si ∈ Rn×d, where d is the
number of learning features, and Si,j is the feature sequential vector of the j-th lesson.
According to the raw data in our online learning platform, we have

• Demographic features (age, gender, device) that are denoted by Y, G, and D, respec-
tively;

• Educational features such as attendance A, learning progress V, practical work quality
W, discussion relevance M, reflective level R, and quiz score Q;

• Learning performance L, which is the final evaluation result of each student in the
online course and is represented by the commonly used “pass” and “fail” notation.

3.1.2. Feature Quantification

With the exception of the features recorded directly by numbers in the raw data, e.g.,
age and quiz score, other features require additional calculation and representations.

• For discrete variables, we used a natural number sequence for feature coding, includ-
ing for age (G = 0 for female, G = 1 for male), device (D = 0 for PC, D = 1 for mobile
phone, D = 2 for pad), attendance (A = 0 for absent, A = 1 for present), reflective level
(calculated by our previous work [55], R = 0 for low level, R =1 for medium level,
R =2 for high level), and learning performance (L = 0 for fail, L = 1 for pass).

• For the continuous variable, learning progress (V) represents the percentage of lecture
video viewing; practical work quality W is a score provided by the tutor and ranges
from 0 to 100; and discussion relevance (M) denotes the similarity between forum text
and knowledge keywords and ranges from 0 to 1 [53].

Therefore, summarizing the features and their correspondence, the quantitative results
are shown in Table 1.

Table 1. Quantitative results of learning features and performance.

Categories Notation Student Attributes Values

Demographic features
Y Age 19–23
G Gender 0, 1
D Commonly used device 0, 1, 2

Educational features

A Attendance 0, 1

V Percentage of lecture video
viewing 0–100%

W Score on practical work 0–100

M Relevance between forum
text and learning theme 0–1

R Reflective level 0, 1, 2
Q Score on quiz 0–100

Learning evaluation L Learning performance 0, 1

In order to avoid over-branching and to reduce the computational complexity, we
used min–max normalization [56] to transfer the above features into the range of 0 to 1.
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3.2. PT-GRU for Learning Performance Prediction

By treating each lesson as a continuous timestamp, the learning performance predic-
tion task could be formulated as a sequential prediction problem. A time series model is
necessary for this task to express long-term dependence. RNN and its varieties (LSTM,
GRU, etc.), as optimal time series deep learning models, are the favorable methods for
solving this problem. In contrast to LSTM, GRU [57] gains higher efficiency with less gate
units by merging the input gate and forget gate into the update gate. Even so, as a typical
deep learning method, GRU still requires a large number of training samples. Considering
the small amount of data in our current situation, we proposed a PT-GRU model based on
the additional pre-training and fine-tuning phases, to increase robustness and to ensure the
prediction effect when a small sample size was implemented in this section.

In detail, the reset gate, update gate, candidate hidden state, and hidden layer are the
four main components of PT-GRU. With the long-term dependencies learning block, we
obtained a sequence of hidden vectors h =

(
hj+1, . . . , hn

)
that represent the hidden learning

state from (j + 1)-th to the n-th lesson. After this, the model combines the hidden vector
with an average pooling layer and a sigmoid function to classify the learning performance.
For the i-th student, we have

p
(

L̂i
)
=

1

1 + e−(W
T
l Pi+bl )

(1)

Then, θ denotes the parameter sets for PT-GRU, and L̂i, Li are predicted and measured
values; thus, we have the loss function:

Loss
(

L̂; θ
)
= − 1

m

m

∑
i=1

Li log
(

p
(

L̂i
))

+ (1− Li) log
(
1− p

(
L̂i
))

(2)

Two datasets are needed to train the PT-GRU model. Suppose that Dh is the pre-
training dataset and that it contains a large amount of well-labeled data from other online
learning platforms with similar learning features; Dc is the fine-tuning dataset in practical
online environments. In order to minimize the loss of the proposed model, PT-GRU training
has two stages, which are as follows:

• The pre-training phase: in this phase, we first set a maximum pre-training epoch pe,
and then train PT-GRU with the dataset Dh by Equations (1) and (2) to update θ by
stochastic gradient descent until the training epoch reaches pe.

• The fine-tuning phase: for model fine-tuning, we utilize the θ that was trained by
Dh and set a maximum training epoch te, to update the θ via the dataset Dc with
Equations (1) and (2) and stochastic gradient descent, and we finally gain the trained θ
and PT-GRU model when the epoch reaches te.

