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Abstract: Clarifying the response of soil microbial communities to the change of different vegetation
types on a small regional scale is of great significance for understanding the sustainability of grassland
development. However, the distribution patterns and driving factors of the microbial community are
not well understood in the Qilian Mountains. Therefore, we characterized and compared the soil
microbial communities underlying the four vegetation types in a national natural reserve (reseeded
grassland, swamp meadow, steppe meadow, and cultivated grassland) using high-throughput
sequencing of the 16S rRNA and ITS. Meanwhile, the plant community and soil physicochemical
characteristics were also determined. The results showed that bacterial and fungal communities in all
vegetation types had the same dominant species, but the relative abundance differed substantially,
which caused significant spatial heterogeneities on the small regional scale. Specifically, bacteria
showed higher variability among different vegetation types than fungi, among which the bacterial
and fungal communities were more sensitive to the changes in soil than to plant characteristics.
Furthermore, soil organic carbon affected the widest portion of the microbial community, nitrate-
nitrogen was the main factor affecting bacteria, and aboveground plant biomass was the main factor
affecting fungi. Collectively, these results demonstrate the value of considering multiple small
regional spatial scales when studying the relationship between the soil microbial community and
environmental characteristics. Our study may have important implications for grassland management
following natural disturbances or human alterations.

Keywords: Qilian Mountains region; small regional scale; different vegetation type; soil microbial;
environmental factors

1. Introduction

Soil microbes play a pivotal role in the functioning of terrestrial ecosystems, which is
considered an important indicator that monitors the succession of ecosystems [1]. Therefore,
it is indispensable to improve the knowledge of the microbial community, especially
regional microbial patterns [2]. Although encouraging progress has recently been made on
the horizontal distribution of microbial communities [3,4], we still lack an understanding
of the different ecological attributes of soil microbial communities, such as the spatial
distribution of microbial communities and the driving factors of maintaining diversity at
the small regional scale [5]. This is partially due to methodological constraints, and any
investigation of the soil microbial community encounters the problem that the substrate is
highly heterogeneous on large scales, both horizontally and vertically [6]. The relatively
large number of uncontrollable factors in analyzing microbial regional variation cannot
mitigate the influence of spatial distance, which causes differences in both the structure
and function of soil microbial communities.

The distribution pattern and driving mechanism of the soil microbial community
are core topics of microbial ecology research [7]. Previous studies have confirmed that
microbial composition and diversity are regularly distributed in space along with changes
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in biological and abiotic factors, such as climate and physicochemical properties [8–10]. At
present, many kinds of research pay more attention to the scale of large regions. For exam-
ple, soil pH is considered as the most important abiotic factor, which drives the diversity,
composition, and biomass of microbial communities on a global scale [4]. However, the
study found that pH had no significant correlation with microorganisms in arid areas at
a small regional scale [11]. Therefore, the effects of abiotic and biotic factors on soil mi-
croorganisms may vary with the regional scale of the research. In summary, understanding
microbial community composition and diversity on the same small scale is an important
first step in evaluating microbial community structure–function relationships [12]. First,
exploring the interaction relationship of microorganisms and environmental factors at a
small spatial scale will help answer the basic scientific questions of different ecologies.
Second, understanding the main driving mechanism of microbial differences in different
ecosystems is important for designing effective management and conservation strategies.

