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Abstract: Forests are indispensable materials and spiritual foundations for promoting ecosystem
circulation and human survival. Exploring the environmental impact mechanism on individual-tree
growth is of great significance. In this study, the effects of biogeoclimate, competition, and topography
on the growth of Betula spp. and Cunninghamia lanceolata (Lamb.) Hook., two tree species with high
importance value in China, were explored by gradient boosting regression tree (GBRT), k-nearest
neighbor (KNN), and random forest (RF) machine learning (ML) algorithms. The results showed that
the accuracy of RF was better than KNN, which was better than GBRT. All ML algorithms performed
well for future diameter at breast height (DBH) predictions; the Willmott’s indexes of agreement
(WIA) of each ML algorithm in predicting the future DBH were all higher than 0.97, and the R2 was
higher than 0.98 and 0.90, respectively. The individual tree annual growth rate is mainly affected
by the single-tree size, and the external environment can promote or inhibit tree growth. Climate
and stand structure variables were relatively more important for tree growth than the topographic
factors. Lower temperature and precipitation, higher stand density, and canopy closure were more
unfavorable for their growth. In afforestation, the following factors should be considered in order:
geographic location, meteorological climate, stand structure, and topography.

Keywords: gradient boosting regression tree; k-nearest neighbor; random forest; environmental
impact mechanism; individual-tree annual growth rate; future DBH prediction

1. Introduction

Known as the “lungs of the earth”, forests are indispensable materials and spiritual
foundations for promoting ecosystem circulation and human survival, and they play an
important role in climate regulation, the deposition of organic matter, and carbon dioxide
fixation [1–3]. The vitality of trees, reflecting changes of forest system dynamics, is one of
the most important indicators of forest conditions [4]. Tree growth is known to be related
to biophysical site attributes such as available sunlight, climate, and soil nutrient and
competition, and the relationships between them is complex [5]. Quantifying the impact of
different factors on tree growth is of great significance to achieve the efficient management
of forest resources, to improve forest carbon sink capacity, and to promote the construction
of ecological civilization [6].

Forest growth is an important indicator of sustainable forest management, and the
tree growth rate, a transformed form of tree growth, will not change the connotative
information of tree growth [7]. The individual tree model, individual-tree, is a modeling
unit that considers the stand environment and competition and is an effective tool that may
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guide long-term planning and management decisions, offering technical subsides for the
sustainable development of the forest [8–11]. In field surveys, diameter at breast height
(DBH) is the simplest and most easily measurable factor, and its accuracy can be effectively
guaranteed during the measurement process [12,13]. Tree growth provides an effective
reference for forest growth and harvesting research, and the DBH growth models are more
effective in future forest forecasting [14,15]. There are more obvious advantages in terms of
growth rate trends than growth increment trends; thus, it is advantageous to establish a
DBH growth rate model to explore the influence of the factors on tree growth.

With the rapid development of computer science and technology, machine learning
(ML) algorithms have been widely used in forestry model simulation research to efficiently
deal with nonlinear and interactive problems. ML algorithms have no prior assumptions
about the independence of predictors, are able to fit complex nonlinear relationships, and
are highly resistant to the inclusion of a large number of uncorrelated predictors. ML
algorithms such as gradient boosting regression tree (GBRT), k-nearest neighbor (KNN),
and random forest (RF) have significant advantages in prediction problems. GBRT models
address complex nonlinear relationships and interactions between variables, and they
are commonly used in ecological studies [16–19]. A. Beaudoin mapped attributes of
Canada’s forests at a moderate resolution through KNN with 26 geospatial data layers,
including MODIS spectral data and climatic and topographic variables [20]. Kilham et al.
demonstrated that the replication of NFI (National Forest resources Inventory) harvest
patterns can be improved with a stratified procedure based on RF algorithms, which can
become important components in generating global wood supply scenarios [21]. GBRT uses
a linear combination of multiple learners to predict, avoiding the need for the limited ability
of a single learner; the prediction effect is not good, and it has good generalization ability.
KNN is an instance-based lazy learning algorithm that learns complex target functions
quickly without losing information. RF can handle a large number of automatic variables
and select important variables automatically, is not affected by multicollinearity among
variables, and is more flexible to evaluate complex interactions between variables.

Arbor is the main body of forest vegetation, and its function and status are usually
reflected by the important value of arbor species. The certain tree species with the greater
the number, the wider distribution, and the larger amount in the forest would obtain the
higher the importance value. Betula spp. and C. lanceolata are the two species groups
with high importance value in China, accounting for 8.79% and 6.36% of the national
forest stock, respectively. Relevant studies have shown that many factors such as the tree
itself, climate, site, soil, spatial location, and competition would affect their growth [14,22].
In this study, three different machine learning data processing techniques (GBRT, KNN,
and RF) were used to estimate the individual annual growth rate of Betula spp. and C.
lanceolata in China using National Forest Inventory (NFI) data. The specific objectives were
to (1) explore the influence mechanism of environmental factors such as meteorological
climate, topography, and stand structure on their growth, (2) and provide a scientific basis
for the growth predictions and precise management of the two species.

2. Materials and Methods
2.1. Study Area

China is a vast country with a complex and diverse topography, situated within
six climatic zones, with a high latitudinal difference between the north and south of
the country and a high western and low eastern terrain. The rich and diverse climate
and physical geography could support a wide range of climatic zone plants, from boreal
forests to tropical rainforest vegetation, providing abundant material resources for human
beings [23,24]. The NFIs have been conducted in China every five years since the 1970s in
China, on 415,000 plots plotted on kilometer grids based on topographic maps at 1:50,000
or 1:100,000 scales, with the general plot of 0.0667 hectares, but some plots can be up to
0.08 or 0.06 hectares [24,25]. In those permanent plots, all the trees with DBH greater than
5 cm were measured; the retest accuracy rate of the plots is more than 98% and that of the
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trees is more than 95% [26]. In this study, the distribution of the surveying data was shown
in Figure 1. Betula spp. is distributed throughout the country, mainly in northern regions
such as Heilongjiang, Jilin, and Inner Mongolia, and C. lanceolata is mainly distributed in
southern regions of China, such as Fujian, Hunan, Jiangxi, and Guangxi provinces.
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in this study.

