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Abstract: When optimizing blending technologies, the main objective is to determine the right mixing
ratio of the raw materials, depending on the different qualities and costs of the raw materials available.
It can be concluded that research is mainly focused on answering technological questions, and only
very few studies take into account the logistics processes related to blending technologies, their design,
cost-efficiency, utilization and sustainability including energy efficiency and environmental impact.
Based on this fact, within the frame of this research the authors describe a new approach, extending
the basic model of blending problems by adding new supply chain efficiency-related components that
makes it possible to take logistics parameters related to the raw materials supply (available stocks,
batch sizes, transport and storage costs, supply chain structure) into consideration. A mathematical
model of this supply chain optimization problem for blending technologies is described including
routing and assignment problems in the supply chain, while technological objectives are also taken
into consideration as technological objective functions and constraints. The optimization problem
described in the model is a problem with non-deterministic polynomial-time hardness (NP-hard),
which means that there are no known efficient analytical methods to solve the logistics-related supply
chain optimization of blending technologies. As a solution algorithm, the authors have used an
evolutive solver and a new metrics, which improved the efficiency of the comparison of distances
between solutions of routing problems represented by permutation arrays. The scenario analysis,
which focuses on the integrated optimization of technological and logistics problems validates the
model and evaluates the solution algorithm and the new metrics. Using the mentioned algorithm,
the supply chain processes of the blending technologies can be improved from availability, efficiency,
sustainability point of view.

Keywords: assignment problems; blending technologies; heuristics; metrics; optimization

1. Introduction

In the existing literatures, the most critical economic issue for blending problems is
the selection of the optimal combination of components to produce final products. The
blending technologies can be described either as simple mixing of components or as a
complicated integration of a huge number of component streams. The logistics processes
play an increasingly important role in the manufacturing processes, including automotive
industry, mechatronics assembly or blending technologies. Blending technologies are
usually represented by the food industry, pharmaceutical industry, metallurgical industry
and other sectors from the continuous production. The optimization of logistics processes
can lead to improved performance of manufacturing systems, and it is also validated in the
case of blending processes and technologies. In the Industry 4.0 era the optimization of
logistics operations of blending technologies become more and more important, especially
in the case of disrupted supply chains. Within the frame of this article the authors propose a
novel integrated model to describe the blending processes including both technological and
logistics parts. The mathematical model makes it possible to analyze the impact of logistics
parameters and constraints on the global performance of blending processes. As the
presented literature review shows, the existing research works are focusing on technological
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aspects of blending processes, and only a few of them discuss the development and
operation potentials of logistics [1,2].

This paper is organized as follows. Section 2 discusses a systematic literature review,
which describes the research background and identifies the research gaps of blending
technologies using descriptive and content analysis of available articles in Science Direct.
Section 3 describes the model framework of blending processes and technologies. The
model is focusing on both technological and logistics processes and their impact on the
global performance of the blending process. Section 4 demonstrates the scenario analysis
and the computational results. Discussion, future research directions and managerial
impacts are discussed in Section 5.

2. Literature Review

Within the frame of this systematic literature review (SLR), the authors describe the
main scientific results and identify existing research gaps regarding blending technologies
and blending processes. The systematic literature review has four main parts: the descrip-
tion of the methodology, the descriptive analysis, the content analysis and the definition of
consequences of SLR.

2.1. Methodology of the SLR

Within the frame of this systematic literature review, we are applying the SLR method-
ology of Bányai Á [3], which focuses on the following main steps (see Figure 1):

• definition of research questions;
• search process in Science Direct;
• inclusion and exclusion process;
• descriptive analyses of chosen articles;
• content analysis;
• identification of scientific gaps, bottlenecks, and limitations.
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Figure 1. Methodology of the systematic literature review [3].

Firstly, the suitable terms were defined to find the potential research results in Science
Direct. In the case of more general research topics, it is important to choose suitable research
questions and keywords, because there could be excellent review articles in the related
research field, but in the case of blending technologies and blending processes no review
articles have been written. We used the following keywords to search in the Science Direct
database: Title, abstract, keywords: “blending process”. Initially, 66 articles were identified.
This list was reduced to 57 articles selecting journal articles in English only. Our search was
conducted in May 2022; therefore, new articles may have been published since then.

2.2. Descriptive Analysis

The journal articles focusing on blending processes and blending technologies can be
classified based on the subject area defined in Science Direct. Figure 2 shows the results
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of the classification of 57 articles considering 10 subject areas. This classification shows
the majority of materials science, chemical engineering, and chemistry. These numbers
show that the logistic aspects of blending processes and blending technologies are not
extensively researched.
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Figure 2. Classification of blending processes related articles considering subject areas in Science Direct.

As Figure 3 demonstrates, the blending processes and blending technologies have
been intensively researched in the past 20 years, but there are some early research results
from the 90s. One of the first articles in this field was published in 1991 in the field of
intelligent tuning and adaptive control for cement raw meal blending process [4] and
within the frame of this article the author proposes a two level adaptive control policy
combined with a heuristic auxiliary system for ensuring the robustness of the control
system of blending processes.
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Figure 3. Classification of blending processes-related articles considering the year of publication,
based on the search in Science Direct.

The articles were analyzed from the name and topic of the journal point of view
(Figure 4). The names and topics of the journals show the majority of technology-related
articles, where the research works are focusing on the technological aspects of blending
processes and blending technologies and no articles are discussing the logistics related
problems of blending processes and blending technologies.
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2.3. Content Analysis

The majority of the blending processes-related articles focus on the technological
aspects including solvent-evaporation technique [5], oil blending [6], pharmaceutical in-
dustry [7], gasoline blending [8], coal mixing [9], polymeric blends [10,11], morphological,
thermal and rheological tests in order to evaluate the miscibility and thermal stability of the
polymers and their blends [12], conventional and chaotic mixing [13], alumina metallurgical
industry [14], infrared chemical imaging [15], thermoplastic blends [16], cement mixing [17],
blending of monolayer particle-coated powder [18], asphalt mixtures [19], two-step melt
blending [20], clay blending process [21], expandable graphite composites [22], food indus-
try [23–25], hydrocolloids [26], batch blending processes [27], continuous powder-blending
processes [28], and nanoparticle distribution in blending processes [29].

