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1 Summary
The complementary information includes the data and the methods used to prepare the datasets. Descriptive
statistics describing the raw and the transformed reference data are shown. The process of generating mock
data is described in detail. The polynomial, multi-layer perceptron and long short-term memory models are
described in detail. Additional results that support method development and the conclusions are reported.

2 Material and Methods
Table S1 shows 21 sets of values of influent and effluent total solids (respectively TSi and TSe in g.L−1)
and calorific values (respectively CV i and CV e in kJ.g−1). The calorific values of 11 data points that were
derived from measured total solids are shown in bold text. The calorific values of the remaining 10 data
points were derived from the measured TSi and TSe. These values were used to calculate the sample calorific
value reduction (∆CV ) in kJ.L−1 as follows:

∆CV = (TSi × CV i) − (TSe × CV e) (S1)

In addition to ∆CV , the fixed bed temperature T (in ◦C) and the influent flow rate Q (in L.day−1), are also
indicated in Table S1.

As described in the article text, these data were used to make the regression equation.

∆̂CV = a · kB · T
Q

+ C (S2)

where kB is the Boltzmann constant (kB = 1.380649 × 10−23 J.K−1 ), a is a constant in days−1, and C is a
constant in J.L−1. This equation can also be rewritten as:

∆̂CV = b · T
Q

+ C (S3)

Given the 21 points observed, we compute a linear regression of Equation S3 (package SciPy optimize
curve fit) with ∆̂CV expressed in J.L−1

The result yields a slope b = 65.48 and an intercept C = 178.39 Then, knowing temperature T and
influent flow rate Q it is possible to estimate ∆̂CV with the equation:
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∆̂CV = 65.48 · T
Q

+ 178.39 (S4)

A noise vector was generated to add supposed effects that Equation S4 does not account for. The noise
vector was obtained by adding vectors obtained from the mean (µ) and standard deviation (σ) of the ratio
of measured temperature T and influent flow rate Q according to Equation S5 :

noise = 0.5 · µ · T
Q

+ 1.2 · σ (S5)

The noise vector was then added to the vector obtained from taking the ratio of the measured temperature
T and influent flow rate Q. Figure S2 shows the noise vector. Equation S6 was then used to generate the
surrogate data points.

∆̂CV = 65.48 · (T
Q

+ noise) + 178.39 (S6)

The regression equation was used to generate surrogate data from measured temperature and influent flow
rates. Thus, the resulting series of 170 data samples of calorific value reduction — referred to as the reference
dataset — included direct and supplemental surrogate data.

Table S1: Daily average measurements derived from the experimental UAF bioreactor of influent (TSi) and
effluent (TSe) total solids, influent (CV i) and effluent (CV e) calorific values, fixed bed temperature (T ) and
influent flow rate (Q). The daily calorific value reduction (∆CV ) was derived following Equation S1.