2.2. Data

In this study, the latest partial NFI data from 1999–2003, 2004–2008, 2009–2013, and
2014–2018 for C. lanceolata and Betula spp. and their meteorological data were used. NFI
data mainly consisted of the tree species and size, spatial location, topographical conditions,
soil information, and stand structure. In addition, the meteorological data of the sample
plots during the inventory period were extracted from the annual average temperature
and precipitation maps in China, which were obtained by interpolating the meteorological
station data provided on the website (https://gis.ncdc.noaa.gov (accessed on 10 December
2019) and http://data.cma.cn (accessed on 22 December 2019)). In this research, the DBH
growth rates of 46,351 C. lanceolata samples and 39,301 Betula spp. samples in China were
explored based on the 2796 permanent plots. Among them, there were 2177 natural forest
permanent plots, that included 12,512 C. lanceolata samples and 37,939 Betula spp. samples,
and 619 artificial forest permanent plots, with a total of 33,839 C. lanceolata samples and
1342 Betula spp. samples. The statistical results of the NFI data used in this study are shown
in Table 1. The latitudes of the permanent plots of the Betula spp. and C. lanceolata were
from 18.7◦ N to 32.7◦ N and 21.5◦ N to 35.5◦ N, and the average annual temperature was
from −3.9 ◦C to 24.6 ◦C and 12.6 ◦C to 25.6 ◦C, respectively. Besides, the DBH of Betula spp.
ranged from 5.0 cm to 83.0 cm and that of C. lanceolata ranged from 5.0 cm to 49.0 cm.

https://gis.ncdc.noaa.gov
http://data.cma.cn
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Table 1. Statistics of trees and stand variables of Betula spp. and Cunninghamia lanceolata (Lamb.)
Hook. for model calibration and validation.

Statistics Unit
Betula spp. Cunninghamia lanceolata (Lamb.) Hook.

Min Median Mean Max Min Median Mean Max

Annual growth rate % 0.03 1.33 2.03 45.08 0.06 3.44 4.69 49.31
DBH cm 5.0 10.1 11.8 83.0 5.0 9.7 10.7 49.0
Latitude ◦ 21.5 41.1 41.9 53.5 18.7 26.3 26.9 32.7
Longitude ◦ 81.6 116.0 113.6 134.3 98.3 114.6 113.5 121.5
Elevation m 70 1340 1679 4100 20 580 628 2160
Annual average
temperature

◦C −3.9 4.6 4.6 24.6 12.6 19.0 19.1 25.6

Annual precipitation mm 56.7 439.3 491.8 2053.1 666.0 1488.0 1476.0 2274.0
Soil thickness cm 2 45 45 200 15 80 77 150
Humus thickness cm 0 4 6 70 0 5 8 60
SinSL - 0.0 0.3 0.3 0.8 0.0 0.5 0.5 0.8
(CosAZ + 1)/2 - 0.0 0.5 0.4 1.0 0.0 0.5 0.5 1.0
Stand canopy density - 0.2 0.7 0.7 1.0 0.2 0.7 0.7 1.0
Simpson’s diversity
index - 0.0 0.4 0.4 0.9 0.0 0.3 0.3 0.9

Stand density index - 23.0 414.5 417.9 1365.7 29.0 610.1 631.8 2060.9

Note: SL is the slope angle, AZ is the azimuth of the aspect, Sin and Cos are the sine transform and cosine
transform functions.

2.3. Model Development

There are many research equations on DBH growth, such as the study of DBH in-
crement, DBH growth rate, squared DBH increase, and the natural logarithm of each
increase [27]. In this study, the influence mechanism of the individual tree growth, reflected
by the annual DBH growth rate, was explored, and the formula for calculating the annual
growth rate of the individual tree is as follows:

p =
d2 − d1

n·d1
•100% (1)

where p is the annual growth rate of individual tree, d1 is the pre-observed DBH, d2 is the
DBH after n years, and n is the interval between re-measurements, which was 5 years in
this study.

The ML algorithm is characterized by its extraordinary performance, which is better
than traditional regression methods in predicting outcomes within large data bases [28].
Although tree growth changes in forest ecosystems are related to the ecological, biological,
and physiological properties of plants and various disturbances, the optimal model can
perform associated topology with other resemblance stands on a local, regional, and
global scale. We developed three types of ML algorithms to model our data: GBRT, KNN
and RF. The factors that contributed to the growth of C. lanceolata and Betula spp. in
China were disentangled by these ML algorithms. This research split our dataset into
two groups randomly, namely the training sets (80%) for ML model development and
the validation sets (20%) for performance evaluation. In the training process, tuning was
considered for ML-based models to avoid overfitting, and the best hyper-parameter for ML
models was a 10-fold cross-validation. The optimal parameters of the model were with the
minimum RMSE, and all data were preprocessed by scaling and centering. Pre-processing
transformation can be estimated from the training data and applied to any data set with
the same variables. Tree growth is influenced by a combination of tree characteristics and
external environmental factors, such as tree size, bioclimate, stand structure, topography,
etc. The general expression of the model is as follows:

p = f (Size, Competition, Bioclimate, Topographical, Soil) (2)
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where f () represents the GBRT, KNN, and RF model, and the explanatory factors affecting
the tree growth mainly include the following aspects:

1. Individual tree size: DBH of the individual tree.
2. Competition factors: stand density index (SDI), stand origin (ORG), stand canopy den-

sity (SCD), and Simpson’s diversity index (SIDI). ORG was divided into 2 categories:
plantation and natural [2].

3. Bioclimatic factors: Geographical factors, including latitude, LAT (◦), longitude,
LONG (◦), and elevation, ELEV (m). Meteorological factors, including average annual
temperature, TEMP (◦C) and annual precipitation, PREC (mm).

4. Topographical factors: Slope, (SL), aspect, (AZ), and slope position (TPI). There are
nine slope directions in the aspect: flat land without slope direction, eight slope
directions from north to south and east to west. TPI was categorized into six types
based on the topography: ridge, uphill, mid-slope, downhill, valley, and flat ground.

5. Soil factors: Soil thickness, ST (cm), and humus thickness, HT (cm).

Partial variables of the competition and topographical variables were quantified by
some preprocessing, such as SL, AZ, SDI, and SIDI, and the calculation criteria are showed
in Table 2. The data type of ORG and TPI, the categorical variables, were transformed as
the factor type.

Table 2. Calculation basis of environmental factors for tree growth.

Variable Description Calculation Criteria

SL Sine of slope SinSL
AZ Cosine variation of aspect (CosAZ + 1)/2
SDI Stand density index N ·

(
25
dg

)−1.605

SIDI Simpson diversity index 1−∑ p2
i

Note: where N is the number of trees (N/ha), dg is the average DBH of the plot (cm), Pi is the proportion of
species i.