The models, methods and tools used for the design and optimization of blending pro-
cesses includes the following main directions: recursive least square algorithm supported
by neural networks [6], sieve analyses to show the effect of different mixing parameters
and equipment on the loading capacity [30], integrated process monitoring approach
for evaluating powder blending process kinetics and determining blending process end-
point [31], logarithm-transform piecewise linearization method for the optimization of
gasoline-blending processes [32], adaptive algorithms for near-infrared spectroscopy [33],
model-based expert control strategy using neural networks for the coal blending pro-
cess [34], imaging techniques to determine the real-time distribution of mixture compo-
nents [35], weighted incremental minimax probability machine-based method for quality
prediction [36], variographic analysis [37], quadratic polynomial equations and multiple
regression analysis using response surface methodology [38], the isoconversional method
using Friedman’s approximation [39], artificial neural networks [40], stochastic optimiza-
tion for real-time operation of alumina-blending process [41]. The process mapping is an
important tool to identify the potential correlations between the critical process parameters
of blending technology and predefined quality attributes. The process mapping-based
method identification of the main impacts of process parameters can lead to the reduction
in development time, quantity of materials required and cost [42]. Other approaches using
the multivariate curve resolution by alternating least squares method lead to the same
results improving the efficiency of blending processes through the analysis of impact of
process parameters on the product parameters [43].

The design and operation aspects of blending processes are analyzed on operational,
tactical and strategic levels. A suitable scale-up strategy for continuous powder blending
process can transform pharmaceutical powder mixing from lab to industrial scale focusing
on batch-like mixing [7]. The blending process can be successfully simplified and the
energy consumption can be obviously reduced using a hierarchical inference strategy
integrating quality prediction model for the optimal-setting control of blending process [14].
The strategies of blending technologies can include three business levels: long-range
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planning, short-term scheduling and process control. This hierarchical concept is based
on an integrated approach to coordinate short-term scheduling of multi-product blending
facilities with nonlinear recipe optimization [44,45].

The advanced technologies of the fourth industrial revolution are also applied in
blending processes: big data solutions [6], real-time image analyses and process monitor-
ing [46], in-line monitoring using spectroscopy [47,48], digital simulation using Matlab
and Simulink tools to maximize the tonnage of coal blends [9], thermogravimetry and
Fourier transform infrared spectroscopy [49], automated on-line monitoring of near infrared
spectroscopy [50,51], scanning electron microscopy and wide-angle X-ray scattering [52],
simulation to validate the efficiency of optical image encryption [53], an adaptive sample
space expansion approach for in-situ measurement in blending processes [54], NIR spec-
troscopy to determine the homogeneity and drug content of blends [55,56], laser-induced
breakdown spectroscopy [57], control system linearization for coal blending process with
one controlled component flow [58], intelligent tuning and adaptive control [4].

The efficiency of blending processes and technologies is influenced by both technolog-
ical and logistics processes. The above mentioned articles are focusing on the technological
part of blending technologies and only a few articles are discussing logistics-related aspects
of blending technologies. Blending technologies are represented by expensive manufac-
turing processes, where the related costs are influenced by raw materials, technological
equipment, human resources and energy costs. The environmental regulations also have a
great impact on the production costs [8]. New scheduling models for the bulk ore blending
process in iron-making industry can improve process efficiency, because improved genetic
algorithm hybridized with problem knowledge-based heuristics can lead to more efficient
scheduling [59]. This research takes a wide range of logistics aspects into consideration
including scheduling, inventory and storages. The blending processes have four logistics
subsystems, including purchasing, production, distribution and inverse processes. The im-
provement of sustainability through effective reuse of product returns plays an important
role in the development and operation of blending processes and technologies and related
logistics systems [60].

2.4. Consequences of Literature Review

As the above-discussed descriptive and content analysis shows, existing studies focus
on the technological aspects of blending processes and technologies, while only a few of
them consider the logistics-related aspects of blending and mixing operations.

The increasing number of publications indicates the importance and scientific potential
of research on blending technologies. Therefore, the logistics aspects of blending processes
and technologies still needs more attention and research. Accordingly, the main focus
of this research is the integrated modelling and optimization of blending processes and
technologies focusing on both technological and logistics aspects.

The main contribution of this article includes: (1) a systematic literature review with
descriptive and content analyses to define research gaps and limitations of existing research
results in the field of blending technologies; (2) novel mathematical models to describe
the impact of logistics processes on the efficiency of blending processes; (3) optimization
algorithms to find the best logistics parameters for the supply of blending processes; and
(4) computational results of blending process optimization with different datasets.

3. Materials and Methods

Blending problems represent a special field of production technologies, where different
raw materials are mixed together, and the quality of the final product depends on the quality
of raw materials and the final quality of the final product can be computed using the quality
parameters of the required raw materials. Within the frame of the first part of this chapter,
the conventional model of the blending problems is described. The second part of this
chapter discusses an extended version of the blending problem. This extended model
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integrated the technology and quality-related parameters of the conventional blending
model and the logistics-related parameters of supply chain and logistics operations.

Input parameters: in the basic model of the blending problems, the following param-
eters are assumed to be given:

• yj customer’s demand for product j,
• pik quality parameter k of raw material i,
• bmin

kj lower bound for parameter k of finished product j,
• bmax

kj upper bound for parameter k of finished product j,
• cB

i price of raw material i.

