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Abstract: Room occupancy prediction based on indoor environmental quality may be the break-
through to ensure energy efficiency and establish an interior ambience tailored to each user. Identi-
fying whether temperature, humidity, lighting, and CO2 levels may be used as efficient predictors
of room occupancy accuracy is needed to help designers better utilize the readings and data col-
lected in order to improve interior design, in an effort to better suit users. It also aims to help in
energy efficiency and saving in an ever-increasing energy crisis and dangerous levels of climate
change. This paper evaluated the accuracy of room occupancy recognition using a dataset with
diverse amounts of light, CO2, and humidity. As classification algorithms, K-nearest neighbors
(KNN), hybrid Adam optimizer–artificial neural network–back-propagation network (AO–ANN
(BP)), and decision trees (DT) were used. Furthermore, this research is based on machine learning
interpretability methodologies. Shapley additive explanations (SHAP) improve interpretability by
estimating the significance values for each feature for classifiers applied. The results indicate that the
KNN performs better than the DT and AO-ANN (BP) classification models have 99.5%. Though the
two classifiers are designed to evaluate variations in interpretations, we must ensure that they have
accurate detection. The results show that SHAP provides successful implementation following these
metrics, with differences detected amongst classifier models that support the assumption that model
complexity plays a significant role when predictability is taken into account.

Keywords: smart cities; smart buildings; sustainability; sustainable development goals; healthy cities;
energy efficiency; room occupancy; thermal comfort; user-centered design; artificial intelligence

1. Introduction

It is no secret that by 2050, almost 70% of the world’s population will be situated
in urban areas [1,2]. The urbanization rate is astounding and shows no signs of slowing
down. Thus, the best option concerned individuals and policymakers have is to adapt to
the current situation instead of mitigating its side effects [3,4]. To decrease the massive
threats that urbanization will have on the environment, technology has been utilized to
help diagnose, interfere with, solve, and maintain these adverse effects; these can be either
standalone initiatives or more integrated ones in the form of a smart city. The smart city
initiative aimed to put welfare and well-being of citizens and inhabitants at the center of
technology [5], and with its progress, many schemes were developed to ensure health and
well-being [6]. Although only recently defined, the initiative targeted city management
and technology as separate entities, not as parts of a whole [7]. However, several other
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components have been integrated into smart city principles that aim to achieve holistic
urban parameters such as infrastructure [1], livability and improvement of environmental
factors [8], as well as energy and buildings [9]. These may be achieved through embedded
sensors and data collectors that may be deemed as essential to the main components
of smart cities and smart buildings, aiming at improving building design through data
collection and diagnosis [10,11]; these systems can be implemented at both the city and
national levels to improve resource usage efficiently. In 2016, [12] stated that smart cities aim
to use digital technologies to enhance performance, reduce costs and resource consumption,
and engage more effectively and actively with their citizens, ultimately leading to their
citizens’ well-being.

1.1. The Sustainable Development Goals (SDGs) and Smart Cities

The rich discussion on the existence of healthy cities and the SDG 11 goal is promi-
nent and cannot be ignored; scientists, technologists, and academics have all thoroughly
contributed to this massive growth of literature that is evident and abundant today [13–18].
Implementing these strategies into smart cities means preparing existing buildings to better
adapt to the evolving environmental or sociological crises [19,20]. To help remedy some
of these occurrences, the building sector is expected to overcome its adverse effect on the
environment (more than 70% of all greenhouse gases emitted lie in that sole sector). That is
why delving into what aids a building in giving back to the environment is an essential
route that should be foremost for academics and scientists today.

In 2017, implementation tactics were proposed to tackle existing strategies defined by
the SDG 11 goal. One of these strategies for achieving resilience in smart cities, focusing on
climate change, is to help improve eco-efficiency and aim for climate-resilient infrastructure
and buildings [7,21].

1.2. Thermal Comfort Indices as an Adjunct to User Experience

Through the focus on buildings and to better aid designers in designing better indoor
environments for end-users, the utmost goal of building designers, an emphasis on comfort
and aesthetics as well as overall pleasure and leisure is becoming more and more explicit
and inevitable to ensure a better user experience in a growing competitive environment.
Designers today focus on integrated and holistic design aimed to bring together more
than one discipline to better aid the user in achieving the best results, whether through
embedding innovative services (infrastructure, sensors, etc.) or through computations
that support and facilitate the design by utilizing machine-based learning and artificial
intelligence. This hype is now in full force. However, understanding the factors that affect
occupants’ perception and thermal comfort is mandatory to ensure the safety and comfort
of any interior space and promote occupants’ health and well-being.

Thermal comfort has a set of physiological and environmental factors which pertain to
each individual. While the usual average of thermal comfort is an 80% percentile in contrast
to the normalized 50% [22], it ensures that the design at hand suits more people and is
better fitted to the vast majority than the obsolete average. Perceiving thermal comfort
should always bear in mind the physical characteristics of the inhabitants of the space at
hand; factors such as weight, age, fitness level, and gender all have an impact on the sense
of comfort of an individual; although the environmental factors may all stay the same,
these factors all contribute to the metabolic rate and effect of heat on each individual.