Apart from regression methods, machine learning models do not have a mathematical
scale parameter, but their structure can be determined based on changes of the input node
range. GBRT is an advanced statistical learning method for handling predictor variables of
different types and distributions based on classification and regression trees [29]. For the
GBRT model, the main parameters were the number of iterations (n.tree), the complexity
of the tree (interaction.depth), the learning rate (shrinkage), and the minimum number of
training samples (n.minobsinnode). KNN, a nonparametric regression, does not make any
assumption on the distribution of data, thereby stimulating a training phase. For KNN, K
observations in the proximity are taken into account and so are the average of the response
of those K independent variables [30]. RF is based on the classification and regression tree
(CART), which is essentially an improvement on the decision tree. For RF, ntree and mtry
were the two tuning parameters. The ntree defined the total number of independent trees
and decided how many trees will grow. The mtry was the number of predictive variables
and determined the correlations between trees, where a decrease in mtry would result in a
decrease in correlation between trees [31].

To interpret the ML algorithms, variable importance (VI) was used to offer some
information about which attributes played major roles in the generation of the model [28].
The generic function varImp was used to characterize the general effect of predictors on
the model in this research, which works with objects produced by train, but this is a simple
wrapper for the specific models previously listed. VI values were scaled to percentages to
provide a better comparison [32]. After determining which variables were most important,
their effects on the output were examined to improve understanding of processes in the
tree growth. This was performed using Partial Dependence Plots (PDPs), which can help
to visualize the dependence of the dependent variable on the independent variable [33]. It
should be noted that that the partial dependence of a dependent variable on an independent
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variable is calculated by considering the average effect of other variables on the dependent
variable, rather than by ignoring the influence of other variables on the dependent variable.
In this study, all statistical analyses were performed by using R software, version 4.0.3 (R
Foundation for Statistical Computing, Vienna, Austria). The R packages “caret,” “e1071,”
“random-forest,” “gbm,” “DALEX,” “lattice,” “ggplot2”, etc., were used for ML algorithms
and visualization.

2.4. Model Validation

One of our main concerns was the actual prediction effect of the function model on
future values. To validate the three ML algorithms, we examined the prediction accuracy
of the GBRT, KNN, and RF models in estimating the annual growth rate of trees and
their future DBH. Typically, accuracy validation using independent sample datasets is
considered to be the best evaluation of a model [34]. To evaluate model performance, 80%
of the dataset was randomly selected for constructing the machine learning models and
was evaluated by coefficient of correlation (R2), root mean square error (RMSE), and mean
absolute error (MAE); meanwhile, the remaining 20% was also used to validate the models.
Through the application of this method and ratio, many forestry models were developed.
For example, Zeng et al. developed equations for individual tree crown biomass, and
Zhang et al. developed a tree growth difference equation for individual tree DBH and their
age [35,36].

In the evaluation of the data, the statistical indices are as follows: bias (BIAS), RMSE,
MAE, R2, Willmott’s index of agreement (WIA), and total relative error (TRE) [37,38]. BIAS
reflects the error between the output of the model on the sample and the true value, MAE
explains the model stability, R2 describes the quality of the model, and TRE and RMSE
reflect the model in a straightforward manner [39,40]. Besides, WIA is intended to be a
descriptive measure, which provides a measure of whether the external predictive of the
model is statistically accurate, and it is both a relative and bounded measure that can
be widely applied in order to make cross-comparisons between models [41,42]. Their
equations are shown in the Table 3.

Table 3. Calculation equations for model validation.

Statistical Indices Equation Ideal

BIAS: BIAS =
n
∑

i=1

yi−ŷi
n 0

Root mean square error (RMSE): RMSE =

√
∑n

i=1 (yi−ŷi)
2

n 0

Mean absolute error (MAE): MAE =
n
∑

i=1
| yi−ŷi

n | 0

Coefficient of correlation (R2): R2 = 1−
[

∑n
i=1(yi−ŷi)

2

∑n
i=1(yi−yi)

2

]
1

Willmott’s Index of Agreement (WIA): WIA = 1− ∑n
i=1 (yi−ŷi)

2

∑n
i=1 (|yi−yi|+|ŷi−yi |)

2 1

Total relative error (TRE): TRE = ∑n
i=1 (yi−ŷi)
∑n

i=1 ŷi
× 100% 0

Note: where yi and ŷi are the ith observation and prediction value, respectively, yi is the mean of the observation
values, and n is the number of samples.

3. Results
3.1. ML Algorithms
3.1.1. Model Construction

In this study, a 10-fold cross-validation and grid search were used to find the parame-
ters, the RMSE, R2, and the MAE were used to evaluate the model, and RMSE was used
to select the optimal model using the smallest value. For the GBRT, the tuning parameter
‘shrinkage’ and ‘n.minobsinnode’ were held constant at a value of 0.1 and 10, respectively,
and the final model was that the n.trees was 150 and the interaction.depth was 3. For
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the KNN, the final models were that the k were 7 and 9 for Betula spp. and C. lanceolata,
respectively. In addition, for the RF, the tuning parameter ‘ntree’ was held constant at a
value of 500 to search the mtry, and the final model was that the mtry was 2. The optimal
model fitting results are shown in Table 4, the R2 of the RF model was 0.560 and 0.526 for
Betula spp. and C. lanceolata, respectively, and for both of the species groups, the accuracy
of RF was better than KNN, which was better than GBRT.

Table 4. The optimal model fitting results of GBRT, KNN, and RF.

Model
Betula spp. Cunninghamia lanceolata (Lamb.) Hook.

RMSE R2 MAE RMSE R2 MAE

GBRT 1.865 0.345 1.196 3.626 0.327 2.594
KNN 1.599 0.519 0.946 3.144 0.491 2.114

RF 1.537 0.560 0.937 3.059 0.526 2.108

3.1.2. Model Evaluation

One significant target of the research on tree growth is to predict the future condition
of the forest; thus, the prediction of the future condition of the trees is also a significant
evaluation index of the models. In this study, the models were evaluated by the predicting
results of annual growth rate and future DBH after 5 years of the 20% samples, with the
indicators of BIAS, RMSE, MAE, R2, WIA, and TRE. The results are shown in Table 5. The
results showed that the validation accuracy were basically consistent with the model results,
and the prediction accuracy of the future DBH was consistent with the prediction accuracy
of annual growth rate. R2 of the RF in predicting the annual growth rate for Betula spp.
and C. lanceolata was higher than 0.51; the WIA of each ML algorithm in predicting the
future DBH were all higher than 0.97, and the R2 was higher than 0.98 and 0.90 for the
two species, respectively, indicating that the ML algorithms can better achieve the future
DBH prediction.

