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Abstract: To improve the accuracy of ultra-short-term wind speed prediction, a hybrid generative
adversarial network model (HGANN) is proposed in this paper. Firstly, to reduce the noise of
the wind sequence, the raw wind data are decomposed using complete ensemble empirical mode
decomposition with adaptive noise (CEEMDAN). Then the decomposed modalities are entered
into the HGANN network for prediction. HGANN is a continuous game between the generator
and the discriminator, which in turn allows the generator to learn the distribution of the wind
data and make predictions about it. Notably, we developed the optimized broad learning system
(OBLS) as a generator for the HGANN network, which can improve the generalization ability and
error convergence of HGANN. In addition, improved particle swarm optimization (IPSO) was used
to optimize the hyperparameters of OBLS. To validate the performance of the HGANN model,
experiments were conducted using wind sequences from different regions and at different times.
The experimental results show that our model outperforms other cutting-edge benchmark models
in single-step and multi-step forecasts. This demonstrates not only the accuracy and robustness of
the proposed model but also the applicability of our model to more general environments for wind
speed prediction.

Keywords: wind speed forecast; OBLS; data preprocessing; optimized hyper-parameters

1. Introduction

Energy demand has always been one of the main problems of human development
since the increasing consumption of energy with the improvement of living standards. In
recent years, renewable energy has gradually become a research hotspot. Wind energy is
valued for its clean, pollution-free, renewable, and abundant availability. However, wind is
highly random and volatile, which may affect the stability of the power system and hinder
the efficient use of wind energy [1]. Accurate ultra-short-term wind speed prediction
models are therefore crucial in power dispatch planning and power market operations [2].
Thus, reliable wind speed prediction has drawn a lot of interest.

The three common wind speed prediction models are physical models, statistical
models, and hybrid models. Physical models take into account the physical conditions and
locations of wind farms, which require abundant meteorological data. Numerical weather
prediction is a typical physical model, as it takes into account temperature pressure and
obstacles for wind speed prediction, so it has a long calculation period [3]. Physical models
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are efficient and accurate for long-term forecasting, but they are computationally intensive
and expensive for small-scale forecasting.

Statistical models make better use of historical wind speed data to predict future
wind speeds than physical models. Statistical models include both traditional statistical
models and neural network-based models. Traditional statistical models include the
autoregressive moving average model [4], the autoregressive integrated moving average
model [5], the Bayesian model [6], etc. However, the non-linear nature of wind makes it
difficult for traditional statistical models to extract the deeper features of wind speed data.
Neural networks are introduced into the field of wind speed prediction for their ability to
fit the non-linear part of the data well. Neural network-based models can extract deeper
features from wind speed data than traditional statistical models—for example, BP [7],
RBF [8], artificial neural network [9], SVR [10], etc. To improve the learning ability and
predictive ability of predictive models, deep neural networks are introduced into wind
speed prediction, such as the deep belief network [11], RNN [12], GNN [13], and LSTM [14].

In recent years, hybrid models have gradually become the mainstream wind speed
prediction models. Hybrid models typically use one or more auxiliary strategies to assist the
main forecasting network in wind speed prediction. Therefore, hybrid models can achieve
better prediction performance than physical models and statistical models. The auxiliary
strategies involved in hybrid models include data preprocessing techniques, optimization
algorithms, error correction, and weighting strategies.

(1) Data preprocessing techniques. Zhang et al. [15] used EMD for data pre-processing
of wind speed, which effectively reduced the volatility of the wind speed series. How-
ever, EMD suffers from the problem of modal confusion, which leads to unsatisfactory
decomposition results. Santhosh et al. [16] used EEMD to process the raw wind speed
series, which effectively mitigated the EMD problem. However, EEMD has a noise resid-
ual problem affected by noise residuals. Wang et al. [17] used CEEMD for wind speed
prediction. CEEMD cancels out the residual noise with a pair of white noises, effectively
improving the efficiency of the calculation. Ren et al. [18] experimentally demonstrated that
the CEEMDAN-based model always performs best compared to the EMD-based model.