Of the main environmental thermal comfort indices, relative humidity and tempera-
ture are the most common parameters addressed when designing an indoor environment.
The design’s less common parameters are the overall air change rate followed by CO2 levels
and volatile organic compounds levels. These independent, or combined, parameters affect
the overall user experience and perception of the space as well as comfort level, and may
ultimately affect physical and mental well-being [23], as well as productivity [24,25].
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1.3. Importance of Linking Thermal Comfort with Energy-Saving and Efficiency

With evident climate change and with the stress placed on the importance of decreas-
ing the impact the building sector has on the world to ensure sustainable development,
energy efficiency is now a top priority to most establishments and businesses worldwide;
the complete awareness of the global energy crisis is leading more and more people to
investigate cleaner options and healthier substitutes for non-renewable fuels, ultimately
leading to both better and more efficient consumption, and use of renewable energy sources.
However, even with the enforcement of adaptation, mitigation in areas where renewable
energy plans may have a higher initial cost, especially in places where the funds are not
readily located, should inevitably investigate embedding new technologies and techniques
to ensure energy-efficient usage and costs.

The thermal comfort index is one of the most relevant in human biometeorology [26];
it is an interaction between physiological, psychological, physical (environmental), social,
and cultural factors as the architecture of the space and its urban context. Spatial thermal
comfort is a massive key player in the design process of buildings today; it affects usability
and comfort and has a standing effect on the resale and equity of the space itself. Designing
for comfort comes in all shapes and forms, from orientation and sun/wind relationship into
the area to scenic landscapes and integration of natural elements; designers are equipped
to make users feel as comfortable and satisfied as possible. Understanding that thermal
comfort and interior ambience affect user perception of space and usability is a top priority
among designers today. However, sometimes ideal ambient temperatures and parameters
cannot be met due to environmental factors like noise, pollution, and drastic temperature
fluctuation due to climate change, which may inhibit the existing site analysis and lead to
user irritability, an opportune environment for embedding the role of artificial intelligence
and machine learning, where AI has a much broader scope than ML, though they are
both multifaceted. AI creates intelligence that stimulates human thinking, interaction, and
behavior, often leading to new “human made thinking power”. It does not need to be
pre-programmed but rather depends on algorithms that, once utilized, devise their own
form of “thinking” and intelligence. ML, a subset of AI, teaches machines the concept of
learning from existing data and building upon it to reach new solutions through predictions.
Hence, utilizing ML may help create a moderated interior climate that caters to the indices
of each living space, whether at work or home, and tailoring the space to accommodate
each person and not treating the building as a whole creates a unique and detailed user
experience that brings in more people whilst marketing the space to sell at a higher rate [27].

Previous research has tackled the idea of different standalone thermal comfort parame-
ters to determine occupancy. Indices such as CO2, [28], relative humidity [29], and ambient
temperature, if measured independent of HVAC and mechanical systems [30], have been
targeted to determine whether or not the space is occupied; however, the correlation be-
tween the different parameters remains rich material for investigation, especially in light of
tailored user experience and individual differences.

1.4. Tailored Comfort and Occupancy

Spaces designed with user comfort at their core are more likely to sell faster and at a
higher rate than spaces designed to be generic for all [31]. Evidence shows that more and
more clients are using expert interior designers and tailored spaces designed specifically for
their needs, to personalize their individual spaces and make them more comfortable [32].
This also encompasses issues such as controlled interior atmosphere and ambience. Factors
such as mood and stress levels and psychological states of mind [33] affect interior spatial
design and comfort since these measures affect the physiological state (one of the basic
parameters of thermal comfort). Thus, regulating mood and stress factors, in turn, needs to
be integrated into the design process of interior ambient design and quality; this can be
achieved through the utilization of sensors and machine learning to aid in accurate data
collection over a longer period, yielding better results.
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1.5. AI Relationships in Room Occupancy

The effect of AI today is seen in the integration with the technology used by the many
industry domains, to help owners assess their data, deliver positive results, and impact their
guest relationships (e.g., hospitality industry). AI algorithms are becoming very efficient in
assisting owners to save money, enhance service, and improve operations. ML analyzes
data from prominent sources and assimilates them into patterns to help administrators
uncover meaningful and actionable decision-making insights. ML is enhancing the in-room
experience by integrating smart technology into the room amenities, and AI can reduce
workloads while speeding up responses and much more.

The prediction of occupancy in a room environment requires evolving sensor de-
sign and the implementation of ML in the indoor environment to enhance user experi-
ence and aid in a user-centered atmosphere, affecting room occupancy. The presence of
sensors to monitor indoor environmental conditions may assist designers and decision-
makers on room occupancy rates and ways to increase or decrease these rates. It may
also bring forward decisions relating to heating and cooling, which directly affect energy
consumption, thus leading to an overall energy-efficient building and a user enhanced
experience. This paper highlights the importance of utilizing indoor environmental data
to efficiently diagnose whether the room is occupied or vacant and regulate energy usage
following user-centered design to achieve a combined dual effect of indoor comfort and
energy efficiency.