Day TSi (kg.L−1) CV i (kJ.kg−1) TSe (kg.L−1) CV e (kJ.kg−1) ∆CV (kJ.L−1) T (◦C) Q (L.day−1)
17-MAY-2017 0.07 5.88 0.06 1.78 0.3048 22.6 142.6
24-MAY-2017 0.09 5.34 0.06 1.99 0.3612 24.0 151.2
31-MAY-2017 0.08 5.25 0.06 1.79 0.3126 22.4 144.0
07-JUN-2017 0.06 5.92 0.05 1.90 0.2661 19.2 196.4
14-JUN-2017 0.08 7.41 0.06 2.74 0.4284 29.1 223.2
21-JUN-2017 0.08 5.62 0.05 1.72 0.3636 35.9 144.0
28-JUN-2017 0.05 5.10 0.03 2.67 0.1749 23.9 220.2
05-JUL-2017 0.05 5.55 0.05 1.84 0.1966 27.4 216.0
12-JUL-2017 0.06 5.68 0.05 1.85 0.2483 23.1 194.4
19-JUL-2017 0.06 5.68 0.05 2.15 0.2333 30.4 165.6
26-JUL-2017 0.03 6.06 0.05 1.65 0.0993 23.1 316.8
02-AUG-2017 0.03 5.88 0.04 1.86 0.1020 32.1 309.6
09-AUG-2017 0.06 5.86 0.05 1.57 0.2731 23.1 288.0
16-AUG-2017 0.07 5.68 0.06 0.88 0.3448 23.9 312.6
23-AUG-2017 0.06 5.64 0.05 1.86 0.2454 22.3 367.2
20-SEP-2017 0.06 5.76 0.04 1.71 0.2772 23.1 230.2
27-SEP-2017 0.08 4.20 0.06 1.24 0.2616 20.6 385.2
18-OCT-2017 0.05 5.62 0.04 1.69 0.2303 15.8 408.0
25-OCT-2017 0.07 6.10 0.05 2.36 0.3202 14.3 309.6
12-NOV-2017 0.07 6.50 0.06 3.50 0.2385 14.6 316.0
26-NOV-2017 0.08 6.50 0.07 4.30 0.2405 12.0 448.0

As shown in Figure S1, the CV reduction increased with the ratio of influent temperature to flow.
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Figure S1: Ratio of CV reduction versus temperature/influent flow

Figure S2: Noise vector included in the regression equation used to generate surrogate data.
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Mock data generation

2.0.1 Packing equivalent spherical diameter (ESD)

The selected mock packing equivalent spherical diameters ESD = [4, 12, 36] with the middle level the same
as the the ESD of the experimental bioreactor and the other values 3 times smaller than and 3 times larger
than the experimental value. Larger packaging material leads to an increase in void space between individual
pieces of packing material. An increase in the effectiveness of the treatment, expressed in terms of biogas
production, results from better mixing that is achieved when the void space volume increases [4]. To include
the effect of large void space, the coefficient increases exponentially with the influent flow rate when the
value of ESD is 36 mm. In a study of a bioreactor containing 3.5 m tubular packing, the efficiency of the
biological reactions was limited by substrate transfer that is very sensitive to substrate loading and methane
flow rate [6]. It is also known that inadequate mixing of the sludge bed occurs at very low flow rates, and
that very high flow rates lead to shear and biomass loss [8, 6]. In the dataset from the mock experiments,
these effects were created using coefficients that included the ratio of the influent flow rate to the maximum
influent flow rate and by setting a threshold value below which effectiveness is reduced due to very poor
mixing.

2.0.2 Packing material type (MAT)

Based on the relative measured activity of biofilms on samples of polyvinyl chloride (PVC) chips, torrefied
wood chips (TWD), and polyurethane foam (PUF) taken from the experimental bioreactor, the coefficients
for the factor MAT were set to respectively cMAT (P V C) = 1.0, cMAT (T W D) = 2.7, and cMAT (P UF ) = 11.0.
Since biogas production improves mixing [4], a coeficient increased effectiveness when the material type was
polyurethane foam. Polyurethane foam packing effectiveness is reduced at low flow rates due to biomass
clogging the interstial space. PVC packing effectiveness is reduced at high flow rates due to biomass shear
loss. Consequently during mock experiments the value of cMAT (P V C) was further reduced when the influent
flow rate was greater than 80% of the maximum.

2.0.3 Fixed bed height to diameter ratio (HDR)

Since the optimal HDR was not known, three levels —HDR = [0.5, 1.8, 4.0]— were selected arbitrarily with
the middle level the same as the the HDR of the experimental bioreactor. It has been reported that most
of the organic substances are consumed in the bottom part of the bioreactor [2]. This implies that the bed
is too long when the organic load is low and that a well mixed long bed has the highest capacity for CV
reduction (∆CV ). Consequently, the value of the coeficient was made to increase with the flow rate to an
upper limit that was proportional to the bioreactor height to diameter ratio.