Decision variable: the decision parameter of the blending problems is xij which
represents the amount of raw material i assigned to product j.

Objective function (profit maximization): in the basic model of the blending prob-
lems, the objective function is the maximization of profit, which can be written as a function
of the revenue from the finished products sold and the purchase price of the raw materials
needed to produce the finished product, as follows:

P = ∑m
j=1 bj ∑n

i=1 xij −∑n
i=1 ∑m

j=1 xij·cB
i → max., (1)

where bj is the specific purchasing price of product j (EUR/kg).
Constraint 1 (quality of final product): in the basic model of the blending problem,

two basic constraints must be taken into consideration. For the first constraint, we can
define the limits of the technological specifications for the quality of the final product. For
these limit values, a constraint for the lower and upper limit values can be specified as a
separate constraint in the following way:

∀j, k :
∑n

i=1 xij·pik

∑n
i=1 xij

≤ bmax
kj and

∑n
i=1 xij·pik

∑n
i=1 xij

≥ bmin
kj (2)

However, these inequalities are non-linear. In order to solve the problem as a linear
programming problem, the above non-linear constraints must be transformed into linear
constraints as follows:

∀j, k :
∑n

i=1 xij·pik

∑n
i=1 xij

≤ bmax
kj (3)

x1j·p1k + x2j·p2k + · · ·+ xnj·pnk

x1j + x2j + · · ·+ xnj
≤ bmax

kj (4)

x1j·p1k + x2j·p2k + · · ·+ xnj·pnk ≤ bmax
kj ·(x1j + x2j + · · ·+ xnj) (5)

x1j·p1k + x2j·p2k + · · ·+ xnj·pnk ≤ bmax
kj ·x1j + bmax

kj ·x2j + · · ·+ bmax
kj ·xnj (6)

x1j·p1k + x2j·p2k + · · ·+ xnj·pnk − bmax
kj ·x1j − bmax

kj ·x2j − · · · − bmax
kj ·xnj ≤ 0 (7)

x1j·(p1k − bmax
kj ) + x2j·(p2k − bmax

kj ) + · · ·+ xnj·(pnk − bmax
kj ) ≤ 0 (8)

Based on the above reasoning, the linearized constraint can be formulated as follows:

∑n
i=1 xij·(pik − bmax

kj ) ≤ 0 (9)

Based on the upper bound constraint, the lower bound constraint can be written in a
similar form:

∑n
i=1 xij·(pik − bmin

kj ) ≥ 0 (10)

Constraint 2 (meet customer’s demand): The second constraints for the basic model
defines the need to obtain a quantity of raw materials that can meet customer demand:

∀j : ∑n
i=1 xij = yj (11)
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Constraint 3 (production capacity): In general, the production capacity for blending
problems can be considered as given. This condition modifies the basic model in the
sense that, for this constraint, customer requirements are not given per product, but can
be freely modified according to the production capacity. Due to the production capacity
constraint, the limitation on the quantity of raw materials to be purchased can be written in
the following form:

∀j : ∑n
i=1 xij = yj and ∑m

j=1 yj = ρ (12)

Constraint 4 (built-in rate of raw materials): for the basic model, we did not take into
consideration the fact that, depending on the nature of the raw materials and the processing
technology, not all of them are built into the finished product, and that the parameters
affecting the quality of the finished product are not fully reflected in the finished product.
Based on this condition, it is possible to modify the basic model in two directions and add
a new constraint focusing on the build-in proportion. In the first case, the purchased raw
material is not processed in its full quantity, and therefore its parameters influence the
parameters characterizing the finished product according to the built-in rate. For example,
if broccoli is used to prepare a dish, the stems and leaves of the broccoli purchased are not
processed and therefore the nutrients and vitamins they contain are not built into this final
dish. For this model, we can define the αi percentage of the purchased raw material i that
can be used to produce the final product. If we take this constraint into consideration, the
objective function is still to maximize profit, but the revenue from the finished products
sold is affected by the built-in rate of the raw materials. Since the full quantity is not built
in, it is necessary to purchase a larger quantity depending on the built-in rate of the raw
material, which increases the cost of the raw material associated with the finished product:

∑m
j=1 bj ∑n

i=1 αi·xij −∑n
i=1 ∑m

j=1 xij·cB
i → max. (13)

When defining the limits of the technological specifications for the quality of the fin-
ished product, the following calculation should be used to take into account the parameters
affecting the quality of the raw materials in the finished product:

∀j, k :
∑n

i=1 αi·xij·pik

∑n
i=1 αi·xij

≤ bmax
kj and

∑n
i=1 αi·xij·pik

∑n
i=1 αi·xij

≥ bmin
kj (14)

In linear form, non-linear inequalities can be written as follows:

∀j, k : ∑n
i=1 αi·xij·

(
pik − bmax

kj

)
≤ 0 and ∑n

i=1 αi·xij·
(

pik − bmin
kj

)
≥ 0 (15)

If we take this constraint into consideration, the constraint that the quantity of raw
material to be procured must be sufficient to meet customer needs must also be met, and
therefore the basic constraints must be modified to take into account the built-in rate of the
raw material in the following form:

∀j : yj = ∑n
i=1 xij

1
αi

(16)

We can define a second type of built-in rate for the raw materials. In the second
case, the entire quantity of the purchased raw material is processed, its parameters fully
influencing the parameters describing the finished product (and hence the quality of the
finished product) as formulated above, but the built-in rate of the raw materials into the
finished product cannot be taken into account. For example, when strawberry jam is made,
the sugar content of the processed strawberries is fully incorporated into the sugar content
of the finished product (strawberry jam), but part of the strawberry mass is not included
in the mass of the finished product (mainly due to evaporation during cooking). Thus,
in this case, the parameter affecting the quality of the finished product can be taken into
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consideration in its entirety, while the mass of the raw material can be taken into account
regarding the built-in rate.