3.3. Personalized Feedback Generation

Lacking direct communication and supervision, it is difficult for students to persist in
self-learning without sufficient guidance, which leads to a higher possibility of failing their
course. The question of how to provide personalized feedback based on an individual’s
current learning status has become a key issue for improving online learning.

Researchers have recommended that grouping learners into clusters is a feasible solu-
tion for providing personalized intervention [58]. Therefore, we first constructed a learning
mode identification method to analyze the differentiated status of students via hierarchical
clustering (HC). After HC, students would be divided into several groups automatically
with different learning modes and are provided with personalized feedback information.

In light of agglomerative algorithms, HC constructs a dendrogram of nested clusters
from the bottom toward the top. For two students, sa and sb, when their learning feature
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vectors are Sa and Sb in a lesson, we can measure their similarity using the Euclidean
distance Ea,b.

Ea,b =

√
∑d

k=1

(
S(k)

a − S(k)
b

)2
(3)

A smaller Ea,b value means that there is more similarity between sa and sb. For the
g-th cluster, if R students have been agglomerated, then a merged feature vector SCg can
be used to represent all of the students in this cluster for the next similarity calculation.

SCg =
∑R

r=1 Sr

R
. (4)

By computing other Euclidean distances for the other students and agglomerating
the closest students iteratively, an agglomerative tree can be obtained when the desired
number of clusters G is reached.

Then, based on the prediction results of PT-GRU, a personalized feedback generation
approach was proposed to improve the learning effect. For the obtained

{
L̂1, . . . , L̂m

}
and

{SC1, . . . , SCG}, comparing the numerical differences between vector elements will result
in the presentation of personalized feedback via two methods:

• Prediction results: according to the prediction results of the trained PT-GRU, students
are able to learn their future learning performance results in advance. For the students
with the prediction result “pass”, they will be encouraged to continue their studies; in
contrast, students with prediction result “fail” will receive an early warning to inform
them to adjust their current learning state.

• Learning suggestions: according to the clustering and prediction results, personalized
feedback would be provided for students who deviate from the cluster average or class
average. First, for the k-th learning feature in the g-th cluster group, if SCgk < SCk, then
a general defect exists in this group compared to the whole class, and then everyone in
this group would be asked to focus on this problem with corresponding suggestions.
Second, for the i-th student, SC∗g denotes the merged vector of the students with

the “pass” result, if Sigk < SC∗gk, which indicates that a student performed worse in
terms of the learning feature Sigk than average for the “pass” students in the current
group, and this student would then be able to receive suggestions about their weak
points. As a reference to already existing designed learning feedback in the correlative
literature [59,60], Table 2 lists all of the information related to personalized feedback
according to the learning performance and clustering results.

Table 2. Personalized feedback design.

Categories Student Attributes Personalized Feedback Information

Learning
evaluation Learning performance Warning prompts for “fail”

Encouragement for “pass”

Educational
features

Attendance Prompts for attendance
Percentage of lecture

video viewing Presenting the current progress and prompts

Score on practical work Improvement suggestions about weak points
Relevance between

forum text and learning
theme

Encourage sharing theme-related thoughts

Reflective level Encourage student to reflect on learning
Score on quiz Explanations about errors
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4. Experimental Design
4.1. Dataset Description and Experimental Setup for Model Training and Clustering

Two online learning datasets, ZJOOC and WorldUC, were utilized for the learning
predictions, and students who needed personalized feedback were chosen to form clusters
for learning mode identification. Both datasets come from online courses with the same
number of lessons (10 lesson in an online course) and similar learning features (both
datasets include all features in Table 1). ZJOOC had a total of 259 historical learning
data recorded from the platform, 80% of which were used for training and 20% of which
were for testing. WorldUC is a large-scale online learning dataset (7543 learning data)
that was collected in our previous study [55]. It was assigned for the proposed model’s
pre-training. Additionally, this dataset was also employed to verify the differences in the
prediction ability of each baseline model with the 80% training sample as well as the 20%
testing sample.

To address the first research question, we evaluated the performance of PT-GRU with
other baseline methods. Decision tree (DT) is a classification model based on the concept
of entropy and information gain for splitting child nodes [61]. Random forest (RF) is an
ensemble learning approach that consists of classification and regression trees (CART) [62].
Long short-term memory (LSTM) introduces gates into RNN to avoid gradient exploding
or vanishing from the variable-length sequence data [63]. Gated recurrent unit (GRU) is a
regular GRU without a pre-training phase [64]. In terms of hierarchical clustering (HC), we
present a detailed case on how it supports the generation of personalized feedback. We
evaluated each method via the average accuracy and F1 score as follows.