The prediction of occupancy in a room environment using data from light, temperature,
humidity, and CO2 sensors was tested using several machine learning classification models.
It has lately been predicted that the accurate estimation of occupancy detection in the
building could save energy from 30% to 42% [34–36]. If the occupancy room dataset
was applied as an input for HVAC control algorithms, practical measurements indicated
energy savings of 37% in [36] and between 29% to 80% in [37,38] shown through an
experiment using data from a CO2 sensor in an office building and additional synthetic
data acquired via a simulation method for CO2 dynamics with randomized occupant
behavior. It combines a convolutional network with a deep bidirectional long short-term
memory to detect occupancy (DBLSTM). Deep neural networks, Rpart logistic regression,
and Random Forest with variable reduction techniques were used to generate prediction
models of specific energy usage in Croatian public sector buildings [39], ML algorithms
to detect occupant presence in space by measuring interior air-conditioning were also
used [40], while [41] compared 36 ML algorithms for predicting interior temperature in a
smart building.

The introduction above highlights the significance of predicted room occupancy in
accurately measuring room occupancy and acts as a major motivation for this research.
This paper includes the following contributions:

1. Integrating ML classification with AI explainability demonstrates how room occu-
pancy data may aid energy conservation and efficient usage while accentuating the
importance of user comfort and extended user-centered design.

2. Building different ML models for classifying room occupancy in high accuracy rate
compared to recent related state-of-the-arts.

3. Increasing the confidence of proposed ML model through the application of SHAP XIA
method to analyze the impact of classification features involved over the significance
of each feature in the classification outcome.

The rest of the paper is structured as follows: Section 2 discusses the literature review in
classifying room occupancy, the importance of environmental components in determining
comfort for users and the environment, the problems under research, and the approach
used. While Section 3 demonstrates the performance of the ML-based models used to
classify room occupancy and interpret applying SHAP (Shapley Additive Explanations),
Section 4 details the results of the algorithms, and Section 5 comments on the overall
findings and offers future study opportunities. Finally, Section 6 concludes the paper.
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2. Literature Review

As early as 1932, evidence shows environmental factors’ importance in assessing users’
comfort [42]. Thermal comfort is generally captured by measurements of four parameters:
dry-bulb temperature, relative humidity, airspeed, and radiant temperature [43]. The
plotting of these variables on graph results in a psychometric chart that enables designers to
calculate the optimum area for designing comfortable and healthy indoor spaces [44]. The
ASHRAE standard 55 determines the acceptable thermal conditions. It draws the comfort
zone that defines the threshold of the climatic conditions used in spatial design [45].

Research has emphasized that in residences, the interior temperature should not be
less than 18 ◦C to decrease the risk of respiratory diseases and hypothermia [46,47], and
not more than 26 ◦C to prevent overheating that may result in shock and mortality [48–50].
Studies have also shown that for the best healthy and uninterrupted sleep, bedrooms’
interior temperatures should be between 15.6 ◦C and 19.4 ◦C [51,52], while in living rooms,
they should be between 19 and 22 degrees [53,54].

In building science studies, thermal comfort has been related to productivity and
health [55]. Office workers who are satisfied with their thermal environment are
more productive. The combination of high temperature and high relative humidity
reduces thermal comfort and indoor air quality, often leading to decreased produc-
tion rates and absenteeism, leading to stress and negative consequences and impacting
overall well-being [56,57].

The importance of understanding room occupancy and user behavior stems from the
innate desire to design spaces that are tailored to be of most benefit to the user themselves.
Artificial intelligence in the interior setting of the built environment utilizes data that
stem from sensors located strategically at specified points to measure and monitor specific
tasks. These are sent to be analyzed, and the information is then used to mitigate the
existing effects.

This can be utilized by positioning sensors to detect better motion, breathing, changes
and fluctuation in heat, the difference in temperature, lighting patterns, and CO2 emissions.
These sensors may be used separately or combined for data collection and measurement.
The most common motion sensors translated into synapsis are motion-based ones that turn
on a light when movement is detected.

These sensors have both a positive and negative impact; simultaneously, they may
aid in data collection and ultimately help to understand user activity and trends, power
outages, unstable internet, and the presence of wired cables that may interfere with their
accuracy. It is best to apply several of them to plot their results better to ensure that the
data collected from these sensors are valid, viable, and tangible.

In one study, the data collected included interior environmental data (pressure, alti-
tude, humidity, and temperature) as well as the related occupancy level for two distinct
rooms: (1) a fitness gym and (2) a living room, as detailed in [58]. Features associated
with the operating environment, such as occupancy rooms, are subject to unpredictability,
necessitating the system-level ability to learn quickly and autonomously from knowledge
from outside historical datasets accumulated over a substantial amount of time [59].

One of the primary development trends is a shift toward applying AI developed
by ML algorithms [60]. Considering the operational environment’s complexities, the ML
techniques Reinforcement Learning (RL) and its derivative “deep reinforcement learning”
(DRL)” has proved effective for autonomous control networks of buildings [61]. Un-
predictable changes in operational environments caused by climate change threaten the
efficiency, flexibility, and resilience of building-integrated energy systems. Buildings now
can learn from evaluations for the rapid evolution of AI and ML [62].

In the first step, Ryu et al. [63] use a decision tree algorithm, and in the second
step, they choose a model for predicting presence using a hidden Markov model (HMM).
Zuraimi et al. [40] named three generally used and simple to apply machine learning
methods: (1) ANN, (2) Prediction Error Minimization (PEM), and (3) SVM.
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The key question posed in this research is: can occupancy prediction through en-
vironmental factors utilizing machine learning and artificial intelligence aid designers,
whether architects or mechanical engineers, to take collective and design measures to
ensure energy-saving and efficiency while achieving user comfort?