Table 5. Validation precision of GBRT, KNN, and RF for Betula spp. and Cunninghamia lanceolata
(Lamb.) Hook.

Species Verify Annual Growth-Rata (%) Future DBH (cm)

GBRT KNN RF GBRT KNN RF

Betula spp.

BIAS 0.008 −0.004 −0.005 −0.01 −0.02 −0.04
RMSE 1.888 1.582 1.528 0.90 0.74 0.75
MAE 1.200 0.933 0.932 0.60 0.47 0.48
R2 0.345 0.540 0.571 0.981 0.987 0.987
WIA 0.675 0.840 0.832 0.995 0.997 0.997
TRE 0.398 −0.186 −0.253 −0.070 −0.137 −0.324

Cunninghamia
lanceolata (Lamb.)
Hook.

BIAS −0.049 0.001 −0.028 −0.04 −0.03 −0.08
RMSE 3.612 3.127 3.048 1.53 1.31 1.30
MAE 2.597 2.097 2.091 1.18 0.95 0.96
R2 0.319 0.489 0.515 0.900 0.926 0.928
WIA 0.655 0.815 0.798 0.974 0.981 0.982
TRE −1.049 0.013 −0.607 −0.312 −0.222 −0.588

Note: The prediction precision of the future DBH was the DBH prediction accuracy after 5 years.

3.2. Disentangling the Factors That Contribute to Tree Growth
3.2.1. Variation Importance Analysis

The orders of the relative importance of variables in each annual growth rate predicting
ML algorithm for Betula spp. and C. lanceolata were different, and the results are shown in
Figure 2. Although the general trends were slightly different among those ML algorithms,
DBH, TEMP, and PREC ranked as the top three for Betula spp., and DBH, SDI, and SIDI
ranked as the top three for C. lanceolata, except for KNN model. On the other hand, variables



Sustainability 2022, 14, 8346 8 of 15

such as slope position, aspect, origin, and humus thickness made little contribution to the
annual growth rate prediction. Furthermore, RF, as the highest accuracy of the three ML
algorithms, showed that the single-tree size, stand structure, and climate would be more
important for the tree growth and that the topographic factors would have less contribution.
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3.2.2. Partial Dependency Analysis

The importance of influencing factors reflects the relative importance of the influence
of each variable on the growth rate and the main factors affecting the growth rate, but it
could not quantitatively analyze the influence of the changes of the influencing factors on
the growth rate change trend. The partial dependence can measure the marginal impact of
one or multiple factors on the output of the ML algorithms, so as to quantitatively analyze
the impact of each factor on the growth rate. In this study, PDP for Betula spp. and C.
lanceolata, the partial dependencies of the relationship between each explanatory variable
and the response variable of the ML algorithms are shown in Figures 3 and 4.

The PDP for Betula spp. is shown in Figure 3. The annual growth rate decreased with
the increase of the DBH and showed an obvious inverse “J” curve. The temperature and
precipitation were both positively correlated with the growth, and the areas with higher
temperatures and more precipitation were more suitable for their growth. Areas in the
lower latitude, the higher longitude, and lower altitudes would be more effective for their
growth. Considering the topography, we found that the north aspect was more suitable for
the Betula spp. growth than the south aspect, and the higher slope would achieve a greater
restriction on growth, resulting in a lower growth rate. The stand, with lower SDI, lower
SCD, and higher SIDI, would achieve a relatively higher growth rate. Furthermore, the
annual growth rate of the Betula spp. in the plantation stands was higher than that in the
natural stand.
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The PDP for C. lanceolata is shown in Figure 4. The annual growth rate also decreased
with the increase of the DBH and showed an obvious inverse “J” curve. In the geographical
space location, the region of the higher latitude and the greater longitude was more
unfavorable for the C. lanceolata growth. Besides, C. lanceolata mainly grows in areas where
the elevation is less than 2250 m and the annual average temperature is higher than 10 ◦C;
the higher altitude and higher temperature are more conducive to their growth. However,
it showed a trend of first increasing and then decreasing with the precipitation on the
growth rate, indicating that precipitation is beneficial to the growth of C. lanceolata within
a certain range, but when it exceeds a certain threshold, it inhibits the growth of them.
The same happened with Betula spp.; it also showed that the smaller slope would be more
favorable for the growth of C. lanceolata. Among all the slope positions, the flat land was
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the most favorable for their growth. When it comes to the stand structure, we found SDI,
SCD, and SIDI had negative impacts on the tree growth rate, and the annual growth rate
would decrease with the increase of them. In addition, soil thickness and humus thickness
had positive effects on the annual growth rate of C. lanceolata, the trees that with thicker
soil and humus will achieve a higher growth rate.
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4. Discussion

Tree growth is one of the references for research on forest quantity, quality, and sustain-
able development [43]. In this study, annual growth rate models, the ML algorithms for the
relationship between the DBH growth and explanatory variables, were developed for Betula
spp. and C. lanceolata in China. Generally, there was some commonality results between
the three modeling procedures. We found that DBH was the most important variable
for the annual growth rate, which decreased with the increase of DBH and conformed to
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the inverse ‘J’ curve distribution [44]. Individuals with the same diameter but with very
different growth rates were frequently observed due to the competition and the forest
succession, which would affect the establishment and development of trees [7,45].

Model validation was considered an important part of model evaluation and could
demonstrate the dependability of the model [46]. As a basis for forest management, many
scholars have developed many models to predict individual tree growth. Lhotka et al.
developed an individual-tree model based on a mixed-effects regression and presented
R2 values from 0.26 to 0.57 [47]. Moreno et al. found that the R2 of annual DBH growth
predictions of the AIDBH model was 0.56 and DBH prediction after six and twelve years
were more than 0.97 [37]. Giovanni Correia Vieira et al. found that the ANNs and ANFIS,
the ML algorithms, had higher accuracies than regression models for the prognosis of
growth of DBH for individual trees [48]. The similar species of the genera Betula spp.
or C. lanceolata were aggregated, respectively, which would obtain more modeling data
and improve the model applicability [49,50]. The R2 of RF, the best performing model, in
predicting the annual growth rate was higher than 0.51. The WIA of each ML algorithm
in predicting the future DBH were all higher than 0.97, the R2 were higher than 0.90, and
the values of the other statistical indices were relatively small; these indicated that the ML
algorithms can better achieve the future DBH prediction.