Alpine grassland vegetation composition varies greatly across short distances due
to heterogeneities in topography and hydrological conditions across the landscape [13].
Changes in vegetation types can alter plant community composition and soil characteristics,
and these alterations can, in turn, affect soil microbial communities due to changing
composition and diversity [14,15]. Both the quality and quantity of aboveground litter and
belowground roots supplied to soil microorganisms differ among vegetation types [16].
On the other hand, changes in soil properties, such as pH, moisture, clay, C, N, and
phosphorus availability, under different vegetation types, have significant impacts on
soil microbial communities [17,18]. Nottingham revealed that ecosystems with strong
plant community adaptability to changing resources will have homeostatic microbial
communities with relatively low microbial resource costs because plants reduce variance in
resource stoichiometry [19]. For example, Xue et al. explored different grassland ecosystem
types spanning 2121 km across the Tibetan Plateau and found that drought index is the main
factor affecting microbial communities [20]. Che et al. demonstrate that the distribution of
the microbial community regarding nitrogen fixation on the Tibetan Plateau was mainly
affected by soil water content and nutrient availability [21]. Aside from other abiotic
factors, the composition of microbial communities appears to depend on the prevailing and
dominant available source of organic carbon (C) among different habitats [22]. In addition,
a recent meta-analysis indicated that the cross-habitat distribution pattern of bacteria was
more strongly driven by habitat type on a global scale [23]. In summary, the distribution
of the microbial community and driving factors at a small scale are not well understood,
despite the plentiful existence of global and large scale studies.

To comprehensively understand the differences in the soil microbial community in
alpine grasslands at small regional scales, the microbial ecology among different vegetation
types was investigated on the east side of the Qilian Mountains, which is an ecologically
fragile area at the convergence of Qinghai-Tibet, Mongolia-Xinjiang Plateau, and the Loess
Plateau [24]. Previous studies have evaluated the interactions among soil, plant, and
microbial communities on a large regional scale in the Qinghai-Tibet Plateau [25]. However,
the microbial responses to different vegetation types on a small regional scale are not well
understood. In this study, we used high-throughput sequencing technology to analyze the
changes in the soil microbial diversity and community among four vegetation types (no
more than 10 km apart). Based on previous studies related to soil microbes in different
vegetation types on a large regional scale, the goal of this research was to (1) clarify how
the composition and diversity of soil bacterial and fungal communities change among
different grassland types; (2) explore the influence of vegetation and soil on microorganisms;
(3) determine the key factors that affect the changes in the microbial community.

2. Methods and Materials
2.1. Study Area

The study was conducted at the Qilian Mountain Nature Reserve on alpine grassland,
located in a typical alpine meadow, Qilian County, Mule town (37◦57′ 36′ ′ N, 100◦19′48′ ′
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E; 3487 m above sea level). The region is characterized by a continental plateau climate,
with a mean annual temperature of −1.7 ◦C, and the annual precipitation between June
and September is approximately 614.8 mm. The region’s highest and lowest recorded
temperatures were in January (−14.8 ◦C) and July (9.8 ◦C), respectively. The plant growing
period is approximately 150 d, and there is no absolute frost-free period throughout the
year [26].

This area is rich in grassland types, and some degraded grasslands have been con-
verted to cultivated or reseeded grasslands. The cultivated grassland was established on the
severely degraded alpine meadow for 4 years, mainly with Poa pratensis cv. Qinghai. The
reseeded grassland was dominated by E. nutans, which was reseeded on the moderately de-
graded alpine meadows for 2 years by a reseeding/sowing combined operation (Figure 1).
The swamp meadow and steppe meadow are natural grasslands with the dominant species
Kobresia humilis and Elymus nutans, respectively. Each vegetation type was used for grazing
with the same intensity.
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Figure 1. Spatial distribution of sampling sites across different grassland types in the small regional
scale of the Qilian Mountains region; the photos of the grasslands are (A) steppe meadow with domi-
nant Elymus nutans, (B) cultivated grassland with dominant Poa pratensis cv. Qinghai, (C) reseeded
grassland with dominant Elymus nutans, and (D) swamp meadow with dominant Kobresia capillifolia.