As described in the article, the predictors were set according to an experimental plan that was based on
the Taguchi L9 design with the 4th factor (predictor) set to the experimental influent flow rate.

The 4 predictors were:

• Equivalent spherical diameter (ESD)

• Material type (MAT)

• Height to diameter ratio (HDR)

• Influent flow rate (Qin)

Figure S3 below shows the values of the predictors used in the 9 mock experiments in sequence.
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Figure S3: Value of the predictors. 9 mock experiments in sequence
Predictors: Sphere diameter (ESD), Material type (MAT), Height to diameter ratio (HDR), Influent flow
rate (Q influent).

An ad hoc function was used to generate the calorific value reduction from the sum of the ESD, MAT
and HDR components. The daily calorific value reduction was obtained from the product of the influent
flow rate and the predictor effects. The ad hoc function is shown in the article and below.

CVred =
170∑
i=1

Ci(Si ∗Qi +Mi ∗Qi +Hi ∗Qi)

where,

CVred = a vector of calorific value reductions for a single mock experiment

Qi = the influent flow rate on the ith day

Ci = the reference change in the calorific value of the influent stream on the ith day

Si = the spherical diameter effects on calorific value reduction on the ith day

Mi = the material type effects on calorific value reduction on the ith day

Hi = the height to diameter effects on calorific value reduction on the ith day

The following Python code was used to generate mock data using the ad hoc function.
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S=[] # ESD component of total CV reduction
M=[] # MAT component of total CV reduction
H=[] # HDR component of total CV reduction
Qmax = np.max(IFR ref all) #516 l/day Maximum infuent flow rate
i=0
h=0
SF = 1550 # Scale factor to adjust the value predicted by each of the 3 features.
SC = 1 # sphere diameter adjustment factor
SC4 = 0.4 # Threshold below which the CVred increases exponentially in proportion to flow rate when Q
is below SC4*Qmax and SD = 4 because small SD is well adapted to low flow rates.
# Predictors. 9 experiments with values from the range described in the MDPI article text.
exper lit = [(4.0, 1.0, 0.5), (12.0, 2.7, 1.8), (36.0, 11.0, 3.6), (4.0, 2.7, 3.6), (12.0, 11.0, 0.5), (36.0, 1.0, 1.8),
(4.0, 11.0, 1.8), (12.0, 1.0, 3.6), (36.0, 2.7, 0.5)]
for h in range(0,len(exper lit)): # Mock experiments kjl x l/day = kJ/day
for i in range(len(IFR 1)):

S.append(np.multiply((CV ref kjl[i]),( # aprox 0 - 0,5 kjl
1+
np.where(exper lit[h][0]==12.0, SF*0.33*IFR 1[i]/Qmax, 0)+
np.where(exper lit[h][0]==36.0 and IFR 1[i] > 0.8*Qmax , SF*0.1, 0)+
np.where(exper lit[h][0]==36.0 and IFR 1[i] > SC4*Qmax , 0.8*SF*0.33*(1-(-IFR 1[i]/Qmax)), 0)+
np.where(exper lit[h][0]==36.0 and IFR 1[i] < SC4*Qmax , 0.1*SF*0.33*np.exp(-IFR 1[i]/Qmax), 0) +
np.where(exper lit[h][0]==36.0 and IFR 1[i] < 0.45*Qmax , -SF*0.05, 0) +
np.where(exper lit[h][0]==4.0 and IFR 1[i] < SC4*Qmax , 0.4*SF*0.33*np.exp(-IFR 1[i]/Qmax), 0)+
np.where(exper lit[h][0]==4.0 and IFR 1[i] < 0.8*Qmax , 2*(SF*4/12)*0.33*IFR 1[i]/Qmax, 0)+
np.where(exper lit[h][0]==4.0 and IFR 1[i] > 0.8*Qmax , 0.01*SF*0.33*(1-np.exp(IFR 1[i]/Qmax)),0)+
np.where(exper lit[h][0]==4.0 and IFR 1[i] < 0.45*Qmax , -SF*0.01, 0)+
0)*SC)*1)