Excavating the influence mechanism of external environment on tree growth is critical
in improving forest cover and forest management. Our research showed that the climate
variables, average annual temperature and precipitation, are two of the top five environ-
mental factors that have the most impact on tree growth. The growth rate of Betula spp.
increased with increasing temperature and precipitation and decreased with increasing
elevation. Temperature and elevation were positively correlated with tree growth, whereas
the effect of precipitation on C. lanceolata was first positively and then negatively affected.
These were also in accordance with the characteristics of tree growth and other research
findings [51]. For instance, Way et al. found that temperature is generally positively
correlated with tree growth, except for tropical species, and the growth of broad-leaved
species increased with increasing temperature [52]. The research of GÓMEZ-APARICIO
et al. showed that the higher temperature would be more favorable for the growth of
broad-leaved species [53]. Hart et al. found that temperature was more important to the
growth of the two tree species than precipitation, and current and previous growing season
temperatures were the key to radial growth [54]. Besides, Toledo et al. also concluded that
higher temperatures and more precipitation would contribute to a higher growth rate [55].

The tree growth, affected by topography, climate, and soil condition, and the three
factors interacted with each other [56]. According to topographic heterogeneity, there are
great differences in ecological and resource gradients across different geomorphic positions,
manifested by flat areas owing to higher soil nutrient content than the steeper sites [57]. Our
analysis revealed that the tree growth tended to increase under elevated humus and soil
depth, which has been frequently attributed to thicker humus and soil providing sufficient
nutrients [58]. Additionally, consistent with previous studies, our work also found that
slope showed a significant negative correlation with tree growth [44]. The lower resource
availability in areas with higher slopes may be due to steep slopes being prone to soil
erosion [59]. Besides, light, temperature, wind speed, etc., are closely related to the slope
aspect, which significantly affected forest growth. North-facing slopes were more favorable
for the growth of Betula spp. than south-facing slopes for less light time on the north-facing
slopes, which would have small soil evaporation and good water and fertilizer conditions
to obtain more conducive site conditions for the Betula spp. growth. However, we found
that the effect of the slope aspect on the growth of C. lanceolate is different from that of
Betula spp.; their growth on the southeast slope is better than that on the northwest slope
due to the relatively longer sunlight on the southeast slope than the northwest slope, which
was helpful for photosynthesis and tree growth.

Tree growth is influenced by competitive interactions, especially stand structure such
as stand density, stand canopy density, species composition, etc. [60]. Especially for C.
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lanceolata, which are mainly distributed in southern China where the average annual
temperature and precipitation are relatively high (Table 1, Figure 2), the importance of SDI
and SIDI is even higher than climate on their growth. Generally, high SDI and SCD would
inhibit tree growth, and mixed forests are more conducive to tree growth than pure forests.
However, the growth rate of C. lanceolata decrease with the increase of the SIDI, which may
be caused by many factors, i.e., C. lanceolata in the stands with high species diversity was
not the dominant tree species group, and the stands with low SIDI are mostly plantations,
where human intervention has boosted their growth. This was also consistent with the
previous studies, which showed that the total ecosystem production in monocultures of
the faster-growing species groups grow more than mixed-species forests [61].

For the sustainable development of forest quantity and quality, forest management
should take into account a variety of factors such as climate, topography, and stand struc-
ture. High stand density inhibits the growth of trees, but low stand density is detrimental
to the strategic needs of the national ecological sustainable development. In addition, the
NFI mainly records the coding of tree species or tree species groups, which may cause
some errors in the models. In future research, the study of rational stand structure and the
influence of finer interspecific differences on tree growth will be some of the key issues.

5. Conclusions

Based on the partial NFI data of C. lanceolata and Betula spp., this study developed
three ML algorithms and verified that the growth rate of trees was mainly affected by their
single-tree size, and the external environment promoted or inhibited their growth. The
accuracy of RF was better than KNN, which was better than GBRT, and all the models had
high WIA and R2 in predicting future DBH. Among all environment variables, climatic and
competing variables related to spatial location and stand structure were more important to
tree growth than topography. Temperature had a positive effect on the growth of Betula
spp. and C. lanceolata, and with the increase of precipitation, the growth rate of Betula
spp. showed an increasing trend; that of C. lanceolata first increased and then decreased,
showing a “parabolic” trend. Furthermore, higher stand density and canopy closure
would be more unfavorable for their growth. In forest resource management and future
afforestation planning, the factors that should be considered are as follows: firstly, the
geographical location, meteorology, and climate; secondly, the stand structure, especially
the rationality of stand density; finally, the topographic structure, including slope, aspect,
and slope position. In addition, the machine learning algorithms for disentangling the
factors that contribute to the growth of trees provided a quantitative basis for forest resource
management and provided theoretical support for future research on sustainable forest
management and the prediction of forest carbon sink and forest carbon cycles.

Author Contributions: Conceptualization, H.Z. and Z.F.; methodology, H.Z.; validation, S.W. and
W.J.; formal analysis, H.Z. and S.W.; data curation, H.Z. and W.J.; writing—original draft preparation,
H.Z.; writing—review and editing, H.Z., S.W. and W.J. All authors have read and agreed to the
published version of the manuscript.

Funding: This research was funded by the Key R&D Projects in Hainan Province (ZDYF2021SHFZ256);
Natural Science Foundation of Hainan University, grant numbers KYQD(ZR)21115; and Science and
Technology Project of Haikou City, China (2020-057).

Acknowledgments: The authors would like to acknowledge the forest resource data support drawn
from the Academy of Forest Inventory and Planning, National Forestry and Grassland Adminis-
tration. The authors would also like to acknowledge the Geospatial Data Cloud site and National
Meteorological Administration site for basic data support.

Conflicts of Interest: The authors declare no conflict of interest.