(2) Optimization algorithms. Optimization algorithms can be used to optimize the hyper-
parameters, weights, network structure, and thresholds of predictive models. Li et al. [19]
used PSO to optimize two hyper-parameters of LSTM, which solved the problem of wide
intervals caused by interval superposition and thus improved the wind speed prediction
accuracy. Tian [20] used PSO to optimize the weight coefficients of each prediction model,
and the experimental results demonstrate the necessity of introducing the weight coefficient
optimization strategy. Liu et al. [21] used GA to optimize the internal parameters of LSTM,
which improved the efficiency and accuracy of the prediction model. Cui et al. [22] used
the Bat algorithm to optimize the thresholds of BP networks, effectively improving the
generalization ability and nonlinear mapping ability of BP networks.

(3) Error correction. Error correction is a post-processing technique for wind forecast-
ing. It predicts the residuals and superimposes the predictions on the original predictions to
obtain the final predictions. Duan et al. [23] used improved CEEMDAN to decompose the
errors, and the experimental results showed that the error decomposition correction method
can significantly enhance the prediction accuracy. Liu et al. [24] proposed an adaptive
multiple error correction method, which makes full use of the deeper predictable compo-
nents and effectively improves the reliability and accuracy of the model. Zhang et al. [25]
demonstrated experimentally that the final predicted values after Markov chain correction
are closer to the original wind field data, which proves that the use of the Markov chain
is effective.

(4) Weighting strategies. To scientifically determine the weights of different prediction
networks in a hybrid model, many scholars have proposed different weighting strategies.
To alleviate the adverse effects of multi-collinearity in combinatorial prediction models,
Jiang et al. [26] used a GMDH neural network to automatically identify the weights of
three nonlinear models. The application of GMDH can significantly improve the predictive
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capability compared to the widely used equal-weighting scheme. Wang et al. [27] used
MTO to minimize the error sum of squares of the IOWA operator, which obtains the optimal
weight vector for the combined prediction model and ensures the stability of the prediction
results. Altan et al. [28] optimized the weighting coefficients for each IMF using the gray
wolf optimizer algorithm.

Although the above models achieve good predictive performance, they still have some
problems. Methods involving deep neural networks [27] cause huge computational costs.
Hybrid methods based on weighting strategy [28] may have the problem of multicollinear-
ity, which reduces the prediction accuracy. The performance of hybrid methods based on
parameter optimization [26] is largely influenced by the understanding of the researcher of
the optimization algorithm.

Considering the above issues, we propose a hybrid model combining data preprocess-
ing techniques and optimization algorithms for ultra-short-term wind speed prediction.
We design the hybrid generative adversarial network (HGANN) as the prediction master
network for the proposed hybrid model. The contributions and innovations of this research
are concluded as follows:

(1) A hybrid generative adversarial network model (HGANN) is proposed for ultra-short-
term wind speed prediction, which learns the distribution of wind data and predicts
it through a continuous game between generators and discriminators.

(2) To improve the error convergence of the model, the OBLS was developed as a genera-
tor for HGANN. The IPSO was used to optimize the hyperparameters of the OBLS. To
maintain the stability of the generated samples, we used the discriminator of WGAN
as the discriminator of HGANN.

(3) A wind data decomposition and denoising process was carried out using CEEMDAN
to reduce the randomness and instability in the original wind series.

The rest of this article is organized as follows. Section 2 introduces the model frame-
work and methods involved in this article in detail. In Section 3, the experimental cases and
prediction results are elaborated in detail, which verifies the validity of the framework we
propose. Section 4 contains a discussion of the results of the experiment. The conclusions
are presented in Section 5.

2. Proposed Predictive Framework
2.1. Overall Framework of HGANN

Generative adversarial networks (GANs) [29] are deep learning networks, which are
composed of a generator and discriminator that confront each other. The role of the generator
is to generate false samples that are close to the real ones. The role of the discriminator is
to distinguish between true and false samples as correctly as possible. However, GANs
often suffer from the problem of target confusion. Our proposed HGANN alleviates this
problem to a great extent.