Problem Description and Methodology
The indoor environment should be designed to ensure the health and well-being of

its occupants. (1) Maintaining excellent air quality is one of the aspects that should be
considered while designing a room. Others include (2), the managing capability of the
rooms, and (3), energy efficiency. When these aspects are not effectively controlled, the
inhabitants’ well-being and the rooms’ maintenance costs in energy supply may suffer [64].

Cities all over the world seem to want to become more intelligent, outfitted with nu-
merous innovative technologies (e.g., detectors, sensors, remote sensing, satellite imaging,
machine learning, etc.) to become more dynamic and flexible in terms of addressing the
challenges that regularly arise due to overcrowding, crowding, disasters, pandemics, and
lack of comfort all contributing and leading to a decrease in overall well-being [65]. When
AI is integrated with AI explainability, challenges such as power savings, traffic control,
and industrial automation are themes where intelligence affects smart solutions, leading to
faster and more intelligent decisions. Real-time data analysis processes are critical in the
context of smart and digital cities.

The ability of sustainable and smart cities to provide thermal comfort to their occupants
while enhancing energy efficiency is an unsolved research problem with several integrated
research problems. Using AI to improve energy efficiency while maintaining occupant
comfort raises several research issues and opens up new avenues for future research. These
are the challenges and potential research directions:

1. Thermal comfort in sustainable, smart buildings and cities to improve user experience
and promote health and well being

2. User centered tailored experience and its relationship to energy efficiency
3. Dynamical temperature set-point modification and comfort model construction.
4. Future computing challenges and research opportunities in energy and thermal com-

fort control.

3. Proposed Framework

This paper embodies some features of the concept mentioned above, focusing on the
challenge of energy efficiency in the smart city based on room occupancy ML classification.
Section 3.1 explains the description, statistical analysis, and pre-processing of the dataset
sources used; even though Section 3.2 presents the ML-based models chosen for this smart
city’s room occupancy classification, Section 3.3 illustrates ML’s ability to make accurate
classifications. Nevertheless, it cannot provide a mechanical knowledge of how inputs and
outputs interact with each other in most applications. Explainable Artificial Intelligence
(XAI) is a new set of strategies that aim to provide such an explanation; we will explore
some of these methodologies in this article. Figure 1 depicts the proposed framework of
the architecture design for the decision problem.

The suggested framework is divided into numerous stages. The dataset is first statisti-
cally analyzed to determine the features (room environment characteristics) relationships
and their values, and then it is processed until it is suitable for classification. The dataset
is then divided and explainability is utilized to determine which features had the most
impact on the performance of the classifiers and which were most important in terms of
shape (as shown in Figure 1) into training and testing subsets. The planned classification
model uses three classification methods: KNN, DT, and AO-ANN(BP), and performance
evaluation. Finally, the explainability of models has become an essential element of the ML
workflow. Maintaining an ML model as a “black box” is no longer an option.

Moreover, analytical tools such as SHAP are growing and becoming more popular.
The proposed approach by SHAP has proven to be a significant achievement in ML model
interpretation. SHAP combines multiple current methodologies to produce a browser-
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based, theoretically sound approach to explaining predictions and classifications for any
algorithm. The magnitude and direction (positive or negative) of a feature’s effect are
quantified by SHAP values. Based on our recent knowledge, XAI analysis using SHAP
should be an essential element of the machine learning workflow.

Figure 1. The proposed framework of room occupancy ML predictions in the smart city.

3.1. Room Occupancy Dataset
3.1.1. Dataset Description

The classification models were tried and tested using the dataset. Temperature, humid-
ity, humidity ratio, light, carbon dioxide (CO2), and occupancy status (0 for non-occupied,
1 for occupied) are all specified as features of the dataset. The distributions of the classes
are also displayed in Figure 2. This data set holds 2665 rows and six columns with six
parts and is available at https://www.kaggle.com/sachinsharma1123/room-occupancy
(accessed on 2 May 2022). Each column in the dataset is described below:

• Temperature: in degrees Celsius
• Humidity: percentage relative humidity
• Light: lux (light)
• CO2: in parts per million (ppm)

https://www.kaggle.com/sachinsharma1123/room-occupancy
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• Humidity Ratio: a quantity derived from temperature and relative humidity, expressed
in kilograms of water vapor per kilogram of air

• Occupancy: 0 or 1, 0 for unoccupied status, 1 for occupied status

Figure 2. The distributions of the classes.

An emphasized analysis is considered over the intra-correlation of features and inter-
correlation of the input features and class labels, as well as statistical analysis in the
subsequent sections to clarify the research problem and formulate the research questions.

3.1.2. Descriptive Statistical Analysis

As illustrated in Figure 3, there is feature frequency overlap between distinct feature
categories in the room occupancy classification framework (class 0, class 1). Except for the
light feature, this frequency overlap phenomenon has significantly elevated values in the
moderate range. As a result, simply preserving the dataset structures and distributions
through the room occupancy dataset is insufficient to increase the discriminative capacity of
the features for frequency distribution approaches. Table 1 shows the mean µ and standard
deviation σ calculated for all features in the dataset.