As the parameter influencing the quality of the finished product during the incorpo-
ration of the raw materials fully affects the quality of the finished product, but the raw
material itself is not fully present in the finished product due to the nature of the processing
technology, this constraint should be formulated as follows:

∀j, k :
∑n

i=1 xij·pik

∑n
i=1 αi·xij

≤ bmax
kj and

∑n
i=1 xij·pik

∑n
i=1 αi·xij

≥ bmin
kj (17)

In linear form, non-linear inequalities can be written as follows:

∀j, k : ∑n
i=1 xij·

(
pik − αi·bmax

kj

)
≤ 0 and ∑n

i=1 xij·
(

pik − αi·bmin
kj

)
≥ 0 (18)

Constraint 5 (limited raw material sources): This constraint specifies that the maxi-
mum or minimum quantity of available raw materials must be taken into account when
placing an order. As a consequence, a lower and an upper limit constraint are also included:

∀i : ∑m
j=1 xij ≤ qmax

i and ∑m
j=1 xij ≥ qmin

i (19)

where qmax
i is the upper limit of available raw material i [pcs], qmin

i is the lower limit of
available raw material i [pcs].

Constraint 6 (marketing increases customer’s demand): In this model of the blending
problem, targeted, product-specific promotion can be used to increase demand for each
finished product, resulting in increased demand for the finished product and thus higher
profits. Assuming that the expenditure on advertising is directly proportional to the
increase in demand for the finished product generated by the advertising, there is a change
in our objective functions used earlier.

In addition to the input parameters, the decision variable zj, which gives the number
of advertisements per product, is added to the decision variable xij.

The following parameters must be taken into consideration of this constraint:

• yj customer’s demand for finished product j without advertising,
• hj is an advertising cost for product j,
• gj the rate of increase in demand for product j caused by advertisements,
• zj number of advertisements for product j.

This constraint defines the need to obtain a sufficient quantity of raw materials to meet
the increased demand from customers due to advertising:

∀j : ∑n
i=1 xij = yj + zj·gj (20)

In the basic model of the blending problems, the objective function is profit maxi-
mization, which in this case takes into account the cost of advertising and the additional
revenue from increased sales as a result of advertising, in addition to the revenue from
finished goods sold and the purchase price of the raw materials needed to produce the
finished product:

∑m
j=1 bj ∑n

i=1 xij −∑n
i=1 ∑m

j=1 xij·cB
i −∑m

j=1 zj·hj → max. (21)

It is also possible to consider a marketing model for this constraint whereby a general
promotion of the entire product range under consideration can be used to increase demand
for the entire product range under consideration, resulting in increased demand for the
finished product and thus higher profits. Additionally, in the case of this constraint, the
expenditure on advertising is directly proportional to the increase in demand for the
finished product generated by the advertising.



Sustainability 2022, 14, 8760 9 of 21

In this case, the following parameters must be taken into consideration of this constraint:

• y customer’s demand without advertising,
• h is the cost of an advertising,
• g the rate of increase in demand caused by advertisements,
• z number of advertisements.

In addition to the input parameters listed above, the decision variable z, which repre-
sents the number of advertisements, is added to the decision variable xij in the calculations.
If we take into account this advertising model, the objective function can be defined in the
following way:

∑m
j=1 bj ∑n

i=1 xij −∑n
i=1 ∑m

j=1 xij·cB
i − z·h→ max. (22)

Constraint 7 (lot size of raw materials): for the basic model, we did not take into
consideration the fact that the lot sizes of raw materials to be ordered can be defined.
Taking this lot size- or batch size-related constraint into consideration, we can define the
following constraint:

∀i, j : xij = n·ϑi (23)

where ϑi is the lot size of raw material i and n ∈ Z.
Constraint 8 (capacity of transportation): for the basic model, we did not take into

consideration the capacity of transportation vehicles from raw material suppliers to the
production plant. If transportation processes are taken into consideration, then the capaci-
ties can be defined in two different ways. If the required raw materials are transported with
the same vehicle from the same supplier, then the constraints can be written as follows:

∀ς : ∑m
j=1 ∑n

i=1 xijς ≤ CTς (24)

where xijς is the amount of raw material i assigned to product j from supplier ς, CTς is the
capacity of transportation vehicles from supplier ς to the manufacturer.

If the required raw materials are transported separated, then the constraints can be
written as follows:

∀i, ς : ∑m
j=1 xijς ≤ CTiς (25)

where CTiς is the capacity of transportation vehicles from supplier ς to the manufacturer
for raw material i.

In this case, the transportation cost must be taken into consideration in the objective
function. The decision variables are extended with an additional parameter, because the
supplier-related costs must be taken into consideration:

P = ∑ςmax
ς=1

[
∑m

j=1 bj ∑n
i=1 xijς −∑n

i=1 ∑m
j=1 xijς·cB

iς −∑n
i=1 ∑m

j=1 cT
iς·xijς

]
→ max., (26)

where cT
iς is the specific transportation cost of raw material i from supplier ς, cB

iς price of
raw material i purchased from supplier ς.

Constraint 9 (capacity of warehouses): we can define a capacity of warehouses for
raw materials and these limited capacities can be taken into consideration using the follow-
ing constraint:

∀i : ∑ςmax
ς=1 ∑m

j=1 xijς ≤ CWi. (27)

where CWi is the capacity of the warehouse for raw material i.
It is also possible that the capacity of the warehouse cannot be defined for each type of

raw materials, therefore the warehouse capacity can be defined for all raw materials as a
common constraint:

∑n
i=1 ∑ςmax

ς=1 ∑m
j=1 xijς ≤ CW. (28)

where CW is the capacity of the warehouse for all raw materials.
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In this case, the inventory holding cost must be taken into consideration in the objec-
tive function:

P = ∑ςmax
ς=1

[
∑m

j=1 bj ∑n
i=1 xijς −∑n

i=1 ∑m
j=1 xijς·cB

iς −∑n
i=1 cW

iς ·xijς

]
→ max., (29)

where cW
iς is the specific inventory holding cost of raw material i from supplier ς.