Sustainability 2022, 14, 8346 13 of 15

References
1. Zhu, Y.; Feng, Z.; Lu, J.; Liu, J. Estimation of Forest Biomass in Beijing (China) Using Multisource Remote Sensing and Forest

Inventory Data. Forests 2020, 11, 163. [CrossRef]
2. Laubhann, D.; Sterba, H.; Reinds, G.J.; De Vries, W. The impact of atmospheric deposition and climate on forest growth in

European monitoring plots: An individual tree growth model. For. Ecol. Manag. 2009, 258, 1751–1761. [CrossRef]
3. Zeng, W.; Zhang, L.; Chen, X.; Cheng, Z.; Ma, K.; Li, Z. Construction of compatible and additive individual-tree biomass models

for Pinustabulaeformis in China. Can. J. For. Res. 2017, 47, 467–475. [CrossRef]
4. Dobbertin, M. Tree growth as indicator of tree vitality and of tree reaction to environmental stress: A review. Eur. J. For. Res. 2005,

124, 319–333. [CrossRef]
5. Woollons, R.C.; Snowdon, P.; Mitchell, N.D. Augmenting empirical stand projection equations with edaphic and climatic variables.

For. Ecol. Manag. 1997, 98, 267–275. [CrossRef]
6. Ashraf, M.I.; Zhao, Z.; Bourque, C.P.A.; MacLean, D.A.; Meng, F. Integrating biophysical controls in forest growth and yield

predictions with artificial intelligence technology. Can. J. For. Res. 2013, 43, 1162–1171. [CrossRef]
7. Reis, L.P.; de Souza, A.L.; Mazzei, L.; Dos Reis, P.C.M.; Leite, H.G.; Soares, C.P.B.; Torres, C.M.M.E.; Da Silva, L.F.; Ruschel, A.R.

Prognosis on the diameter of individual trees on the eastern region of the amazon using artificial neural networks. For. Ecol.
Manag 2016, 382, 161–167. [CrossRef]

8. Condés, S.; Sterba, H. Comparing an individual tree growth model for Pinus halepensis Mill. in the Spanish region of Murcia with
yield tables gained from the same area. Eur. J. For. Res. 2008, 127, 253–261. [CrossRef]

9. Choi, J.; An, H. A Forest Growth Model for the Natural Broadleaved Forests in Northeastern Korea. Forests 2016, 7, 288. [CrossRef]
10. Pdp, A.; Cpda, B.; Bd, C.; Ist, D.; Jnms, E.; Prvg, F. An individual-based spatially explicit simulation model for strategic forest

management planning in the eastern Amazon. Ecol. Model. 2004, 173, 335–354.
11. Valle, D.; Phillips, P.; Vidal, E.; Schulze, M.; Grogan, J.; Sales, M.; van Gardingen, P. Adaptation of a spatially explicit individual

tree-based growth and yield model and long-term comparison between reduced-impact and conventional logging in eastern
Amazonia, Brazil. For. Ecol. Manag. 2007, 243, 187–198. [CrossRef]

12. Zhao, X.; Feng, Z.; Zhou, Y.; Lin, Y. Key Technologies of Forest Resource Examination System Development in China. Engineering
2020, 6, 491–494. [CrossRef]

13. Lu, J.; Feng, Z.; Zhu, Y. Estimation of Forest Biomass and Carbon Storage in China Based on Forest Resources Inventory Data.
Forests 2019, 10, 650. [CrossRef]

14. Thurnher, C.; Klopf, M.; Hasenauer, H. MOSES—A tree growth simulator for modelling stand response in Central Europe. Ecol.
Model. 2017, 352, 58–76. [CrossRef]

15. Qiu, Z.X.; Feng, Z.K.; Song, Y.N.; Li, M.L.; Zhang, P.P. Carbon sequestration potential of forest vegetation in China from 2003 to
2050: Predicting forest vegetation growth based on climate and the environment. J. Clean Prod. 2020, 252, 119715. [CrossRef]

16. Moisen, G.G.; Freeman, E.A.; Blackard, J.A.; Frescino, T.S.; Zimmermann, N.E.; Edwards, T.C. Predicting tree species presence
and basal area in Utah: A comparison of stochastic gradient boosting, generalized additive models, and tree-based methods. Ecol.
Model. 2006, 199, 176–187. [CrossRef]

17. Martin, M.P.; Wattenbach, M.; Smith, P.; Meersmans, J.; Jolivet, C.; Boulonne, L.; Arrouays, D. Spatial distribution of soil organic
carbon stocks in France. Biogeosciences 2011, 8, 1053–1065. [CrossRef]

18. Zhang, Y.; Chen, H.Y.H.; Reich, P.B. Forest productivity increases with evenness, species richness and trait variation: A global
meta-analysis. J. Ecol. 2012, 100, 742–749. [CrossRef]

19. Ren, Y.; Chen, S.; Wei, X.; Xi, W.; Luo, Y.; Song, X.; Zuo, S.; Yang, Y. Disentangling the factors that contribute to variation in forest
biomass increments in the mid-subtropical forests of China. J. For. Res. 2016, 27, 919–930. [CrossRef]

20. Beaudoin, A.; Bernier, P.Y.; Guindon, L.; Villemaire, P.; Guo, X.J.; Stinson, G.; Bergeron, T.; Magnussen, S.; Hall, R.J. Mapping
attributes of Canada’s forests at moderate resolution through KNN and MODIS imagery. Can. J. For. Res. 2014, 44, 521–532.
[CrossRef]

21. Kilham, P.; Hartebrodt, C.; Kändler, G. Generating Tree-Level Harvest Predictions from Forest Inventories with Random Forests.
Forests 2019, 10, 20. [CrossRef]

22. Sharkovsky, A.N.; Maistrenko, Y.L.; Romanenko, E.Y. Difference Equations and Their Applications; Ser. Mathimatics and Its
Applications; Kluwer Academic: Dordrecht, The Netherlands, 1993.