Table 1. Calculating µ and σ of the room occupancy dataset.

Features

Class 1
(Room Occupied)

Class 0
(Room empty)

µ Σ µ σ

Temperature 22.391 0.953 20.884 0.559
Humidity 27.318 2.140 24.226 1.797

Light 499.596 106.462 17.332 84.817
CO2 1014.52 235.423 547.613 153.174

Humidity ratio 0.00459 0.00052 0.00370 0.00038

A histogram of room environmental factors showing the number of factors (features).
The solid curve is a skew-normal density for temperature, humidity, light, and humidity
ratio and skew-left for CO2, as shown in Figure 2.

A violin plot [66], which depicts data peaks, is a cross between a box plot and a kernel
density plot. It demonstrates how a numeric room occupancy dataset is dispersed, as
shown in Figure 4 Unlike a box plot, which only displays summary data, violin results
show statistical analysis for each feature and the intensity of each feature. The violin plot
integrates with the box plot for light feature and occupancy, as shown in Figure 5a,b. The
violin plot is symmetrically displayed to the left and right of the (vertical) boxplot. Adding
two density traces in Figure 5 results in a symmetric display that makes the magnitude of
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the density easier to observe. This violin and box plot blend allows a quick and informative
distribution comparison. When we interpret Figure 5b, we see that there are light values in
class 1 outside of the range, which must be avoided when dealing with data.

Figure 3. The features distribution visualization, the top curve, and the bottom curve represent
the plots for the frequency distribution of the dataset in class 0 (the room is empty) and the fre-
quency distribution for a dataset in class 1 (the room is occupied), respectively. Subplots (a–e) rep-
resent the frequency distribution of five features (temperature, humidity, light, CO2, and humidity
ratio), respectively.

Figure 6 depicts a pairs plot illustrating the link between all features. The orange
dots reflect an occupied state, whereas the blue dots represent an unoccupied status. The
temperature and humidity map clearly shows no separation between the orange and
blue dots. The same occurs when temperature and CO2 are combined, as with humidity
and CO2, temperature and humidity ratio, humidity and humidity ratio, and CO2 and
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humidity ratio. Temperature and light, humidity and light, light and CO2, and light
and humidity ratio, on the other hand, exhibit a strong separation trend for the orange
and blue dots, indicating that these pair configurations are excellent fits for training the
classification techniques.

Figure 4. (a–e) Probability density and histogram show fitted positive features distribution across the
room occupancy dataset.

Figure 5. Applying violin plots to explore a dataset where Red represents room occupancy, and Blue
represents room vacancy.
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Figure 6. (a,b) Common component of box plot and violin plot where Orange represents room
occupancy, and Blue represents room vacancy.

Figure 7 depicts a graphical representation of the orange package’s confusion matrix,
which shows the relationship between all room environment features and occupancy in a
color palette. Figure 8 demonstrates a heatmap representing the correlation values ranged
from 0 to +1. Positive and strong correlations are considered to be values near +1. The
value of light and occupancy have a higher positive correlation of 0.93. Thus, features with
a correlation value close to zero with the quality characteristic related to occupancy with a
value of zero were not identified.

3.1.3. Room Occupancy Dataset Preprocessing

The ability to clean a dataset is frequently the difference between a successful and an
average ML model. Outlier detection and treatment is one of the most challenging issues
in data cleansing. Outliers are observations that are considerably different from the rest of
the dataset. Even the best ML algorithms will underperform if outliers are not removed
from the dataset. Outliers could negatively impact the ML algorithm’s training process,
causing a loss of accuracy.

Outlier Treatment

As explained previously in the statistical analysis of the dataset, the dataset contains
outlier values of features that are rejected using outlier rejection with standard deviation
and mean [67].

Min-Max Normalization

Many ML algorithm estimators require dataset standards; otherwise, they may misbe-
have if the individual features do not resemble standardized data. A Gaussian has a mean of
zero and a variance of one. Min–Max Normalization, commonly known as (0–1) Normaliza-
tion, converts x to x’s by transforming each value of features to a range between 0 and 1. The
range might be between −1 and 1 if the data had negative numbers in Equation (1).

x′ =
x−min(x)

max(x)−min(x)
(1)

where x′ corresponds to the normalized value (feature), x is an original feature, max(x) is
the maximum value of x, and min(x) is the minimum value of x.



Sustainability 2022, 14, 7734 12 of 25

Figure 7. A pair plot to investigate the dataset’s input attributes and occupancy. The orange data
represent the occupied status, whereas the blue data represent the unoccupied status.

Figure 8. Heatmap visualization for analysis features correlation of room occupancy.
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3.2. ML Classification

Three ML techniques, KNN, AO-ANN, and DT, were applied to classify the occupancy
profile based on the environmental features of the room occupancy dataset.

3.2.1. K-Nearest Neighbors (KNN) Model

Because it is a nonparametric, nonlinear, distance-based technique, the k-nearest neigh-
bors (KNN) algorithm is widely used for prediction and classification [68]. Considering a
training sample (xi, yi) with i = 1, 2, . . . , n and a testing sample t, the distance, di, between t
and xi can be determined just like in Equation (2).

di = ‖t− xi‖ (2)

where ||.|| denotes the distance. The Euclidean distance is among the most commonly
used distance calculations. After calculating the distance di, where i = 1, 2, . . . N, the labels
of the i training samples with the least distance can be used. A majority vote will then
determine the label of the testing sample. Table 2 shows the values of parameters used in
the KNN model [69].