M.append(np.multiply((CV ref kjl[i]),(
1+
np.where(exper lit[h][1]==2.7, SF*0.33*IFR 1[i]/Qmax, 0) +
np.where(exper lit[h][1]==11.0 and IFR 1[i]> 0.8*Qmax, SF*0.2, 0)+
np.where(exper lit[h][1]==11.0 and IFR 1[i]> 0.3*Qmax, 0.3*SF*0.33*np.sin((3.14/2)*(IFR 1[i]/Qmax)), 0)
+
np.where(exper lit[h][1]==11.0 and IFR 1[i]< 0.3*Qmax, -0.1*SF*0.33*np.exp(-IFR 1[i]/Qmax), 0)+
np.where(exper lit[h][1]==11.0 and IFR 1[i]< 0.3*Qmax, -0.05*SF*0.33, 0)+
np.where(exper lit[h][1]==1.0 and IFR 1[i]< SC4*Qmax, 0.5*SF*0.33*np.exp(-IFR 1[i]/Qmax), 0)+
np.where(exper lit[h][1]==1.0 and IFR 1[i]< 0.8*Qmax, 11*(SF*1/11)*0.33*IFR 1[i]/Qmax, 0)+
np.where(exper lit[h][1]==1.0 and IFR 1[i]> 0.8*Qmax, 0.03*SF*0.33*(-np.exp(-IFR 1[i]/Qmax)),0)+
0)*SC)*1)

H.append(np.multiply((CV ref kjl[i]), (
1+
np.where(exper lit[h][2]==1.8, SF*0.33*IFR 1[i]/Qmax, 0) +
np.where(exper lit[h][2] == 0.5 and IFR 3[i]<Qmax*0.5/3.6, SF*0.33*IFR 3[i]/Qmax, 0)+
np.where(exper lit[h][2] == 0.5 and IFR 3[i]>0.5/3.6, 0.4*SF*0.33*IFR 3[i]/Qmax, 0)+
np.where(exper lit[h][2] == 3.6 and IFR 3[i]< Qmax*1.8/3.6, SF*0.33*IFR 3[i]/Qmax, 0)+
np.where(exper lit[h][2] == 3.6 and IFR 3[i]>Qmax*1.8/3.6, 0.8*SF*0.33*IFR 3[i]/Qmax, 0) +
0)*SC)*1)

IFR Mtest = np.concatenate((np.asarray(S), np.asarray(M), np.asarray(H)), axis=1).T

The contribution of each predictor and the total CV reduction on each day are shown separately in the
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figure S4 below.

Figure S4: Calorific value reduction (∆CV ). Components: Sphere diameter (S), Material type (M),
Height to diameter ratio (H), Sum of the component contributions (Sum)
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The histogram below (Figure S5) shows the range of calorific value reductions and the difference between
the 9 mock experiments.

Figure S5: Binned calorific value reduction (∆CV ). 9 experiments, 170 sample values per experiment.
Experiment numbers 1 - 9 (from top to bottom)

For the purpose of comparaison, response data was generated from the predictors used in the experiment
using the mock response data generation function. The predictors were: ESD=12, MAT=2.7, HDR=1.8
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with influent flow the same as the experiment. Figure S6 shows a plot of experimentally aquired data verses
mock data.

Figure S6: CV reduction, reference experiment versus data generated using the mock response
data generation function.