2.2. Experimental Design, Plant Investigation, and Soil Sampling

We surveyed the vegetation community at the site, and located four similar, well-
separated (500–1000 m apart) patches of each vegetation type (August 2019). This study
design with replicate plots (rather than replicate plots within a patch) avoids pseudorepli-
cation and renders our results appropriate for landscape-level extrapolation. In each patch,
species diversity, abundance, total coverage, and height were investigated in four 50 cm
× 50 cm quadrats. All aboveground plant parts were collected in each quadrant as the
aboveground biomass, which was determined by oven-drying plant samples at 65 ◦C for
48 h in the laboratory to a constant weight. At the same time, root samples from a 0–15 cm
depth were collected separately using a root drill with a diameter of 7 cm, after which four
root drill samples from each plot were mixed to give one composite root sample [27].

Soil samples were collected from quadrats: 8 random soil samples were collected from
the 0 to 15 cm soil layer in each replicate plot using a soil-drilling sampler (7 cm inner
diameter) and combined into 1 replicate sample; in total, 4 soil samples were obtained from
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each vegetation type. All soil samples were passed through a 2 mm sieve to remove other
materials. Soil samples were immediately sent back to the laboratory in a cooler. Samples
were divided into three parts to determine the chemical and physical properties of the soil,
along with the soil microorganisms. One part of the soil sample was naturally dried in the
shade and then sieved through 1 mm mesh for soil chemical analysis, while another part
was stored at −80 ◦C for high-throughput gene detection [28]. A third portion was used in
a water-stable aggregate analysis.

2.3. Measurement of Soil Physicochemical Properties

The physicochemical properties of the soil samples were analyzed within one month.
The soil bulk density (0–15 cm) was measured using the metal-ring method and oven-dried
at 105 ◦C for 24 h. Soil pH was determined in a water–soil suspension with a volume ratio
of 1:5 [29]. Water-stable aggregates were generated by using nested sieves (2 mm, 0.05 mm,
and 0.02 mm), according to the procedure described by [30]. The contents of soil organic
carbon (SOC) and total nitrogen (TN) were determined by a C and N analyzer (Elementar,
Langenselbold, Germany). Soil available nitrogen was extracted with 1 M KCl, and the
filtrates were analyzed for NH4

+-N and NO3
−-N using a colorimetric method analyzer

(CleverChem200+, Hamburg, Germany) [31].

2.4. Bioinformatics Analyses

The soil microbial community composition and diversities were determined using
high-throughput gene detection techniques. Soil samples stored at−80 ◦C were transported
with dry ice to the Guangzhou Genedenovo Biological Technology Center for analysis
(Illumine 2500 250 PE, USA). For each sample, the total genomic DNA was extracted from
0.5 g of soil using a HiPure Soil DNA Mini Kit (Magen, Guangzhou, China). A NanoDrop
device (NanoDrop 2000, Thermo Fisher, Waltham, MA, USA) was used to detect the DNA
quality. The 16S rDNA V3-V4 region of the ribosomal RNA gene was amplified by PCR
(94 ◦C for 2 min, followed by 30 cycles at 98 ◦C for 10 s, 62 ◦C for 30 s, and 68 ◦C for 30 s,
and a final extension at 68 ◦C for 5 min) using primers 341F (CCTACGGGNGGCWGCAG)
and 806R (GGACTACHVGGGTATCTAAT) [32]. ITS rRNA was detected in the ITS2 region,
and the primer sequences were KYO 2F (GATGAAGAACGYAGYRAA) and ITS4R (TC-
CTCCGCTTATTGATATG). PCRs were performed in a triplicate 50 µL mixture containing
5 µL of 10 × KOD buffer, 5 µL of 2 mM dNTPs, 3 µL of 25 mM MgSO4, 1.5 µL of each
primer (10 µM), 1 µL of KOD polymerase, and 100 ng of template DNA [33]. Bacterial and
fungal α- diversity indices, including the Chao 1, Simpson, and Shannon indices, were
calculated at the OTU level. The Sobs index indicates the number of OTU actually mea-
sured. Alpha-diversity metrics (including the Chao1 richness estimator and the Shannon
diversity index) were estimated for each sample using the diversity plugin in QIIME2
software. Redundancy analysis (RDA) was conducted at the phylum level.