Table 2. Values of parameters used in KNN model.

Parameter KNN

Number of neighbors 5
Metric Euclidean
Weight Uniform

3.2.2. Hybrid Adam Optimizer–Artificial Neural Network–Back-Propagation Network
(AO–ANN (BP)) Model

ANN method solves problems effectively in the human brain’s method; a network of
basic neuron units connects the outputs to the inputs via directed and weighted graphs.
The ANN algorithm’s skills are used in regression analysis, time series prediction, and
modelling, classification (including pattern classification and sequencing decisions), and
other areas [70].

Adam Optimizer

The Adam optimizer (AO) was used in this paper to optimize the generation of
weights and biases, as illustrated in Figure 9. Adam is an adaptive learning rate method,
which means it computes different learning rates for various features. It gets its name from
adaptive moment estimation. Adam modifies the learning rate for each neural network
weight by estimating the first and second moments of the gradient [71].

The AO–ANN (BP) typically includes an input layer, a hidden layer, and an output
layer with random weights. Training dataset (xi, yi). xi is a data collection from selected
features, and yi is the matching occupancy characteristic feature. Table 3 shows the values
of parameters used in the AO–ANN (BP) model.

Table 3. Values of parameters used in AO–ANN (BP) model.

Parameter AO–ANN (BP)

Neuron number for the input layer 6
Hidden layers (s) number 1

Neuron number for the hidden layer 100
Neuron number for the output layer 1

Number of iterations 200
Activation function RelU

Optimizer Adam
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Figure 9. Flowchart of AO-ANN(BP) Model.

3.2.3. Decision Tree (DT) Model

The DT classifier is a way to multistage decisions, including table look-up rules,
decision table converting to efficient decision trees and sequential methods. The primary
principle behind any multistage strategy is to break down a complex decision into numerous
simple options, hoping that the ultimate result will resemble the optimal solution.

3.3. Explainability (XIA) Pipeline with SHAP

The explainability of modelling has become an essential component of the ML work-
flow. Maintaining the ML technique as a “black box” is no longer an option [72].

SHAP (Shapley Additive Explanations)

Fortunately, there are rapidly growing techniques that have become more widespread.
Lundberg and Lee (2016) used Shapley Additive Explanations to explain specific predictions
using game theoretically appropriate Shapley values. It is a popular cooperation game
theory strategy offering attractive qualities. The SHAP is used to understand why machine
learning models (DT, KNN, or AO–ANN) suggested that a room was occupied or vacant.
In other words, the SHAP is used to demystify a black-box model. Shapley values are
based on each possible combination of f features (f going from 0 to F, F is the number of all
features available, called power set. SHAP requires training a distinct predictive model for
each distinct coalition in the power set, meaning 2F models. Needless to say, these models
are completely equivalent to each other for what concerns their hyperparameters and their
training dataset. The only thing that changes is the set of features included in the model,
i.e., thermal comfort parameters. Figure 10 summarizes how to apply SHAP to interpret
any model’s predictions.
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Figure 10. An outline of applying SHAP to interpret any model’s predictions.

A data instance’s attribute values operate as coalition members. The mean effective
contribution of a selected attribute over all conceivable coalitions is the Shapley value.

According to SHAP [73], the explanation is as follows:

Q(v̀) = ∅0 +

N

∑
j=1

∅jv̀j (3)

where Q is the explanation model, v̀ ∈{0, 1}N is the coalition vector, N is the maximum
coalition size and ∅j ∈ R is the feature attribution for a feature j, the Shapley values. This
paper will refer to “coalition vector” as “simplified features” in the SHAP technique.

4. Evaluation Results

This section gives the findings on the performance of the two suggested workflows
for occupancy classification and explores several use scenarios and their benefits and
drawbacks. We employ explainability methods to examine the feature classification method
of the second workflow thoroughly.

4.1. Environmental Experimental Setup

The following hardware specifications have been used to obtain and execute the
results: CPU Intel core i7 11th Generation (one socket, eight cores, eight threads), RAM
16GB and Python ML packages, and orange data mining tool on Minecraft Windows 11
that is built on open-source machine learning and data visualization.

4.2. Results Evaluation

Accuracy, precision, recall, and F1-score are the four primary measures to evaluate a
classification model, as shown in Equations (4)–(7).

Accuracy: the percentage of correctly predicted results for the testing data is accuracy.
The unit is able to find out by dividing the number of correct predictions by the total
number of predictions.

Accuracy =
Correct predictions

All predictions
(4)

Precision: is the proportion of true positives among all examples that correspond to a
specific class.

Precision =
True positives

True positives + False positives
(5)
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Recall: is defined as the proportion of instances predicted to belong to a class divided
by the total number of cases that belong to the class.

Recall =
True positives

True positives + False negatives
(6)

F1-score: conveys a balance between precision and recall.