2.0.4 Transformation of the response data

Different transformations of the response data were evaluated to obtain a more normally shaped distribution
of the response data. The Yeo-Johnson transformation was found to yield the distribution that was most like
a normal distribution. The histograms of the raw and the transformed response data are shown in Figure S7.
The cumulative CVreduction for the different transformations is shown in Figure S8.
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Figure S7: Mock data transformation Distribution of calorific value reductions 9 mock experiments, 1530
data points
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Figure S8: Mock data transformation Cumulative CV reduction, 9 mock experiments, 1530 data points

2.0.5 Analysis of time dependency

Autocorrelation evaluates the similarity between current and lagged data points in a time series dataset. The
Durbin-Watson test was performed to determine if there is autocorrelation in the series of daily calorific value
reduction. The null hypothesis in no autocorrelation. The value of the calculated test statistic lies between
0 and 4. A value of 2 indicates no autocorrelation. Values below 2 indicate positive autocorrelation. Values
above 2 indicate negative autocorrelation. The calculated D-W test statistic was 0.146. The maximum
p-value of the correlation coefficient of each time lag at the 95% level of confidence was 7.91 × 10−10. Since
the D-W test statistic value is less than 2, the time series of daily calorific value reduction is positively
autocorrelated The autocorrelation function was also calculated for 100 days.

Using the statsmodels library for python [7] autocorrelation was analyzed for each day up to 100 days.
The results are shown in Figure S9. The autocorrelation of the current day is always 1. The results located
in the shaded area are significant (alpha = 0.05). The autocorrelation coefficient falls to and remains less
than 0.5 after a 1-day lag and there is a small positive or negative autocorrelation of the time series data
after day 16.

The low VIF values shown in Table S2 indicate that the predictors are not correlated and consequently
none of the coefficients are redundant and all the coefficients can be used in the polynomial regression model.
Additionally, this result shows the independence of the predictors and their suitability for use in the dataset
used to train and validate the ANN models.

The observation that the response data are autocorrelated implies that the data might have time depen-
dent features. Consequently, we decided to further study time series features by using an LSTM model and
by assessing the effect of data shuffling prior to training. Additionally to further evaluate time dependency,
separate datasets were built using both shuffled and unshuffled data for training and testing. If time series
features are important, then then the LSTM model is expected to lead to more accurate predictions than
the polynomial and the MLP models.
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Figure S9: Autocorrelation of lagged calorific value reduction The lags are plotted on the horizontal
and the correlations are plotted on the vertical axis.

Table S2: Variance Inflation Factors (VIF) for each predictor. ESD: equivalent spherical diameter; MAT :
packing material; HDR: bed height/diameter ratio; Q: Influent flow rate.

V IF

ESD 2.31
MAT 2.05
HDR 2.80

Q 3.85

Polynomial model

The polynomial model was made using the sklearn linear model package. The leave-one-out methout was
used to randomly remove a set of predictors and responses during each replication The equation is shown
below where Wr is the vector of model coefficients and Ir is the y-intercept.

yhat poly = X test mm[k,0]*Wr[0] + X test mm[k,1]*Wr[1] + X test mm[k,2]*Wr[2] + X test mm[k,3]*Wr[3]+Ir
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MLP model

Each hidden layer unit input was propagated to every unit of the subsequent hidden layer dense units
using the following propagation rule:.

sp
k =

L∑
i=1

wiky
p
i + bk

where sp
k is the vector propagated to unit k of the subsequent layer, L is the number of hidden layer

units, wik is the value of the weight of the connection between unit i of the current layer and unit k of the
subsequent layer, yp

i is the output of the unit, and bk is the value of the bias of this connection [1].
The error during training was calculated with the Mean Squared Error (MSE) loss function.