Constraint 10 (capacity of loading and unloading operation): for the basic model,
we did not take into consideration the capacity of loading and unloading equipment.
Loading and unloading operations must be performed at the suppliers (loading) and at the
manufacturer (unloading). If loading and unloading processes are taken into consideration,
then the capacities can be defined in two different ways. If the required raw materials are
transported with the same vehicle from the same supplier, then the related loading and
unloading operations are assigned to these supplies in the same way, therefore the loading
and unloading constraint can be written as follows:

∀ς : ∑m
j=1 ∑n

i=1 xijς ≤ CLς (30)

where CLς is the available loading capacity of supplier ς.
If the required raw materials are transported separated, then the constraints can be

written as follows:
∀i, ς : ∑m

j=1 xijς ≤ CLiς. (31)

where: CLiς is the available loading capacity of supplier ς for raw material i.
In this case, the loading and unloading cost must be taken into consideration in the

objective function. The decision variables are extended with an additional parameter,
because the supplier-related costs must be taken into consideration:

P = ∑ςmax
ς=1

[
∑m

j=1 bj ∑n
i=1 xijς −∑n

i=1 ∑m
j=1 xijς·cB

iς −∑n
i=1 ∑m

j=1 cL
iς·xijς

]
→ max., (32)

where: cL
iς is the specific loading cost of raw material i from supplier ς.

The unloading cost can be calculated in the same way, but we use CUiς-specific
unloading cost instead of CLiς-specific loading cost.

Sign restrictions: since in the course of solving the optimization problem it is possible
that, based on the parameters of different types of raw materials, the optimal solution is
obtained by assigning a negative quantity of certain raw materials, it is useful to formulate
a sign restriction on the decision variables, which defines that no negative quantity of raw
materials can be assigned to products:

xij ≥ 0 (33)

4. Results

Within the frame of this chapter, the numerical results of the scenario analysis are
discussed. The main parameters of the scenario are shown in Appendix A. The following
scenarios are analyzed in this article:

• impact of transportation cost on the optimal solution of blending problems,
• impact of inventory holding cost on the optimal solution of blending problems,
• impact of loading and unloading cost on the optimal solution of blending problems,
• impact of packaging cost on the optimal solution of blending problems,
• impact of storage capacities on the optimal solution of blending problems,
• impact of lot sizes of raw materials on the optimal solution of blending problems.

The analyzed scenarios are theoretical scenarios representing the impact of influencing
parameters on the efficiency of blending problems from technological and logistics point
of view.
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4.1. Impact of Transportation Cost on the Optimal Solution of Blending Problems

In the case of the conventional model the technological costs and the transporta-
tion cost are not integrated, therefore in a conventional model the following phases can
be defined:

• Phase 1: Optimization of the basic blending problem including the following con-
straints: quality of final products, meet customer’s demand.

• Phase 2: Computation of the resulting profit depending on the technological costs and
incomes.

• Phase 3: Computation of the transportation cost of the optimal solution resulted by
Phase 1.

• Phase 4: Computation of the total costs, by adding the resulted transportation costs to
the technological costs computed in Phase 2.

In the integrated model, the optimization algorithm takes not only the technological
parameters, but also the costs of transportation operations into consideration. In this case,
the optimization of the integrated model has the following main phases:

• Phase 1: Optimization of the integrated blending problem focusing on both technolog-
ical costs and transportation-related costs including the following constraints: quality
of final products, meet customer’s demand.

• Phase 2: Computation of the resulted profit depending on the technological and
transportation costs and incomes.

The analysis shows that the integration of transportation into the basic blending
model leads to a more sophisticated optimization process, which results in lower costs and
higher profit:

I − CTE − CTR ≤ I − C∗
(

CTE∗, CTR∗
)

(34)

where I is the income of the basic model with technological parameters, CTE is the total
technological costs of the optimal solution of the basic model of blending problem, CTR

is the transportation cost resulted by the optimal solution of the basic blending problem,
C∗ is the total cost of the optimal solution of the integrated model of blending problems
focusing on both technology and transportation.

In the case of Scenario 1, the analysis shows that the profit was increased by using the
integrated model (see Table 1). In this Scenario we have used the following transportation
cost: cT = [4, 5, 16, 12, 3, 2, 3, 15, 1, 6]. The income of the basic model with technological
parameters is 45,000 EUR, the total cost of the optimal solution of the basic model of
blending problem is 14,739 EUR, the transportation cost resulted by the optimal solution of
the basic blending problem is 10,145 EUR, while the total cost of the optimal solution of the
integrated model of blending problems focusing on both technology and transportation is
20,938 EUR. The proportion of the profit resulted by the model integrating technology and
transportation and the conventional basic blending model can be calculated as follows:

ηTR =
I − C∗

I − CTE − CTR =
45, 000− (16, 839 + 4099)
45, 000− 14, 739− 10, 145

= 1.19 (35)

Table 1. Comparison of results of conventional blending model and integrated blending model
focusing on transportation costs.
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Conventional Model Integrated Model 
ηTR 
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Conventional Model Integrated Model
ηTR

CTE CTR P CTE * CTR * PTR *

1 14,739 10,145 20,116 16,839 4099 24,062 1.19
1.2 14,739 12,174 18,087 17,231 4502 23,266 1.29
1.4 14,739 14,203 16,058 17,324 5149 22,526 1.40
1.6 14,739 16,232 14,029 17,822 5373 21,805 1.55
1.8 14,739 18,261 12,000 18,191 5627 21,182 1.76
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* Coefficient to calculate the specific transportation cost as a linear function.
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4.2. Impact of Inventory Holding Cost on the Optimal Solution of Blending Problems

In the case of the conventional model the technological costs and the inventory hold-
ing cost are not integrated, therefore in a conventional model the following phases can
be defined:

• Phase 1: Optimization of the basic blending problem taking only the quality of final
products and the customer’s demand as constraints into consideration.