2.5. Statistical Analyses

The analysis of variance (ANOVA) was used to determine the significance of differ-
ences in the microbial diversity index, soil physicochemical properties, and plant diversity
among different vegetation types. The significant differences were determined at the 95%
confidence level. PCoA is a dimensionality reduction analysis of the microbial community
based on the Bray–Curtis distance to evaluate the interpretation degree of each coordinate
axis for the bacterial community structure by percentage. Generally, it is reasonable for
the sum of PCoA1 and PCoA2 to reach more than 50%. A low interpretation degree can
be acceptable in a complex community. The grouping test is usually combined with a
PCoA scatter map, which visually presents the grouping characteristics of samples, while
the grouping test is used to judge whether the community differences are significant. In
addition, we used the ADONIS function of the vegan package in R 4.0.3 (Ross Ihaka and
Robert Gentlemen, Auckland, New Zealand) to test the significance of the separation
between successional stages. ANOSIM was used to detect differences within and between
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groups. The linear discriminant analysis (LDA) effect size (LEfSe) method was used to
assess high-dimensional microbial taxa and identify the taxonomically different microbial
vegetation types. The steps of LEfSe analysis are as follows: the Kruskal–Wallis rank-
sum test (a commonly used test method for multiple groups) was conducted between all
groups, and then the selected differential species between two groups were compared by
the Wilcoxon rank-sum test (a commonly used test method for two groups). Finally, the
differences were selected by using LDA, and the results were sorted by mapping to obtain
the evolutionary branches. The significant environmental factors in the RDA were selected
by the envfit test, and the best model was selected by the ‘mod’ function of the vegan
package [34]. Redundancy analysis (RDA) was used to elucidate the relationships between
the community and environmental properties by using the R vegan package, and the rela-
tionships were examined using the Monte Carlo permutation. Furthermore, VPA (variance
partitioning analysis) based on the abundance of species and environmental factors was
used to analyze the interpretation of the total variation in species distribution using each
group of environmental factor variables. We also calculated the Bray–Curtis distance matrix
between samples based on the species abundance and the environmental factor, and used
the mantel test to analyze the correlation between the two distance matrices, using the R
vegan package for analysis.

3. Results
3.1. Microbial Community Composition and Diversity

Bacterial and fungal communities were characterized by sequencing the V3–V4 hy-
pervariable region of the 16S rRNA gene and the ITS region, respectively. The soil sample
was harvested from 4 grassland types. A total of 10 bacterial phyla were detected in 16 soil
samples (51 genera and 5316 OTUs). The relative abundance of the dominant bacterial
phyla was greater than 5% in the 4 grassland types, which were Proteobacteria, Acidobacte-
ria, Planctomycetes, and Actinobacteria. (Figure 2A). The highest relative abundance of
Proteobacteria was observed in SW, which was significantly higher than that in ST and
RG. Moreover, ST had a higher abundance of Planctomycetes and Actinobacteria than CG
and SW. The relative abundance of Acidobacteria in RG was higher than that in the other
grassland types.

Additionally, 7 phyla, 11 genera, and 1544 OTUs were also identified in the soil fungal
community, which primarily comprised members of the phyla Ascomycota, Basidiomycota,
and Mortierellomycota, among which Ascomycota (59.99–80.15%) was a dominant phylum
for each grassland type (Figure 2C). The highest relative abundance was observed in CG
(Figure 2D). By using LEfSe analysis, we found that changing the vegetation significantly
altered the bacterial and fungal communities. Specifically, at the phylum, genus, and
species levels, some bacterial and fungal groups were significantly enriched in the different
grassland types. Bacteria were mainly enriched in SW. However, most fungal groups were
enriched in CG. More detailed information is shown in Figure S1.