MSE = 1
N

N∑
i=1

(yi − ŷi)2

Where N, is the training batch size, yi is the true value and ŷi is the predicted value. The architecture
of the MLP ANN that was used for subsequent simulations is shown in Figure S10 below. Note: The final
model had 4 hidden layers with 256 units per hidden layer.
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Figure S10: Architecture of the x-layer MLP used for simulation

Choosing the number of MLP hidden layers and units

To determine the number of hidden layers and hidden layer units, all possible MLP architectures having
from 1 to 13 hidden layers and from 8 to 4096 units per hidden layer were built, trained and evaluated. The
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prediction accuracy of the validation tests was evaluated in terms of the coefficient of determination (R2)
and the slope of the regression line. A value of 1 of both the coefficient of determination (R2) and the slope
indicates the best fit of the predicted to the true values. Consequently, a high value of the sum of R2 and
the slope indicates high accuracy. The results are shown in Figure S11 and in Figure S12. Model building,
training and evaluation was repeated at least 10 times each with random initialisation of the model weights.
We observed that the models having between 64 and 2048 units per layer had the highest accuracy and that
using between 2 and 6 hidden layers yields similar results.

Figure S11: Validation test R-squared for different numbers of hidden layers and numbers of
units per hidden layer
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Figure S12: Validation test sum of R-squared and slope of the regression line for different
numbers of hidden layers and numbers of units per hidden layer

LSTM model

In addition to the forward and backward propagation of errors that is a characteristic of all neural
networks, recurrent neural networks (RNN) have feedback connections between neurons. Having feedback
connections makes it possible to model persitant relations between data objects in a time series thereby giving
RNNs the capacity for memory. The LSTM neural network is an improved class of RNN that has memory
cells that feature input and output gates that protect the memory cell from perturbations due to, respectively,
currently irrelevant inputs and memory cell contents [3]. Neural network architectures containing LSTM cells
have demonstrated excellent ability for use in predictive models of time series data sets. The LSTM model
was built using Python 3.7.6 and the Keras 2.3.0 API running on top of the TensorFlow 2.0 library for
machine learning. The sequential model architecture was used. The model input was defined as a 3D tensor
with shape [batch size, timestep, features] where batch size refers to the number of days input to the model
before updating the LSTM memory cell weights, timestep is the number of equal length sequences of data
making up a single batch, and features refers to the 4 predictors (ESD, MAT, HDR, Q). One epoch was
defined as a passage of all 1530 samples (days). The input tensor was fed directly to an LSTM layer comprised
of 128 units. Following the Keras recommendations, the LSTM layer unit used the tanh activation function
and the sigmoid recurrent activation function. The memory cell layer was updated between mini-batches of
length batch size as defined by the input shape definition. The stateful argument was set to True so that the
layer weights were used as initial weights in the subsequent mini-batch. The return sequences argument was
set to False because the model contained a single hidden layer.The remaining hyperparameter arguments
were set to default values. The output layer had a single Dense unit without activation.

Since LSTM layers are capable of using features that vary over long time periods, we tested input
batch size arguments between 1 and 170 days during training. The compiled regression models were trained
using a mini-batch gradient descent back propagation learning algorithm. The error during training was
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calculated with the Mean Squared Error (MSE) loss function. For the purpose of comparison, separate
models were built using both shuffled and unshuffled data for training and testing.

I found that using unshuffled time-series data and a memory cell training time step of 10 days yielded
the best results.

The input and output gate activation functions adjust independently of the real rate and values of error
information flow through the memory cell. Memory cell learning is the result of automatic scaling of the
values by the input and output gates during model training. Having gates makes it possible to superimpose,
onto the real-time error flow, selected errors from previous time steps that might be important to accurately
modelling the time series data. An update layer combines the input and output gate vector values with the
cell state. These functions make it possible to account for time series features of the data such as long time
lags.

The LSTM cell is described in the figure S13 and the text below adapted from Olah ([5]).

σ σ σ
tanh

+

x

x x

Xt

ht

tanh

Ct-1
Ct

htht-1

Figure S13: LSTM memory cell

The current data input and hidden state vectors are represented by Xt and ht respectively. The current
LSTM cell input vector length is a fraction of the sample length as specified in the model input shape
definition. The cell state, also known as the constant error carousel (CEC), is represented by the yellow box.
The automatic modifications to the cell state control the information contained in the output vectors. The
cell state and hidden state vectors of the previous step are represented by Ct−1 and ht−1 respectively.