A =
2
n

n

∑
j=n/2

TPj + TNj

TPj + TNj + FPj + FNj
(5)

F1 =
2
n

10

∑
j=n/2

2TPj

2TPj + FPj + FNj
(6)

where TP, TN, FP, and FN mean true positives, true negatives, false positives, and false
negatives, respectively.

All of the experiments were conducted using a GPU workstation (AMD 5600X CPU,
48GB of memory, and an Nvidia 3080Ti GPU) with python 3.7 and pytorch 1.7.1 for model
training and clustering analysis. The main parameters are detailed in Table 3.

Table 3. Parameters setup.

Model Para. Conf. Para. Conf.

GRU
Dropout 0.3 Optimizer SGD [65]

Batch size 512 Hidden layer 64
Epoch 300 Loss function Cross-entropy

HC n_clusters 3 Affinity Euclidean

4.2. Quasi-Experimental Context and Procedure

A quasi-experiment was conducted in two intact classes from a normal university in
China. There were 62 participants in total (average age of 20), consisting of 7 males and
55 females, and the imbalance of males and females was in accordance with the university
student population. All of the participants took the same online course taught by the same
instructor on the ZJOOC online platform. The online course incorporated six units and
was conducted for 10 weeks in the autumn 2020 semester. The course content was about
informational instruction, and none of the participants had any experience with the course
content. The primary learning activities on the online learning platform included watching
videos and participating in quizzes and online discussions.
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Figure 2 presents the research design used in this study. It was divided into two stages
for learners to adapt to online learning environments, to avoid the influence caused by
learners’ unfamiliarity with the online context on the experiment results. In the first stage
(week 1~week 5), all of the participants carried out the same online learning activities.
At the end of the first stage, the participants took the pre-test to determine their learning
performance, and filled out the pre-questionnaire determining their cognitive load. In
the second stage (week 6~week 10), the experimental group (33 students) received online
learning with personalized feedback, while the control group (29 students) received regular
online learning without personalized feedback. The learning task and materials were the
same for each group throughout the whole experimental process.
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More specifically, the study implemented performance prediction at the beginning of
every week for the students in the experimental group. Then, according to the prediction
results and the clustering of the learning features, personalized feedback was provided.
First, students who were predicted to “fail” received a warning message about the current
learning mode. Other students who were predicted to “pass” were encouraged to continue.
Second, in every cluster, the students who performed below the average level of the current
cluster received corresponding suggestions, including current feedback on their learning
state, weak points, and possible suggestions for improvement based on the feedback
information design shown in Table 2.

In the experimental group, all of the feedback information was delivered through
WeChat, while the control group received nothing. At the end of the second stage, the
students took the post-test and filled out the same questionnaire to determine their cognitive
load.

To address the second research question, the study assessed learning performance
via two methods: daily grades (40%) and final exam scores (60%), with a perfect score
being 100 points. The cognitive load questionnaire was developed based on the measure
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designed by Paas and Van Merriënboer [66]. It consisted of two items (mental effort and
mental load) with a nine-point rating scheme. The higher the rating, the higher the level
of the students’ cognitive load. For this scale, Cronbach’s alpha was 0.74, indicating an
acceptable level of reliability.

5. Results
5.1. Learning Performance Prediction Model and Personalized Feedback Generation

In order to evaluate the performance of the proposed prediction model, the study
compared it to tree-based machine learning models (DT and RF) and deep learning models
(LSTM and GRU) in terms of the average accuracy and F1 scores, as shown in Table 4 and
Figure 3. With the WorldUC dataset, LSTM and GRU achieved similar accuracy and F1
score, and outperformed DT and RF by 7–11%. Compared to the results obtained in the
WorldUC dataset, the accuracy of each method in the ZJOOC dataset decreased in the range
of 7–15% in general. By introducing a pre-training phase, the prediction performance in the
ZJOOC dataset in the PT-GRU almost reached the same results as GRU in the WorldUC
dataset. As for the performance in the ZJOOC dataset, PT-GRU had a significant increase
(7% for accuracy and 0.07 for F1 score) compared to GRU and to other methods.

Table 4. Comparison of learning performance prediction.