As illustrated by the PcOA analysis based on Bray–Curtis dissimilarity, at the OTU
level, PCoA1, and PCoA2 contributed 48.89% and 16.36%, respectively (Figure 2C). Com-
paratively, for fungal structure, PCoA1 and PCoA2 contributed 25.24% and 15.81% of the
total variation, respectively (Figure 3B). PCoA analysis suggested that the soil bacterial and
fungal structures among different vegetation types were clearly separated from each other.
Simultaneously, PERMANOVA was applied to reveal differences in the soil microbial beta
diversity (Table S1), which indicated that there was a significant difference among the four
grassland types (R2 = 0.7, p < 0.01). Moreover, there were also significant differences in
microbial beta diversity among the other grasslands (p < 0.05).
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Similarly, with the change of grassland types, bacterial and fungal diversity also
changed significantly (Figure 4). Specifically, the Sobs and diversity index of the soil
bacterial community were higher than those of the fungal community. The results also
indicated that using Sobs, Shannon, or Chao 1 indices, each grassland type showed the
highest levels of ST and the lowest of SW for bacteria. More information is shown Sobs
(Figure 4A), Shannon (Figure 4B), or Chao 1 (Figure 4C). Moreover, the Sobs index and
diversity of the Shannon and Chao 1 indices in CG were greater than those in the other
grassland types for fungi. Similar to bacteria, the lowest fungal diversity was observed in
SW, except for the Shannon index.
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3.2. Differences in Soil Physicochemical Characteristics among Different Vegetation Types

Soil physicochemical characteristics varied greatly among each grassland type, which
reflected the high heterogeneity of soil characteristics among different grassland types. For
all measured soil parameters, significant differences were observed within the 0-10 cm
soil layer among the four grassland types (Table 1). At the SW site, the NH4

+-N, NO3
−-N,

SOC, SWC, TN, and clay were significantly higher than those at the other grassland types
(p < 0.05). Compared with SW and ST, the soil sand and silt in CG were significantly
increased (p < 0.05). The content of TP in the SW and ST was significantly higher than that
in the RG and CG, but the pH showed a different trend. Furthermore, the BD was reduced
in RG and CG, compared with SW and ST. In addition, we also noticed that most soil
characteristics, except TP, BD, and silt, were significantly correlated with the soil bacterial
community (p = 0.01 to 0.033, r = 0.390 to 0.946) based on the envfit test. However, the soil
bulk density, soil water content, and silt content had no significant association with the soil
fungal communities.
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Table 1. Characteristics of the soil among different grassland types.

Grassland Types RG SW ST CG Bacteria Fungi
r p r p

NH4
+-N (mg/kg−1) a 1.56 ± 0.37 c 3.06 ± 1.37 a 1.95 ± 1.34 b 1.45 ± 0.57 c 0.4578 0.019 0.5089 0.009

NO3
−-N (mg/kg−1) a 1.94 ± 0.36 b 5.79 ± 1.95 a 2.21 ± 0.52 b 1.74 ± 0.31 b 0.8641 0.001 0.6676 0.003

SOC (g/kg−1) a 19.45 ± 1.24 c 172.68 ± 19.84 a 41.80 ± 5.26 b 28.51 ± 6.22 bc 0.9426 0.001 0.6808 0.001
TN (g/kg−1) a 1.52 ± 0.49 b 6.68 ± 1.76 a 2.62 ± 0.70 b 2.36 ± 0.50 b 0.7461 0.001 0.8318 0.001
TP (g/kg−1) a 0.61 ± 0.02 c 1.09 ± 0.06 a 1.05 ± 0.03 a 0.91 ± 0.04 b 0.4985 0.019 0.5507 0.007

pH 7.96 ± 0.37 b 7.21 ± 0.23 b 7.31 ± 0.14 a 7.93 ± 0.14 a 0.5772 0.004 0.4863 0.010
BD (g/cm3) a 1.48 ± 0.13 a 1.05 ± 0.26 b 1.39 ± 0.12 a 0.88 ± 0.06 b 0.0388 0.772 0.3394 0.067