The forget gate layer, represented by the blue shaded area, decides what information to keep from the
previous cell state. This is done by multiplying each value of the cell state by the value returned by the
sigmoid function of the updated weights and biases as follows:

ft = σ(Wf ∗ [ht−1, xt] + bf )

The update layer, represented by the orange shaded area, combines a list of values to update (it) with
the vector of new cell state values (C̃t) determined using the tanh function of the updated weights and biases
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as follows:

it = σ(Wi ∗ [ht−1, xt] + bi)

C̃t = tanh(Wc ∗ [ht−1, xt] + bc)

The output layer, represented by the green shaded area, combines a list of values to update (ot) with the
tanh function of the vector of the new cell state values (C̃t ) as follows:

ot = σ(Wo ∗ [ht−1, xt] + bo)

ht = ot ∗ tanh(Ct)

The vector of new cell state values (Ct) is determined as follows:

Ct = ft ∗ Ct−1 + it ∗ C̃t

Thus, the memory cell updates after a defined number of timesteps and outputs a vector of scaled
predictions.
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3 Results
The reference calorific value reductions were compared to the predicted calorific value reductions. The
predictors used in mock experiment number 3 are the same as those used in the reference experiment.
Consequently, the calorific value reduction should be the same. As shown in figure S14 the linear relationship
between the calorific value reductions in the reference data set and the mock data set demonstrates the
capacity of the equation used to generate mock data to reproduce the response data acquired during the the
reference experiment.

Figure S14: Calorific value reduction: reference data set versus mock experiment E3

As shown in figure S15 the rank of the experiments in terms of CV reduction varies with the flow rate.
The predictors used in experiment E3 (ESD=36, MAT=PUF, HDR=3.6) yield the highest CV reduction
when the flow rate is high. The predictors used in experiment E1 (ESD=4, MAT=PVC, HDR=0.5) yield the
highest CV reduction when the flow rate is low. This implies that set of predictors can be selected according
to the flow rate range.
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Figure S15: Calorific value reduction versus influent flow

Polynomial

As shown in figure S16 (unshuffled, true time series) the ploynomial model does not accurately predict
extreme values during the entire experiment.
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Figure S16

As shown in figure S17 (shuffled time series) the polynomial model does not accurately predict extreme
values during the entire experiment.

Figure S17

Comparaison of the polynomial, MPL and LSTM models

Figure S18 shows plots of predicted versus true values obtained from the polynomial, MLP, and the
LSTM models using not-shuffled, true time series data.
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Figure S19 shows plots of predicted versus true values obtained from the polynomial, MLP, and the
LSTM models using pre-shuffled data.

Figure S20 compares the results of analysis of the prediction accuracy of multiple runs of the polynomial
model and of multiple runs of the MLP and LSTM models with random weight initialisation. The high
slope and the narrow distribution of the slope and the RMSE demonstrate the accuracy of MLP model. The
highway LSTM has a higher slope and RMSE and wider distribution of both slope and RMSE than the 2
other models. The polynomial model has a much lower slope and a higher RMSE than the MLP model.

Figure S18: True versus predicted values (unshuffled, true times series data) Polynomial model:
blue; MLP model: red; LSTM model: green
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Figure S19: True versus predicted values (pre-shuffled data) Polynomial model:blue; MLP
model: red; LSTM model: green

Figure S20: RMSE and Regression line slope of the polynomial model and multiple runs of the
MLP and LSTM models . A slope equal to 1 corresponds to a perfect match between predicted and true
values. The histograms show the corresponding frequency distributions.
Polynomial model: blue; MLP model: red; LSTM model: green
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Simulations

Figure S21 shows examples of the low (127 - 321 l/day) and high (322 - 516 l/day) range influent flow
regimes used during simulation.

Figure S21: Randomly generated influent flow rates. Left: High range (322 - 516 l/day); Right: Low
range (127 - 321 l/day).
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