F1− score = 2 ∗ ( Precision ∗ Recall
Precision + Recall

) (7)

4.2.1. Analysis of ML Based Method

The dataset is separated into training and testing portions to analyze the proposed
models: 75% for training and 25% for testing. The training data are used to specify and
measure the models accurately. On the other hand, the test data are only used at the end of
the model-generation process to determine how well the model performs.

Table 4 displays the results evaluation of ML models. The performance measures
of three ML techniques, KNN, DT, and AO-ANN (BP), in terms of classification of the
occupancy room, are depicted in Table 4. The results demonstrate that the KNN performs
better than the DT and AO-ANN (BP) classification models. And though the two classifiers
in this study are designed to evaluate variations in interpretations, we must ensure that
they have accurate detection.

Table 4. Evaluation measures for ML models.

Classifier Accuracy Precision Recall F1-score

KNN 99.5 98.5 98.5 98.5
DT 98.9 98.3 98.3 98.3

AO–ANN (BP) 99.5 98.0 97.9 97.9

Sensitivity is the ability of a test to classify the room as non-occupied, denoted by
(class 0), whereas the ability to classify the room as occupied correctly is called the test’s
specificity (class 1), as shown in (Figures 11 and 12) respectively.

Figure 11. Sensitivity and specificity for the non-occupied room (class 0) where Orange represents
AO-ANN, Blue represents KNN, and Green represents DT.
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Figure 12. Sensitivity and specificity for the occupied room (Class 1) where Orange represents
AO-ANN, Blue represents KNN, and Green represents DT.

4.2.2. Explanation of the Feature Contributions Based on XIA

This section discusses the results of the main features of room occupancy. Furthermore,
the differences in important features extracted by SHAP among all classifiers are discussed.

For the first stage, we propose analyzing the significance of the feature. It is a critical
understanding of the classifier’s models. In the following figures (Figures 13–15), you can
see feature importance calculated by SHAP values (features with large absolute Shapley
values are important) for three classifiers (KNN, DT, and AO-ANN (BP)).

Figure 13. SHAP explains the individual KNN classifier.
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Figure 14. SHAP explains the individual DT classifier.

Figure 15. SHAP explains the individual AO-ANN (BP) classifier.

The figures (Figures 16–18) demonstrate the importance of features on the classes
(0, 1) which is stacked to create the feature importance plot based on the classifiers. The
figures combine feature importance with feature effects. Each point is a Shapley value for a
feature or instance. The features define the location on the y-axis, while the Shapley value
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determines the location on the x-axis. The color denotes the feature’s value, ranging from
low to high. Overlapping points are jittered in the y-axis direction to give us a sense of the
Shapley value distribution per feature. Figure 14 shows that the feature humidity ratio has
low Shapley values, the least important feature. The features are ordered according to their
importance for the KNN classifiers (light, CO2, humidity, temperature, and humidity ratio).
In Figures 16 and 18, the larger the value for light, the larger the Shapley value. Hence, the
feature value of light is larger; both the DT classifier and AO-ANN (BP) are more likely to
consider the dataset room occupied.

Figure 16. The significance of features for KNN classifier.

Figure 17. The significance of features for DT classifier.

Figure 18. The significance of features for the AO-ANN(BP) classifier.

As shown in Figure 18, when the feature values of light or humidity are larger, the
classifier is more likely to consider the data as occupied. Therefore, when these feature
values are small, the AO-ANN (BP) classifier considers the data not occupied (empty).
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5. Discussion

This study presented methodologies for developing artificial intelligence models for
room occupancy detection in the current state and occupancy prediction in the future
form using machine learning techniques. The following are the authors of the study’s
main findings:

To properly understand the contribution of the developed room occupancy classifica-
tion and explainable model, it is necessary to compare it to existing models. It evaluates the
performance of the KNN, AO-ANN (BP), and DT models. Because of its higher accuracy,
precision, recall, F1-score, and precision, the KNN model outperforms the AO-ANN (BP)
and DT models. The application of SHAP is certainly intended to obtain explainability for
each classifier used for accuracy performance.

As shown above, the room features of light and CO2 are the most influential and
informative features that affect the accuracy of the KNN classifier, and light, temperature
and CO2 are the features that most determine the accuracy of the DT classifier, and light
and humidity are the most influential characteristics on the AO-ANN (BP).

ANN model was trained using sensor data from CO2, sound, relative humidity, air
temperature, computer temperature, and motion [74,75]. The model’s observed accuracy
ranged from 75% to 84.5%. The electricity consumption from digital meters in five houses
was applied to train classification models to determine building occupancy [76].

For the occupancy determination, the accuracy was typically greater than 80%. It was
discovered that when the house is occupied, it increases the likelihood of consuming more
power. It was also found that the probability of decreased consumption even while the house
is occupied is high because the inhabitants may not be using any electrical products [35].

Several statistical classification models examined the accuracy of predicting occupancy
in an office room using data from light, temperature, humidity, and CO2 sensors. The
results indicate that a suitable feature selection combined with an appropriate classification
model can significantly affect prediction accuracy.

Real-time occupancy detection using DT is demonstrated by [77]. When using PIR
motion sensor data, the stated accuracy was 97.9%. Data from light, sound, CO2, power
consumption, and motion sensors were used. The research also noted that the classification
accuracy decreased when several sensor readings were added, and the cause is suspected
to be overfitting.