SWC (%) 13.89 ± 1.69 c 49.19 ± 2.28 a 18.34 ± 0.85 b 16.20 ± 1.69 bc 0.5582 0.005 0.2484 0.151
Sand (%) a 70.56 ± 11.15 ab 43.66 ± 7.48 c 64.93 ± 3.51 b 79.91 ± 6.85 a 0.7721 0.001 0.5185 0.010
Silt (%) a 1.26 ± 0.59 ab 3.35 ± 1.37 c 6.29 ± 1.84 b 2.71 ± 0.61 a 0.2189 0.214 0.334 0.069

Clay (%) a 27.42 ± 9.86 b 52.99 ± 8.84 a 30.89 ± 3.33 b 13.80 ± 1.01c 0.6240 0.003 0.5694 0.007

Note: NH4
+-N, NO3

−-N, SOC, TN, TP, pH, BD, SWC, Sand, Silt, Clay represent the abbreviations of soil
ammonium nitrogen, soil nitrate-nitrogen, soil total carbon, total nitrogen, pH, bulk density, soil water content,
soil sand content, soil silt content, and soil clay content. Values are the means ± SE (n = 4). Lowercase letters
indicate significant differences among different grassland types (p < 0.05). CG, SW, ST, and RG indicate cultivated
grassland, swamp meadow, steppe meadow, and reseeded grassland, respectively. a represent determination of
dry matter of soil.

3.3. Differences in the Plant Community among Different Vegetation Types

The vegetation community composition varied significantly among each grassland
type, especially in terms of plant diversity and biomass. The highest and lowest H indexes
were observed in RG and CG, respectively, which was similar to the E index (Figure 5). The
D index changed significantly as well. However, there was no significant difference in the S
index among the four grassland types. Furthermore, the plant underground biomass in SW
was significantly higher than that in the other treatments. In contrast, the aboveground
biomass of SW was significantly lower than that of the others. Mantel testing also showed
that there was a significant correlation between plant characteristics and the microbial
composition at the phylum level (Figure 6). We used RDA to analyze the explanations
of plant and soil characteristics for microbial community variation. Surprisingly, our
results show that soil characteristics have more influence on microbial communities than
vegetation, whether bacteria or fungi. For the bacterial community, the interaction between
plants and soil contributed 51.24% of bacterial community variation, with soil explaining
33.53% of the data variance, which was higher than the result for plants, explaining 7.32%
of the data variance (Figure 7A). The interaction between the vegetation and the soil of
the soil fungal community was lower than that of the bacterial community, but the soil
explanatory degree was still greater than that of the plant factors (Figure 7B).
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3.4. Correlation of Soil Physicochemical Properties and Plant Factors with Microbial Community

Based on the selected variables from the envfit and Mantel test, for soil bacteria, RDA
showed eigenvalues of 33.08% and 16.78% for the first and second axes, indicating that
these two axes could explain approximately 49.86% of the total variation in soil bacterial
communities. Redundancy analysis found that these factors (such as NH4

+-N, TN, SWC,
SOC, NO3

−-N, clay, TP, silt) were significantly related to the bacterial community in (SW).
Furthermore, most physical properties of soil (sand, pH, BD) could explain the differences
in soil bacterial communities among (RG), (ST), and (CG) (Figure 8A). Across the first two
canonical axes, RDA also explained 44.73% of the relationship with the fungal community
(Figure 8B). In addition, we used VPA (variance partitioning analysis) to analyze the
explanation of each environmental variable to the total variation in species distribution.
VPA also indicated that NO3

−-N and SOC are the main soil factors that cause the differences
in bacteria (contribute > 45%) (Figure 9A). Soil organic carbon is also the dominant factor
affecting fungal communities (contribution > 29%). The underground biomass of plants has
a greater contribution to bacteria and fungi, but the diversity of plants does not (Figure 9B).
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NH4