Model
WorldUC ZJOOC

¯
A F1 ¯

A F1

DT 69.85% 0.6687 63.46% 0.6129
RF 72.76% 0.7001 65.38% 0.6563

LSTM 81.44% 0.7922 67.31% 0.6769
GRU 79.92% 0.7883 71.15% 0.6957

PT-GRU - - 78.85% 0.7671
Best results for each metric (column) are bolded, and the second best are underlined. Since the WorldUC dataset
was used for model pre-training, there are no results for PT-GRU from this dataset.
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Regarding the hierarchical clustering results, we present a clustering case of the stu-
dents in the experimental group to present the details of personalized feedback generation.
In Figure 4, each label on the x-axis represents the student ID, and the y-axis denotes the
value of the Euclidean distance between them. As the figure shows, the labels in red (No. 24,
29, 30, 9, 32, and 33) show that the student was predicted to “fail”, and the dotted line
represents how the students were clustered into three groups (i.e., A, B, and C).
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Personalized feedback was provided to every learner, including information regarding
their prediction results as well as learning suggestions. With regard to the prediction
results, students No. 24, 29, 30, 9, 32, and 33 received warning prompts about their future
learning performance. The other students received encouraging feedback. Regarding the
learning suggestions, according to the feature differences in the three clusters, the students
in group A achieved the best results on quizzes but performed relatively poorly on learning
reflection tasks. Therefore, these students were encouraged to employ more reflection. The
students in group B performed better during practice tasks than on quizzes, leading to
low quiz scores, and their feedback was related to detailed explanations about their quiz
errors. The students in group C spent a lot of time viewing learning videos, but lacked
participation in effective discussions, so they were encouraged to share their opinions on
the online forum.

5.2. Impact of Personalized Feedback on Learning Performance and Cognitive Load

Using the personalized feedback as the independent variable, the pre-test scores as
the covariate, and the post-test scores as the dependent variable, this study employed
ANCOVA to explore the impact of personalized feedback on student learning performance
in the two groups. The results are summarized in Table 5. The analysis revealed a signif-
icant difference between the feedback group and the no-feedback group, with F = 6.492
(p = 0.013 < 0.05, η2 = 0.099). Moreover, the adjusted mean values of the student learning
performance ratings for the experimental and control groups were 85.14 (Std. error = 0.33)
and 83.90 (Std. error = 0.35), respectively. Consequently, the students who received the
personalized feedback performed significantly better in terms of learning performance than
the students in the control group.

Table 5. The ANCOVA results for learning performance.

Group N Mean SD Adjusted
Mean Std. Error F η2

95% Confidence
Interval Mean

Lower Upper

Experimental group 33 85.30 7.61 85.14 0.33 6.492 * 0.099 84.48 85.81
Control group 29 83.72 4.08 83.90 0.35 83.20 84.62

* p < 0.05.

The study performed ANCOVA to examine whether personalized feedback played a
positive role in the cognitive load experienced by students. Group was used as an indepen-
dent variable, the post-questionnaire score was used as the dependent variable, and the
pre-questionnaire score was used as a covariate. The results of the experimental and control
groups are shown in Table 6. After controlling for the effects of the pre-questionnaire
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score, the adjusted mean value and standard deviation errors were 11.21 and 0.31 for the
experimental group, and 12.17 and 0.32 for the control group. Additionally, a slightly
significant difference was found between the two groups, F = 4.552 (p = 0.037 < 0.05,
η2 = 0.072), indicating that the personalized feedback reduced the cognitive load experi-
enced by the students in the experimental group.

Table 6. The ANCOVA results for cognitive load.

Group N Mean SD Adjusted
Mean Std. Error F η2

95% Confidence
Interval Mean

Lower Upper

Experimental group 33 11.36 2.18 11.21 0.31 4.552 * 0.072 10.60 11.82
Control group 29 12.00 1.85 12.17 0.32 11.52 12.82

* p < 0.05.

6. Discussion

In view of the results from the quasi-experiment, all of the research questions were
well answered. This section discusses the essential findings according to the results above.

In terms of RQ1, as shown in Table 4 and Figure 3, the deep learning-based techniques
(LSTM and GRU) generally outperformed the traditional tree-based machine learning
models (DT and RF), but the small size of the dataset diminished this advantage. Addi-
tionally, the performance reduction of LSTM was much higher than GRU in the small-scale
dataset, and the reason for this phenomenon might be that GRU does not require as many
training parameters as LSTM due to GRU having less gate units. This result conforms
to the study by Lai et al. [67], who determined that the size of the dataset has a greater
impact on LSTM than it does on GRU. Through the pre-training phase with similar learning
data, PT-GRU achieved the best performance on the ZJOOC dataset compared to the other
baseline parameters, and it was almost close to the prediction results on the large-scale
dataset. The results not only explain the reason that we chose GRU as the basic model, but
they also indicate the effectiveness of the method proposed in this study.