23. Fang, J.; Shen, Z.; Tang, Z.; Wang, X.; Wang, Z.; Feng, J.; Liu, Y.; Qiao, X.; Wu, X.; ZhengJ, C. Forest community survey and the
structural characteristics of forests in China. Ecography 2012, 35, 1059–1071. [CrossRef]

24. State Forestry and Grassland Administration (SFGA). Forest Resources Report of China: The 9th National Forest Resource Inventory;
China Forestry Publishing House: Beijing, China, 2019. (In Chinese)

25. Zeng, W.; Tomppo, E.; Healey, S.P.; Gadow, K.V. The national forest inventory in China: History—Results—International context.
Ecosyst 2015, 2, 23. [CrossRef]

26. State Forestry and Grassland Administration (SFGA). Technical Specifications on National Continuous Forest Inventory; State Forestry
and Grassland Administration (SFGA): Beijing, China, 2014. (In Chinese)

27. Adame, P.; Hynynen, J.; Ca Ellas, I.; Río, M.D. Individual-tree diameter growth model for rebollo oak (Quercus pyrenaica Willd.)
coppices. For. Ecol. Manag. 2008, 255, 1011–1022. [CrossRef]

http://doi.org/10.3390/f11020163
http://doi.org/10.1016/j.foreco.2008.09.050
http://doi.org/10.1139/cjfr-2016-0342
http://doi.org/10.1007/s10342-005-0085-3
http://doi.org/10.1016/S0378-1127(97)00090-X
http://doi.org/10.1139/cjfr-2013-0090
http://doi.org/10.1016/j.foreco.2016.10.022
http://doi.org/10.1007/s10342-007-0201-7
http://doi.org/10.3390/f7110288
http://doi.org/10.1016/j.foreco.2007.02.023
http://doi.org/10.1016/j.eng.2019.07.022
http://doi.org/10.3390/f10080650
http://doi.org/10.1016/j.ecolmodel.2017.01.013
http://doi.org/10.1016/j.jclepro.2019.119715
http://doi.org/10.1016/j.ecolmodel.2006.05.021
http://doi.org/10.5194/bg-8-1053-2011
http://doi.org/10.1111/j.1365-2745.2011.01944.x
http://doi.org/10.1007/s11676-016-0237-y
http://doi.org/10.1139/cjfr-2013-0401
http://doi.org/10.3390/f10010020
http://doi.org/10.1111/j.1600-0587.2013.00161.x
http://doi.org/10.1186/s40663-015-0047-2
http://doi.org/10.1016/j.foreco.2007.10.019


Sustainability 2022, 14, 8346 14 of 15

28. Zhu, J.; Zheng, J.; Li, L.; Huang, R.; Ren, H.; Wang, D.; Dai, Z.; Su, X. Application of Machine Learning Algorithms to Predict
Central Lymph Node Metastasis in T1-T2, Non-invasive, and Clinically Node Negative Papillary Thyroid Carcinoma. Front. Med.
2021, 8, 635771. [CrossRef]

29. Elith, J.; Hastie, J. A working guide to boosted regression trees. J. Anim. Ecol. 2008, 77, 802–813. [CrossRef]
30. Goyal, R.; Chandra, P.; Singh, Y. Suitability of KNN Regression in the Development of Interaction based Software Fault Prediction

Models. IERI Procedia 2014, 6, 15–21. [CrossRef]
31. Ou, Q.; Lei, X.; Shen, C. Individual Tree Diameter Growth Models of Larch–Spruce–Fir Mixed Forests Based on Machine Learning

Algorithms. Forests 2019, 10, 187. [CrossRef]
32. Wang, D.; Thunéll, S.; Lindberg, U.; Jiang, L.; Trygg, J.; Tysklind, M.; Souihi, N. A machine learning framework to improve

effluent quality control in wastewater treatment plants. Sci. Total Environ. 2021, 784, 147138. [CrossRef]
33. Friedman, J. Greedy function approximation: A gradient boosting machine. Ann. Stat. 2001, 29, 1189–1232. [CrossRef]
34. Huang, S.; Yang, Y.; Wang, Y. A Critical Look at Procedures for Validating Growth and Yield Models. In Modelling Forest Systems;

Amaro, A., Reed, D., Soares, P., Eds.; CAB International: Wallingford, UK, 2003.
35. Zeng, W.; Duo, H.; Lei, X.; Chen, X.; Wang, X.; Pu, Y.; Zou, W. Individual tree biomass equations and growth models sensitive to

climate variables for Larix spp. in China. Eur. J. For. Res. 2017, 136, 233–249. [CrossRef]
36. Zhang, H.; Feng, Z.; Chen, P.; Chen, X. Development of a Tree Growth Difference Equation and Its Application in Forecasting the

Biomass Carbon Stocks of Chinese Forests in 2050. Forests 2019, 10, 582. [CrossRef]
37. Moreno, P.; Palmas, S.; Escobedo, F.; Cropper, W.; Gezan, S. Individual-Tree Diameter Growth Models for Mixed Nothofagus

Second Growth Forests in Southern Chile. Forests 2017, 8, 506. [CrossRef]
38. Han, Y.; Wu, B.; Wang, K.; Guo, E.; Dong, C.; Wang, Z. Individual-tree form growth models of visualization simulation for

managed Larix principis-rupprechtii plantation. Comput. Electron. Agric. 2016, 123, 341–350. [CrossRef]
39. Saud, P.; Lynch, T.B.; Anup, K.C.; Guldin, J.M. Using quadratic mean diameter and relative spacing index to enhance height–

diameter and crown ratio models fitted to longitudinal data. Forestry 2016, 89, 215–229. [CrossRef]
40. Scolforo, H.F.; Scolforo, J.R.S.; Thiersch, C.R.; Thiersch, M.F.; McTague, J.P.; Burkhart, H.; Ferraz Filho, A.C.; de Mello, J.M.; Roise,

J. A new model of tropical tree diameter growth rate and its application to identify fast-growing native tree species. For. Ecol.
Manag. 2017, 400, 578–586. [CrossRef]

41. Legates, D.R.; Mccabe, G.J. Evaluating the use of “goodness-of-fit” Measures in hydrologic and hydroclimatic model validation.
Water Resour. Res. 1999, 35, 233–241. [CrossRef]

42. Willmott, C.J. Some Comments on the Evaluation of Model Performance. Bull. Am. Meteorol. Soc. 1982, 63, 1309–1369. [CrossRef]
43. Webster, C.R.; Lorimer, C.G. Minimum Opening Sizes for Canopy Recruitment of Midtolerant Tree Species: A Retrospective

Approach. Ecol. Appl. 2005, 15, 1245–1262. [CrossRef]
44. Zhang, H.; Feng, Z.; Shen, C.; Li, Y.; Feng, Z.; Zeng, W.; Huang, G. Relationship between the geographical environment and the

forest carbon sink capacity in China based on an individual-tree growth-rate model. Ecol. Indic. 2022, 138, 108814. [CrossRef]
45. Farrior, C.E.; Bohlman, S.A.; Hubbell, S.; Pacala, S.W. Dominance of the suppressed: Power-law size structure in tropical forests.

Science 2016, 351, 155. [CrossRef]
46. Kozak, A.; Kozak, R. Does cross validation provide additional information in the evaluation of regression models? Can. J. For. Res.