We developed a hybrid generative adversarial network model (HGANN) for ultra-
short-term wind speed prediction, which uses the two networks to compete with each
other to achieve highly accurate wind speed predictions. The proposed model is shown in
Figure 1. First, CEEMDAN decomposes the raw wind speed data into multiple modalities.
These modalities are separately fed into the generator of HGANN, the OBLS. The generator
is used to obtain virtual samples that are similar to real samples. The virtual samples and
real samples are then fed into the discriminator, which consists of convolutional layers
and fully connected layers. The discriminator extracts the high-dimensional features of
the input samples through the convolutional layer, and then further extracts the effective
features by the fully connected layer. The outputs scalars “1” or “0” of the discriminator are
passed to the generator and the discriminator to perform the iterative update of HGANN.
Via the continuous iterative update, OBLS obtains the best parameters and performs wind
speed prediction. Finally, the final wind speed forecast can be obtained by stacking all
forecast values.
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Figure 1. The proposed short-term wind speed forecasting framework. In the data processing step,
CEEMDAN turns the wind data into multiple modalities. The HGANN network consisting of a
generator and discriminator predicts these modalities. The final wind speed prediction result can
then be obtained by stacking the prediction results of all modalities.

2.2. CEEMDAN Model

Due to the high volatility of the wind speed series, CEEMDAN [30] is introduced to
smooth the wind speed data. CEEMDAN decomposes a signal into some modalities.

The original wind speed series is defined as X(n). CEEMDAN decomposes X(n)
into IMFj(n), j = 1, 2, 3, . . . J and residue rj(n). Figure 2 shows the flow chart of the
CEEMDAN algorithm. The specific steps of the algorithm are as follows.

Randomly generate white noise with (0, 1), which is defined as wi(n), i = 1, 2, . . . I.
Define an operator E{∗}, which generates the IMFs by EMD. We set the noise standard
deviation to ε = 0.2 and the ensemble size to I = 500.

Add wi(n) to the X(n) and generate a new series with noisy signals X(n) + ε0wi(n).
For j= 1, the first-order IMF1(n) that is decomposed by EMD is expressed as:

IMF1(n) =
1
I

I

∑
i=1

E
{

X(n) + ε0wi(n)
}

(1)

The first-order residue is computed as follows:

r1(n) = X(n)− IMF1(n) (2)
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For j = 2, 3, . . . J, calculate the IMFj(n) and the jth residue as follows:

IMFj(n) =
1
I

I

∑
i=1

E
{

rj−1(n) + ε j−1wi(n)
}

(3)

rj(n) = rj−1(n)− IMFj(n) (4)

Decompose E
{

rj−1(n) + ε j−1wi(n)
}

until the residue rj(n) cannot be decomposed and
has only one extreme value. Then we can get IMFj(n) = 1

I ∑I
i=1 E

{
rj−1(n) + ε j−1wi(n)

}
and the final residue rj(n) = X(n)−∑J

j=1 IMFj(n).

Figure 2. Flowchart of the CEEMDAN algorithm procedure.

The original wind speed time series X(n) can be decomposed as X(n) = ∑J
j=1 IMFj(n)

+rj(n), where IMFj(n) or rj(n) can represent different features of the wind speed.

2.3. Generator OBLS for HGANN

BLS [31] can provide incremental structural learning. It achieves better forecasting
results in time-series forecasting. Furthermore, because of its shallow network structure,
BLS has higher error convergence performance than CNN. Compared with BLS, OBLS can
provide both higher convergence performance and predictive accuracy. This is because
OBLS uses IPSO to improve the network hyper-parameter of optimization. Therefore, OBLS
has faster convergence and higher error convergence than CNN. Therefore, instead of using
CNN as the generator of GAN, we use OBLS as the generator of HGANN to solve the
problem of target confusion during HGANN training, which can improve the generalization
ability and error convergence of HGANN, and thus make HGANN more suitable for wind
speed prediction. The following is the detailed process of the OBLS algorithm.