• Phase 2: Computation of the profit of the blending problem focusing on the incomes
and technological costs.

• Phase 3: Computation of the inventory holding cost of the optimal solution resulted
by Phase 1.

• Phase 4: Computation of the total costs, by adding the resulted inventory holding
costs to the technological costs computed in Phase 2.

In the integrated model, the optimization algorithm takes not only the technolog-
ical parameters, but also the costs of warehousing operations (inventory holding) into
consideration. In this case the optimization of the integrated model has the following
main phases:

• Phase 1: Optimization of the integrated blending problem focusing on both technolog-
ical costs and inventory holding costs including the following constraints: quality of
final products, meet customer’s demand and the available warehouse capacity.

• Phase 2: Computation of the resulted profit depending on the technological costs,
inventory holding costs and incomes.

The analysis shows that the integration of transportation into the basic blending
model leads to a more sophisticated optimization process, which results in lower costs and
higher profit:

I − CTE − CINV ≤ I − C∗
(

CTE∗, CINV∗
)

(36)

where I is the income of the basic model with technological parameters, CTE is the total
technological costs of the optimal solution of the basic model of blending problem, CTR

is the transportation cost resulted by the optimal solution of the basic blending problem,
C∗ is the total cost of the optimal solution of the integrated model of blending problems
focusing on both technology and warehousing.

In the case of this Scenario, the analysis shows that the profit was increased by using
the integrated model (see Table 2). In the Scenario we have used the following inventory
holding cost: cINV = [2, 1, 3, 2, 3, 1, 3, 5, 1, 3]. The income of the basic model with
technological parameters is 45,000 EUR, the total cost of the optimal solution of the basic
model of blending problem is 14,739 EUR, the inventory holding cost resulted by the
optimal solution of the basic blending problem is 3640 EUR, while the total cost of the
optimal solution of the integrated model of blending problems focusing on both technology
and inventory holding is 17,910 EUR. The proportion of the profit resulted by the model
integrating technology and inventory holding and the conventional basic blending model
can be calculated as follows:

η INV =
I − C∗

I − CTE − CINV =
45, 000− (15, 142 + 2768)
45, 000− 14, 739− 3640

= 1.017 (37)

4.3. Impact of Loading and Unloading Cost on the Optimal Solution of Blending Problems

In the case of the conventional model the technological costs and the inventory hold-
ing cost are not integrated, therefore in a conventional model the following phases can
be defined:

• Phase 1: Optimization of the basic blending problem taking only the quality of final
products and the customer’s demand as constraints into consideration.

• Phase 2: Computation of the profit of the blending problem focusing on the incomes
and technological costs.
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• Phase 3: Computation of the costs of loading and unloading operations at the supplier
and the manufacturing company from the optimal solution resulted by Phase 1.

• Phase 4: Computation of the total costs, by adding the resulted loading and unloading
costs to the technological costs computed in Phase 2.

Table 2. Comparison of results of conventional blending model and integrated blending model
focusing on inventory holding costs.
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Conventional Model Integrated Model
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1 14,739 3640 26,621 15,142 2768 27,090 1.02
1.2 14,739 4368 25,893 15,577 2838 26,585 1.03
1.4 14,739 5096 25,165 15,695 3191 26,114 1.04
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1.8 14,739 6552 23,709 16,502 3173 25,325 1.06
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* Coefficient to calculate the specific inventory holding cost as a linear function.

In the integrated model, the optimization algorithm takes not only the technological
parameters, but also the costs of loading and unloading operations into consideration. In
this case, the optimization of the integrated model has the following main phases:

• Phase 1: Optimization of the integrated blending problem focusing on both technolog-
ical costs, loading and unloading costs including the following constraints: quality
of final products, meet customer’s demand and the available capacity of loading and
unloading equipment of the supplier and the manufacturing company.

• Phase 2: Computation of the resulted profit depending on the technological costs,
loading and unloading costs and incomes.

The analysis shows that the integration of loading and unloading operations into the
basic blending model lead to a more sophisticated optimization process, which results in
lower costs and higher profit:

I − CTE − CLO ≤ I − C∗
(

CTE∗, CLO∗
)

(38)

where I is the income of the basic model with technological parameters, CTE is the total
technological costs of the optimal solution of the basic model of blending problem, CLO

is the loading and unloading cost resulted by the optimal solution of the basic blending
problem, C∗ is the total cost of the optimal solution of the integrated model of blending
problems focusing on both technology and loading/unloading operations.

In the case of this Scenario, the analysis shows that the profit was increased by using
the integrated model (see Table 3). In this Scenario we have used the following specific
loading and unloading costs: cLO = [11, 15, 14, 11, 11, 14, 8, 20, 13, 7]. The income of
the basic model with technological parameters is 45,000 EUR, the total cost of the optimal
solution of the basic model of blending problem is 14,739 EUR, the loading and unloading
cost resulted by the optimal solution of the basic blending problem is 14,555 EUR, while the
total cost of the optimal solution of the integrated model of blending problems focusing on
both technology and inventory holding is 26,623 EUR. The proportion of the profit resulted
by the model integrating technology and loading/unloading and the conventional basic
blending model can be calculated as follows:

ηLO =
I − C∗

I − CTE − CLO =
45, 000− (17, 564 + 9059)
45, 000− 14, 739− 14, 555

= 1.17 (39)
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Table 3. Comparison of results of conventional blending model and integrated blending model
focusing on loading and unloading costs.
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Conventional Model Integrated Model
ηLO
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* Coefficient to calculate the specific loading and unloading cost as a linear function.