2003, 33, 976–987. [CrossRef]
47. Lhotka, J.M.; Loewenstein, E.F. An individual-tree diameter growth model for managed uneven-aged oak-shortleaf pine stands

in the Ozark Highlands of Missouri, USA. For. Ecol. Manag 2011, 261, 770–778. [CrossRef]
48. Vieira, G.C.; de Mendonça, A.R.; Da Silva, G.F.; Zanetti, S.S.; Da Silva, M.M.; Dos Santos, A.R. Prognoses of diameter and height

of trees of eucalyptus using artificial intelligence. Sci. Total Environ. 2018, 619–620, 1473–1481. [CrossRef] [PubMed]
49. Mehtatalo, L.; De-Miguel, S.; Gregoire, T.G. Modeling height-diameter curves for prediction. Can. J. For. Res. 2015, 45, 826–837.

[CrossRef]
50. Gollob, C.; Ritter, T.; Vospernik, S.; Wassermann, C.; Nothdurft, A. A Flexible Height–Diameter Model for Tree Height Imputation

on Forest Inventory Sample Plots Using Repeated Measures from the Past. Forests 2018, 9, 368. [CrossRef]
51. Troll, C. The upper timberlines in different climatic zones. Arct. Alp. Res. 1973, 5, A3–A18.
52. Way, D.A.; Oren, R. Differential responses to changes in growth temperature between trees from different functional groups and

biomes: A review and synthesis of data. Tree Physiol. 2010, 30, 669–688. [CrossRef]
53. Gómez-Aparicio, L.; García-Valdés, R.; Ruíz-Benito, P.; Zavala, M.A. Disentangling the relative importance of climate, size and

competition on tree growth in Iberian forests: Implications for forest management under global change. Glob. Chang. Biol. 2011,
17, 2400–2414. [CrossRef]

54. Hart, S.J.; Laroque, C.P. Searching for thresholds in climate–radial growth relationships of Engelmann spruce and subalpine fir,
Jasper National Park, Alberta, Canada. Dendrochronologia 2013, 31, 9–15. [CrossRef]

55. Toledo, M.; Poorter, L.; Peña-Claros, M.; Alarcón, A.; Balcázar, J.; Leaño, C.; Licona, J.C.; Llanque, O.; Vroomans, V.; Zuidema,
P.; et al. Climate is a stronger driver of tree and forest growth rates than soil and disturbance. J. Ecol. 2011, 99, 254–264. [CrossRef]

56. Adams, H.R.; Barnard, H.R.; Loomis, A.K.; University of Colorado. Topography alters tree growth-climate relationships in a
semi-arid forested catchment. Ecosphere 2014, 5, t116–t148. [CrossRef]

http://doi.org/10.3389/fmed.2021.635771
http://doi.org/10.1111/j.1365-2656.2008.01390.x
http://doi.org/10.1016/j.ieri.2014.03.004
http://doi.org/10.3390/f10020187
http://doi.org/10.1016/j.scitotenv.2021.147138
http://doi.org/10.1214/aos/1013203451
http://doi.org/10.1007/s10342-017-1024-9
http://doi.org/10.3390/f10070582
http://doi.org/10.3390/f8120506
http://doi.org/10.1016/j.compag.2016.03.009
http://doi.org/10.1093/forestry/cpw004
http://doi.org/10.1016/j.foreco.2017.06.048
http://doi.org/10.1029/1998WR900018
http://doi.org/10.1175/1520-0477(1982)063&lt;1309:SCOTEO&gt;2.0.CO;2
http://doi.org/10.1890/04-0763
http://doi.org/10.1016/j.ecolind.2022.108814
http://doi.org/10.1126/science.aad0592
http://doi.org/10.1139/x03-022
http://doi.org/10.1016/j.foreco.2010.12.008
http://doi.org/10.1016/j.scitotenv.2017.11.138
http://www.ncbi.nlm.nih.gov/pubmed/29734623
http://doi.org/10.1139/cjfr-2015-0054
http://doi.org/10.3390/f9060368
http://doi.org/10.1093/treephys/tpq015
http://doi.org/10.1111/j.1365-2486.2011.02421.x
http://doi.org/10.1016/j.dendro.2012.04.005
http://doi.org/10.1111/j.1365-2745.2010.01741.x
http://doi.org/10.1890/ES14-00296.1


Sustainability 2022, 14, 8346 15 of 15

57. Scholten, T.; Goebes, P.; Kühn, P.; Seitz, S.; Assmann, T.; Bauhus, J.; Bruelheide, H.; Buscot, F.; Erfmeier, A.; Fischer, M.; et al. On
the combined effect of soil fertility and topography on tree growth in subtropical forest ecosystems—A study from SE China. J.
Plant Ecol. 2017, 10, 111–127. [CrossRef]

58. Myburgh, P.A.; Van Zyl, J.L.; Conradie, W.J. Effect of Soil Depth on Growth and Water Consumption of Young Vitis vinifera L. cv
Pinot noir. S. Afr. J. Enol. Vitic. 2017, 17, 53–62. [CrossRef]

59. Liu, J.; Yunhong, T.; Slik, J.W.F. Topography related habitat associations of tree species traits, composition and diversity in a
Chinese tropical forest. For. Ecol. Manag 2014, 330, 75–81. [CrossRef]

60. Coomes, D.A.; Allen, R.B. Effects of size, competition and altitude on tree growth. J. Ecol. 2007, 95, 1084–1097. [CrossRef]
61. Binkley, D.; Stape, J.L.; Ryan, M.G.; Barnard, H.R.; Fownes, J. Age-related Decline in Forest Ecosystem Growth: An Individual-Tree,

Stand-Structure Hypothesis. Ecosystems 2002, 5, 58–67. [CrossRef]

http://doi.org/10.1093/jpe/rtw065
http://doi.org/10.21548/17-2-2258
http://doi.org/10.1016/j.foreco.2014.06.045
http://doi.org/10.1111/j.1365-2745.2007.01280.x
http://doi.org/10.1007/s10021-001-0055-7

	Introduction 
	Materials and Methods 
	Study Area 
	Data 
	Model Development 
	Model Validation 

	Results 
	ML Algorithms 
	Model Construction 
	Model Evaluation 

	Disentangling the Factors That Contribute to Tree Growth 
	Variation Importance Analysis 
	Partial Dependency Analysis 


	Discussion 
	Conclusions 
	References