As shown in Table 5, the proposed framework results showed that when only the
environmental features dataset was applied to learn occupancy predictors, the KNN-based,
and BP-based occupancy predictor models were more suitable and accurate. Moreover,
other classifiers are more accurate than their counterparts in Table 5. Additionally, an
interpreter for the results of SHAP classifiers was used, an added value not used by recent
research in predicting room occupancy.

Table 5. Occupancy prediction models, features, and predicted accuracies.

Reference Methodolgy Features Accuracy XIA

[35] LDA Classifier and
CART and RF models

Temperature, humidity,
light and CO2

Ranging from 95% to 99% NA

The proposed framework KNN, AO-ANN(BP),
and DT models

Temperature, humidity,
light, CO2

KNN: 99.5%
DT: 98.9%

AO–ANN (BP): 99.5%

Shapley Additive
Explanations (SHAP)

The room occupancy prediction model explores decreasing energy consumption
through efficient use of available resources by predicting whether the room is occupied
or vacant, leading to better management of systems such as lighting and HVAC. Under-
standing the nature of these parameters, whether combined or standalone, is a crucial
point to assess implementing different measures to aid in energy efficiency and promote
energy savings; these may be through disabling systems in areas that are labelled as vacant,
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leading to better operational costs and more efficient energy usage, ultimately leading to
a healthier and less environmentally consuming building. The problem here may be that
tailored indoor experiences for each user may not be readily achievable; instances where
individuals prefer to stay in a dark room to work may not be present if motion sensors
detect that the light should be turned on. It is also viable to say that lineaging spaces and
treating them all the same may incur higher costs in the long run, due to constant operation
of areas that should remain inoperable or with low operability. Thus, further research to
enable user centered design is advised.

The results show that light was the main feature, followed by CO2 levels that predicted
room occupancy across all the different modelling types. While that may be a logical
explanation, it may not always be accurate. The idea that users may tend to leave the
light on even when the space is not in use is a valid one; it is also feasible to argue that
higher levels of CO2 does not guarantee immediate occupancy; rather, it amplifies that
the space was in use and not necessarily currently occupied (the users may have already
left). Another option may be the integration of the two factors most affecting the prediction
model; light and CO2; these two may be combined to facilitate the prediction of room
occupancy better; the higher the consistency of CO2 levels over a duration of time, the more
likely, the room is occupied, thus also enabling motion sensors to work effectively when
dual data is the input.

It is also evident from the results that while temperature, humidity, and relative
humidity were set features in the dataset and are embedded in the model, their significance
is not established; one theory would be that the conditions under which they were measured
were regulated, as is often the case in indoor spaces using mechanical and HVAC systems,
hence rendering them as void features. Another point may be when these features were
measured during operational hours of the building or states of operation. The dataset
shows slight fluctuation in these features, which may be biased to believing that they
were measured during hours of operation, thus leading to the previous theory that it
is a controlled indoor environment. That is to say that these may also be available for
further research to measure these features on a standalone feature in both operational and
non-operational hours to assess their true significance better. Further research to measure
and assess the CO2 levels in indoor spaces and their monitoring with occupancy is advised
to aid stakeholders and decision-makers in areas better to decrease costs and efficiently
utilize resources.

Consistent data collected through sensors also facilitate the embedding of a man-
agement system to help regulate resource consumption and analyze overuse trends as
well as increase/decrease appropriate flow according to the situation. Electronic man-
agement systems, when aided with the correct data, are game-changers in the resource
efficiency paradigm.

6. Conclusions

Due to the problems associated with the rise in energy consumption, the focus on
sustainable green buildings, and the optimization of energy usage to ensure that the SDGs
are met, research on efficient use has emerged as a critical issue. One of the areas where
this may be viable is implementing systems powered by machine learning algorithms in
prediction models to utilize proper data and devise better solutions.

This research focused on predicting whether the room is occupied or vacant, using
thermal comfort indices, which may lead to better usage of resources through better
management of systems such as lighting and HVAC, ultimately leading to energy-saving in
buildings. The accuracy of occupancy prediction has been tested and analyzed on data from
differences in light, CO2, and humidity levels. In addition, we investigated the creation of
a proposed framework to improve the explainability of machine learning methods in room
occupancy. Additionally, the results indicate the importance of independent features for
introducing room occupancy.
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Room occupancy detection ease was associated with both CO2 and light levels: the
first in the overall amount of CO2 present to depict the quantity emitted by people using
the space and the second by the sheer thought that if the light is turned on, the room
is occupied. These two features yield the highest probability of whether the room was
occupied or vacant. However, as two standalone features, they may not be definitive as
user differences and diversity may be obstacles if set parameters are instigated. That is why
combining different features in the prediction model is better and does not rely on one sole
feature of the indices provided.

The proposed framework contribution includes (a) a prediction method for room
occupant behavior using different ML algorithms, (b) determining which features are
informative for all prediction methods by using SHAP, the explainability of machine
learning algorithms, and (c) an outline of the importance of consistent data collection to
facilitate decision making regarding resource consumption and efficiency according to
user centered experiences and needs. We intend to expand the proposed methodology in
future work to include explanations of smart cities and power consumption scenarios, as
these are necessary ideas for efficient consumption, automated processes and sustainability
measures, ultimately leading to better health and the well-being of users.
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