4.4. Impact of Packaging Cost on the Optimal Solution of Blending Problems

In the case of the conventional model, the technological costs and the packaging costs
are not integrated, therefore in a conventional model the following phases can be defined:

• Phase 1: Optimization of the basic blending problem taking only the quality of final
products and the customer’s demand as constraints into consideration.

• Phase 2: Computation of the profit of the blending problem focusing on the incomes
and technological costs.

• Phase 3: Computation of the packaging costs resulted from the optimal solution in
Phase 1.

• Phase 4: Computation of the total costs, by adding the resulted packaging costs to the
technological costs computed in Phase 2.

In the integrated model, the optimization algorithm takes not only the technological
parameters, but also the costs of packaging operations into consideration. In this case, the
optimization of the integrated model has the following main phases:

• Phase 1: Optimization of the integrated blending problem focusing on both technolog-
ical costs and packaging costs.

• Phase 2: Computation of the resulted profit depending on the technological costs,
packaging costs and incomes.

The analysis shows that the integration of packaging operations into the basic blending
model leads to a more sophisticated optimization process, which results in lower costs and
higher profit:

I − CTE − CPA ≤ I − C∗
(

CTE∗, CPA∗
)

(40)

where I is the income of the basic model with technological parameters, CTE is the total
technological costs of the optimal solution of the basic model of blending problem, CPA is
the packaging cost resulted by the optimal solution of the basic blending problem, C∗ is the
total cost of the optimal solution of the integrated model of blending problems focusing on
both technology and packaging operations.

In the case of this Scenario, the analysis shows that the profit was increased by using
the integrated model (see Table 4). In this Scenario we have used the following specific
packaging cost: cPA = [11, 15, 14, 11, 11, 14, 8, 20, 13, 7]. The income of the basic model
with technological parameters is 45,000 EUR, the total cost of the optimal solution of
the basic model of blending problem is 14,739 EUR, the packaging cost resulted by the
optimal solution of the basic blending problem is 14,555 EUR, while the total cost of the
optimal solution of the integrated model of blending problems focusing on both technology
and inventory holding is 26,623 EUR. The proportion of the profit resulted by the model
integrating technology and packaging and the conventional basic blending model can be
calculated as follows:

ηPA =
I − C∗

I − CTE − CPA =
45, 000− (14, 766 + 5732)
45, 000− 14, 739− 5971

= 1.008 (41)
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Table 4. Comparison of results of conventional blending model and integrated blending model
focusing on packaging costs.
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Table 1. Comparison of results of conventional blending model and integrated blending model fo-
cusing on transportation costs. 𝜛 * 

Conventional Model Integrated Model 
ηTR 

CTE CTR P CTE * CTR * PTR * 
1 14,739 10,145 20,116 16,839 4099 24,062 1.19 

1.2 14,739 12,174 18,087 17,231 4502 23,266 1.29 
1.4 14,739 14,203 16,058 17,324 5149 22,526 1.40 
1.6 14,739 16,232 14,029 17,822 5373 21,805 1.55 

Conventional Model Integrated Model
ηPA

CTE CPA P CTE * CPA * PPA *

1 14,739 5971 24,290 14,766 5732 24,502 1.008
1.2 14,739 7165 23,096 14,765 6869 23,366 1.011
1.4 14,739 8359 21,902 14,772 8007 22,221 1.014
1.6 14,739 9554 20,707 15,080 8808 21,112 1.019
1.8 14,739 10,748 19,513 15,095 9559 20,016 1.026
2.0 14,739 11,942 18,319 15,097 10,986 18,917 1.033

* Coefficient to calculate the specific packaging cost as a linear function.

4.5. Impact of Storage Capacities on the Optimal Solution of Blending Problems

In the case of the conventional blending models, the capacity of warehouses is not
taken into consideration. If the warehouse capacity is limited, the storage capacity must be
extended with outsourced storage capacity, which can lead to increased inventory holding
cost. Table 5 shows the comparison of application of the conventional blending model and
the integrated blending model, where storage capacities and its outsourcing opportunities
are taken into consideration. As Table 5 shows, in the case if the Scenario the optimization
using the integrated approach led to an increased profit.

Table 5. Comparison of results of conventional blending model and integrated blending model
focusing on storage capacities.
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Table 1. Comparison of results of conventional blending model and integrated blending model fo-
cusing on transportation costs. 𝜛 * 

Conventional Model Integrated Model 
ηTR 

CTE CTR P CTE * CTR * PTR * 
1 14,739 10,145 20,116 16,839 4099 24,062 1.19 

1.2 14,739 12,174 18,087 17,231 4502 23,266 1.29 
1.4 14,739 14,203 16,058 17,324 5149 22,526 1.40 
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Conventional Model Integrated Model
ηSC

CTE CSC P CTE * CSC * PSC *

1 14,739 16,909 13,352 16,003 12,265 16,732 1.253

* Coefficient to calculate the specific additional warehousing cost resulted from outsourced storage as a linear function.

The proportion of the profit resulted by the model integrating technology and ware-
housing and the conventional basic blending model can be calculated as follows:

ηSTO =
I − C∗

I − CTE − CSTO =
45, 000− (16, 003 + 12, 265)
45, 000− 14, 739− 16, 909

= 1.253 (42)

Figure 5 shows the changes in the structure of raw materials to be ordered in the
case of conventional and integrated model. If we take the warehouse capacities and the
increased outsourced storage capacities into consideration, then the warehousing cost can
be decreased, while the portfolio of ordered raw materials are extensively changed. In
the case of some raw materials (ID1 and ID9) there are no bars above the raw material ID,
because these raw materials have not been used in the case of the optimal solution.