+-N, NO3
−-N, SOC, TN, TP, pH, BD, SWC, Sand, Silt, and Clay represent the abbreviations of

soil ammonium nitrogen, soil nitrate-nitrogen, soil total carbon, total nitrogen, pH, bulk density,
soil water content, soil sand content, soil silt content, and soil clay content. H, D, S, and E represent
the abbreviations of vegetation community according to the Shannon–Wiener, Dominance, Rich-
ness, and Evenness diversity index. AGB and BGB indicate the plant aboveground biomass and
underground biomass.
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4. Discussion

Our study of the full range of ecosystems along a typical alpine grassland on a small
regional scale demonstrates that although the composition of the dominant soil bacteria
at the phylum level was similar, their relative abundances differed substantially and
consistently among different vegetation types (Figure 2A,B). In addition, the dominant fungi
were common across all of the vegetation types. Our study provides strong evidence that
soil bacterial and fungal communities vary significantly with the change in habit, although
they are on the same regional scale, which is consistent with the findings of previous studies
in the alpine meadow of the Qinghai-Tibet Plateau and boreal forests [35,36]. Interestingly,
we also notice that the dominant phylum of fungi Ascomycota was significantly decreased
in the swamp meadow. Concerning bacterial compositions, this may be related to the
natural properties of Proteobacteria, which are determined by the carbon availability
preferences of this phylum [37]. Moreover, Proteobacteria is one of the comparatively
young bacterial phyla and has likely evolved in well-developed soils, thus preferring
high organic matter contents and high C: N nutrient ratios [38]. It was also proven by
a correlation test that the content of soil organic carbon is significantly correlated with
the abundance of Proteobacteria (Table S1). Acidobacteria was less abundant when the
soil was moister and cooler; thus, the lower soil water content promoted the abundance
of Acidobacteria [39] (Figure 3B). In summary, these results suggest that the variation in
habitat is accompanied by a change in species abundance, rather than its dominant species
at the phylum level on a small regional scale.

Since microorganisms are essential components in providing ecosystem services, mi-
crobial community structure can influence a variety of ecosystem processes [6]. Thus, it
is of great significance to predict ecological succession by comparing the changes in the
soil microbial community in different habitats [40]. In our study, we also noted marked
variation in the soil microbial construct among different vegetation types using PCoA and
PERMANOVA analysis, which suggested high spatial heterogeneity in soil microbial com-
munities across a small regional scale. Our simultaneous investigation of these microbial
groups in replicated, well-separated patches of a variety of ecosystems suggests that differ-
ent vegetation types have a strong influence on the distributions of the major soil fungi,
and relatively little effect on the distributions of the principal bacteria. Similar conclusions
were obtained by Jiang et al. [35], who considered that soil fungal communities are more
responsive to habitat changes. Similar small-scale heterogeneity and patchy distributions
of soil fungal populations have also been observed in other ecosystems [41,42]. There are
several possible explanations for this phenomenon. One possibility is that, in addition to
shifting the composition and structure of bacterial communities perse [43], the utilization
mode of nutrition may cause a difference in community stability. Compared with fungi,
which are strongly dependent on the presence of their host, bacteria can metabolize a wider
range of compounds, which may explain their relative stability [44]. On the other hand,
due to the establishment of a biotrophic relationship between plants and fungi, a previous
study proved that fungi form a strong bond with grass, which can make more efficient use
of available carbon in plants [45]. We also noticed that the diversity of bacteria and fungi
in swamp meadows was lower than that in other grassland types, which may be related
to the degree of disturbance of the grassland [46]. Second, the reseeded grassland, steppe
meadow, and cultivated grassland were arid grassland types, especially the cultivated
grassland used as grazing pasture, in which the original soil was greatly disturbed by
human beings. A previous study reported that cultivating grassland caused nutrient and
soil outflow from the plant–soil system and a decrease in soil nutrient availability [47]. This
may explain why the soil microbial diversity in reseeded grassland, cultivated grassland,
and steppe meadow was greater than that in swamp meadow in our study.