With respect to RQ2, the results of learning performance indicate a significant differ-
ence between the two groups. This implies that the proposed feedback approach amelio-
rated the knowledge acquired by the students in the experimental group. Previous studies
have shown the positive influence of personalized feedback on the knowledge levels of
students [46]. This finding is also in agreement with the work of Tsai et al. [68], where
immediate and elaborated feedback was found to be helpful during knowledge acquisition
and for ability development. However, the results contradict the findings of H. Wang and
Lehman [48], who showed that personalized feedback promoted students’ motivation and
satisfaction, but that the effects of it on learning outcomes were not significant. According
to self-determination theory, the satisfaction of the three fundamental psychological needs
(autonomy, competence, and relatedness) drives individuals to act [69,70]. Hence, it can be
concluded that the proposed personalized feedback, which included prediction results and
learning suggestions, made the students in the experimental group feel connected to their
instructors, causing them to become aware of their learning state, as well as making them
capable of adjusting their learning progress, which enhanced their learning motivation and
fostered the improvement of their final performance in the online learning context [71].

Concerning cognitive load, the results revealed that students in the experimental
group had a significantly lower cognitive load than their peers in the control group. This
finding is inconsistent with the prior work of [46], which found that students learning with
the learning analytics-based feedback approach demonstrated no significant difference
in terms of cognitive load. We argue that the feedback in their study aimed to provide
learning analysis results rather than instructional guidance or learning suggestions. It
can be deduced that our personalized feedback, which incorporated learning suggestions,
helped students to determine their current learning progress and to improve their learning,



Sustainability 2022, 14, 7654 13 of 16

with a clear plan to reduce their cognitive burden. This finding is similar to the results of
Sun et al. [47], which pointed out that intelligent feedback caused a significant difference in
mental load but not in mental effort; however, the authors explained that it contributed to
a lack of challenge in the learning goals. Our finding agrees with the argument of Caskurlu
et al. [72], which emphasized the importance of a feedback strategy in mitigating cognitive
overload and in promoting online course quality. In light of the zone of proximal develop-
ment and cognitive load theory [73], appropriate instructional support should be controlled
within the limits of the zone of proximal development, balancing learning difficulty and
expertise, which will help to reduce the extraneous cognitive load experienced by students.
Therefore, a reasonable explanation for these results could be that the personalized feedback
supported by the feature clustering method worked to provide adaptive guidance and to
improve learning and reduce the time wasted and effort to maintain sufficient cognitive
resources in order for effective learning to take place [16].

7. Conclusions and Future Work

In order to detect underachieving students in the online learning context and to pro-
vide learning guidance in advance, this study proposed a learning performance prediction
approach called PT-GRU, and designed a personalized feedback generation method accord-
ing to feature clustering. In view of prior heterogeneous findings regarding online learning
feedback and cognitive load, this study applied a quasi-experiment to examine whether
the personalized feedback approach, which incorporated prediction results and learning
suggestions, could enhance online learning performance and ameliorate cognitive load.
The results showed that this personalized feedback approach contributed to the learning
performance of learners and significantly reduced their cognitive load.

The findings of this study provide various perspectives for online learning perfor-
mance prediction and personalized feedback. First, a novel deep learning model, PT-GRU,
was utilized for learning performance prediction to address the challenging problem of
modeling based on small-sample datasets. Through experimentation, the prediction model
was proven to have relatively high accuracy and F1 score, providing insight into small-
sample performance prediction modeling in the context of online learning. Second, the
study adopted hierarchical clustering to group learners automatically, enabling instructors
to flag students with different learning progress and help them to initiate intervention
programs under the online learning context. Third, the proposed personalized feedback in
this study not only encompassed the prediction results, but also involved detailed learning
suggestions. Verified by the research results, the proposed feedback served as an effective
tool for promoting learning performance and reducing extra cognitive load. It contributes
to offering empirical evidence to improve online learning during the COVID-19 epidemic.

Some limitations in this study merit consideration. First, the features that were ex-
tracted and imported to the prediction model were relatively limited, which consequently
restricts the study’s generalizability to other disciplines and different educational back-
grounds. Therefore, a more comprehensive predictive model incorporating more features
of online learners is worthy of investigation. Second, the personalized feedback was not
automatic because of the limitations of the interference of the experimental online platform.
Accordingly, we plan to develop an automatic personalized feedback module to provide
more intelligent online learning feedback in the future. Third, the sample involved in this
study was relatively small, and the findings obtained here might not be objective enough
and thus not generalizable. Therefore, future research should encompass more participants.
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