4.6. Impact of Lot Sizes of Ram Materials on the Optimal Solution of Blending Problems

In the case of the conventional blending problems, the restrictions regarding availabil-
ity of raw materials, predefined lot sizes and batches are not taken into consideration. If
we add to the model the lot sizes as constraints, it is possible to find a more cost-efficient
solution for the blending problem. Table 6 shows the analysis of Scenario 1 in the case of
predefined lot sizes. As the analysis shows, the bigger the lot sizes, the lower the profit.
The optimal solution is resulted in the case of one-piece-flow type supply, where the lot
size is one. It is possible that we can define such high lot sizes that the required quality
parameters of the final product cannot be fulfilled.
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Table 6. Comparison of results taking different lot sizes of raw materials into consideration.

ψ * Profit
ID of Raw Materials Number of Raw

Material TypesA B C D E F G H I J

1 55,492 0 11 472 292 113 41 272 589 1 1 9
2 55,440 0 12 548 288 114 44 234 550 2 0 8
4 55,432 0 12 544 296 112 44 236 548 0 0 7
8 55,144 0 24 464 256 144 48 264 560 8 24 9

16 54,976 0 16 496 160 208 48 256 560 32 16 9
32 54,688 32 64 320 224 256 32 320 544 0 0 8
64 54,528 0 64 512 320 128 64 256 448 0 0 7
128 53,248 0 0 384 256 128 128 384 512 0 0 6

* Lot size.

The changes in the structure of raw material portfolio depending on the predefined
lot-sizes in the case of Scenario are shows in Figure 6. There are no major changes in the
amount of raw materials, while lot sizes are changed, but minor rebalancing of raw-material
portfolio is required to maximize the profit of the blending problem for the predefined
time window.
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5. Conclusions and Discussion

Within the frame of this research work, the authors developed a mathematical model,
which makes it possible to extend the conventional mathematical model of blending
problems and add logistics aspects to the model. More generally, this paper focused on the
mathematical description of the supply chain framework of blending technologies taking
the following logistics-related aspects into consideration: transportation, warehousing and
inventory holding, packaging, loading and unloading, lot sizes, outsourcing potentials,
lot sizes and batches. Why is effort being put into this research? The role of blending
technologies becomes more and more important, especially in the chemical and food
industry, where companies have to improve their cost-efficiency. This cost-efficiency can be
achieved though optimizing technological and logistics processes. The existing research
results are focusing on the technological aspects of blending processes in different fields
of manufacturing (oil blending [5], metallurgical industry [14], asphalt mixtures [19])
and they do not take the impact of logistics aspects on the performance of the blending
process into consideration. The technological aspects are deeply analyzed in a wide range
of articles (aging characteristics in blending processes [61], experimental and discrete
element models in blending processes [62], recycling aspects in blending [63], monitoring
and sensoring of blending processes [64,65]). The process optimization approaches are
focusing on the process monitoring [31], adaptive algorithms of control processes [33], and
imaging techniques to determine mixture components [35], but they are not focusing on
the integrated mathematical modelling and optimization of blending processes from both
the point of view of technological and logistical aspects.

The added value of the paper is the description of the supply chain framework of
blending technologies, which makes it possible to take logistics-related parameters into
consideration. The scientific contribution of this paper for researchers in this field is
the mathematical modelling and the analysis of the impact of logistics parameters on
the cost-efficiency. The results can be generalized because the model can be applied
for different production technologies. The described methodology makes it possible to
analyze the impact of logistics and technological parameters on costs and incomes of
a wide range of manufacturing systems and processes and it can be used in the field of
automotive, mechatronics assembly and other engineering fields. The described method can
support managerial decisions, because the strategic decisions regarding logistics operation,
purchasing and procurement can be based on the results of the optimization approach. The
theoretical implication of the study is the new mathematical model, which focuses on the
impact of potential constraints of logistics services and technological environment: quality
of final product, customers’ demands, production capacity, built-in rate of raw materials,
limited raw material sources, marketing increasing customer’s demand, lot size of raw
materials, capacity of transportation, capacity of warehouses, capacity of loading and
unloading operation. The described methodology and the results of the study have a great
impact on the efficiency of manufacturing plants using blending technologies, because it is
possible to analyze the impact of logistics and technological parameters on the performance
of the whole blending process.

However, there are also limitations of the study. The parameters of the model are
deterministic and the uncertainties caused by demands, quality parameters and process
availability are not taken into consideration. These limitations show the directions for
further research. In further studies, the model can be extended to a more complex model
including Fuzzy model to describe the stochastic environment.
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Appendix A

Table A1. Final product demands and selling prices.

Final Product

FP1 FP2 FP3 FP4 FP5 FP6 FP7

Demand [pcs] 100 150 200 150 80 110 210
Selling price [EUR] 20 30 40 50 60 70 50

Table A2. Predefined required quality parameters for the final products.

Final Product

FP1 FP2 FP3 FP4 FP5 FP6 FP7

Quality parameter 01 [%]
Min 9 10 15 14 12 9 11

11Max 15 16 17 18 15 14 20

Quality parameter 02 [%]
Min 42 52 51 45 65 55 70
Max 75 80 66 77 80 80 80

Quality parameter 03 [%]
Min 1 2 5 2 2 2 3
Max 3 4 6 5 6 4 5

Quality parameter 04 [%]
Min 21 22 21 20 21 22 23
Max 25 26 27 26 25 26 27

Table A3. Parameters of raw materials.

Parameter
ID of Raw Materials

A B C D E F G H I J

Quality 01 [%] 10 20 15 14 18 16 9 21 12 14
Quality 02 [%] 40 50 60 70 80 45 55 65 52 47
Quality 03 [%] 2 3 4 5 6 5 4 2 1 2
Quality 04 [%] 22 25 24 26 27 20 26 23 24 22

Price [EUR] 25 14 15 16 17 30 20 10 23 18
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