Soil pH, soil carbon, and altitude have long been recognized as having a profound in-
fluence on the structure and diversity of microbial communities in large-scale areas [48–50].
However, it remains unclear whether the microbial community follows this regular pattern
in a small regional area. In our study, RDA showed that the microbial community was
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more sensitive to soil properties than to plant characteristics, which is the same as the
results of Li et al. [51]. This indicates that the microbial community changes depend on soil
rather than plant characteristics. In addition, soil and plant factors have different effects on
fungi and bacteria because of the differences in morphological structure and proliferation
patterns [52]. In our work, soil organic carbon as an indicator to measure soil nutrients was
the most important influencing factor for the microbial community (Figure 9). This result
was consistent with the observation that the microbial community was positively correlated
with soil SOC [53]. Microbes, especially in the bacterial community, play an important
role in nutrient cycling in soils, such as degrading organic matter and organic C from litter
mass, which in turn regulates C cycling in soils [54]. Studies have shown that microbial
groups are affected by changes in different carbon substrates [55,56], which links microbial
functional classification to soil organic matter (SOM) properties. Thus, with the change
in soil carbon content in different habitats, the microbial community also changes. In
addition, we also noticed that NO3

--N was the most important factor affecting the bacterial
community, which may be related to the function of bacteria. Proteobacteria affect the
dominant nitrogen-fixing groups and structures of microorganisms by participating in the
soil nitrogen cycle as dominant nitrogen-fixing groups [57]. This result was also confirmed
by RDA (Figure 8A), where NO3

--N was related to the bacterial community structure of
the swamp meadow.

For the fungal community, the fungal microbial community composition was strongly
related to the plant characteristics (Figure 9B). This was in agreement with the study
of [58], which found that the vegetation composition represented a more stable summary
of multiple drivers over time. Thus, under different grassland types, it is reasonable that
the differences in fungal community composition may also be driven by plant biomass.
Furthermore, soil fungi can form symbiotic relationships with plant roots and promote
plant growth because fungi have a stronger ability to degrade complex compounds than
bacteria [59]. On the other hand, the carbon source of soil fungal growth mainly comes
from vegetation litter. Therefore, different plant types will have different effects on the soil
microbial structure.

5. Conclusions

The soil microbial community can reflect the difference in the plant–soil systems
among different grassland types. However, the observed differences were different from
the large-scale spatial patterns. From the analysis of the patterns of microbial diversity
at small spatial scales, our results indicated that different grassland types have the same
dominant species of bacteria and fungi at small spatial scales in the Qilian Mountains, but
the relative abundances changed significantly. However, there were significant differences
in the construct of the microbial community. The analysis of environmental factors shows
that the explanation degree of soil characteristics for the microbial differences was higher
than that for the plant characteristics. Among them, organic carbon is a common factor that
affects bacterial and fungal communities. Our work highlighted the different patterns of mi-
crobial communities at small spatial scales and shed further light on microbial community
differences and their main driving factors.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/su14137910/s1, Figure S1: The cladogram shows significant
differences between bacterial (A) and fungal (B) enrichment groups. Taxa with significant differences
in abundance between different vegetation types are represented by colored dots, and cladogram
circles represent phylogenetic taxa from phylum to genus; species with no significant difference are
uniformly colored yellow. Only the LDA > 3 for bacteria and >2 for fungi were shown; Table S1:
Results of ANOSIM tests comparing pair-wise bacterial and fungal community similarities derived
in the matrix (Bray–Curtis distance) for each vegetation type. The ADONIS test examined the
significance of separation among different grassland types; Table S2: Correlation relationships
between bacterial and fungal phylum with environmental factors.
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