Randomly generate n particles so that the dimensions of the particles are a three-
dimensional vector {NF, NW, NE} corresponding to the three parameters of BLS, respec-
tively. Initialize the particle position xid ∈ (1, 100), and speed vid ∈ (−1, 1). Determine the
learning factors c1 = 1.5 and c2 = 1.5, inertia weights wmax = 1.0 and wmin = 0.4, and the
maximum number of iterations itermax = 100.
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Assume the input wind speed series data X(n) and project the data using ∅i(X(n)Wei+
βei) to represent ith mapped feature Zi, where Wei represents random weight with the
proper dimensions. The jth group of enhancement nodes ∅j

(
ZiWhj + βhj

)
is denoted as

Hi. ∅i and ∅j can be different functions. The ith mappings can be denoted as:

Zi = ∅i(X(n)Wei + βei), i = 1, 2, . . . n (5)

The feature nodes are denoted as Zn , [Z1, Z2 . . . Zn], where Whj and βhj are random
weights. The enhanced nodes are denoted as:

Hj = ∅j

(
ZiWhj + βhj

)
, j = 1, 2, . . . m (6)

Let Hm , [H1, H2 . . . Hm] where the symbol , means “noted as”; then the output of
the BLS can be denoted as:

Y = {Zn|Hm}Wn (7)

where the Wn is the final target weight needed by OBLS and is obtained through the ridge
regression algorithm, that is, Wn , {Zn|Hm}+Y.

Let {M} = {Zn|Hm}; then {Zn|Hm}+ can be expressed as follows:

{Zn|Hm}+ = lim
˘→0

{
˘I + {M}{M}T

}−1
{M}T (8)

where λ is l2 regularization.
The IPSO [32] is introduced to iterate to optimize the parameters of BLS: {NF, NW, NE}.

When the iteration of IPSO is consistently performed, the position and speed of the particles
are continually updated through the following equation:

vid = wvid + c1r1(pid − xid) + c2r2

(
pgd − xgd

)
(9)

xid = xid + γvid (10)

Here, γ is the velocity coefficient; the value of the inertia weight w is w = wmax −
(wmax − wmin) ∗ 1/iter. When reaching the maximum iterative number itermax, the iteration
is stopped and the optimal value of {NF, NW, NE} can be obtained.

The generator takes the wind speed subsequence {x1, x2, . . . xn} as input, which is
generated by CEEMDAN. Then the generator generates a new wind speed sequence{

y′1, y′2, . . . y′n
}

, which is statistically similar to the wind speed sequence {y1, y2, . . . yn}.
From Equations (8)–(10), OBLS does not require layer-to-layer coupling. Since there

are no multi-layer connections, OBLS does not need to use gradient descent to update the
weights, so the computational cost of OBLS is significantly lower than that of deep learning.
When the accuracy of OBLS does not meet the requirements, its accuracy can be improved
by increasing the “width” of the network nodes. Compared with the increase in the amount
of calculation by increasing the number of layers in the deep network, the increase in that
by increasing the “width” of the network nodes in OBLS is negligible.

2.4. Discriminators for HGANN

To maintain the stability of the generated samples, we used the discriminator of
WGAN [33] as the discriminator of HGANN. In HGANN, the discriminator takes

{
xi, y′i

}
or {xi, yi} as input. The training goal of discriminator is to discriminate

{
xi, y′i

}
as false

and {xi, yi} as true. The discriminator is trained by minimizing the distance function (LD)
(loss function), which is defined as follows:

LD = L(D({xi, yi}), 1) + L
(

D
({

xi, y′i
})

, 0
)
+ GP (11)
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P =
˘

m

m

∑
i

[
∇xi ,y′i

D
(
xi, y′i

)i
]2

(12)

here, D(∗) represents the output of the D; L is the binary cross entropy, defined as:

L = −[klog(s) + (1− k)log(1− s)] (13)

Based on this loss function, the discriminator can achieve an output of 1 when the
input is {xi, yi} and an output of 0 when the input is

{
xi, y′i

}
, and then discriminates the

wind speed sequence {y1, y2, . . . yn}.
The discriminator outputs a scalar of “0” or “1.” The scalar of “0” or “1” has two

purposes: (1) It can influence and then adjust the weights of the neural network in the
discriminator and maximize Equation (14) through a backpropagation algorithm. (2) It
can be passed to the generator to assist the PSO algorithm to find the optimal hyper-
parameters of the OBLS and then calculate the value of the fitness function Fc, which is
defined as follows:

Fc =
1
n

n

∑
i=1

D(G(x(n))) (14)

where G(∗) represents the output of the generator.

2.5. Prediction Steps of the Proposed HGANN Model

We propose the HGANN model for ultra-short-term wind speed prediction. The flow
chart of the prediction process of the proposed model is shown in Figure 3. CEEMDAN is
used to decompose the raw wind speed data {x1, x2, . . . xn} into multiple modes IMFj(n).
These IMFj(n) are separately sent into the generator (OBLS) of HGANN to obtain virtual
samples

{
y′1, y′2, . . . y′n

}
. The discriminator (WGAN) takes

{
xi, y′i

}
or {xi, yi} as input and

then outputs scalars “1” or “0.” The scalars “1” or “0” are passed to the generator (OBLS)
and the discriminator (WGAN) to participate in iterative model updates. Through the con-
tinuous iterative update, OBLS obtains the optimal value of {NF, NW, NE}. The final wind
speed forecasting values {y1, y2, . . . yn} can be obtained by stacking all forecast values.

Figure 3. Flowchart of the proposed HGANN model prediction procedure.
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3. Case Analysis
3.1. Data Description

To demonstrate the applicability of the proposed model in different locations, we
used datasets from the 50Hertz wind farm in Germany and the Mahuangshan wind farm
in China [26]: HER and MHS, respectively. The HER datasets are freely available at
http://www.netztransparenz.de/ (accessed on 5 October 2021). Both data sets are recorded
for one year and wind speeds are measured in 15 min intervals. We selected wind speed
series from both HER and MHS datasets for March, June, September, and December,
representing spring, summer, autumn, and winter, respectively. Experiments using the four
wind speed series of spring, summer, autumn, and winter can verify the applicability of our
model at different periods. Each series contains 2880 samples. Table 1 shows information
on the selected wind speed data for spring, summer, autumn, and winter.

Table 1. Seasonal statistics of the wind speed data.

Season Mean (m/s) Median
(m/s) Max (m/s) Min (m/s) Standard

Deviation (m/s)

HER data
Spring 1.89 1.53 7.25 0.03 1.47

Summer 0.82 0.63 4.27 0 0.75
Autumn 1.23 0.83 6.65 0 1.19
Winter 1.90 1.60 5.68 0.07 1.35

MHS data
Spring 5.78 5.70 16.50 0.40 2.25

Summer 5.46 5.45 12.50 0.40 2.21
Autumn 5.18 5.20 16.50 0.40 2.33
Winter 4.50 4.27 14.07 0 2.28

In our experiments, the first 80% of the wind speed sequence was used as the training
set, and the rest was used as the test set for ultra-short-term wind prediction. Table 1 dis-
plays the information of the four datasets. The experiments were implemented in MATLAB
R2021b on a 64-bit personal computer with Intel(R) core i5-9300 CPU/16.00 GB RAM.

3.2. Evaluation Index

To comprehensively evaluate the prediction performance of HGANN, four evaluate
indicators were given. MAE can accurately reflect the average value of the absolute error.
MAPE divides the absolute error by the corresponding actual value. RMSE represents the
sample standard deviation between the predicted value and the actual observation value,
which has a very sensitive reflection and can reflect the accuracy of the prediction well. SSE
represents the total error of the model. Their definitions are as follows:

MAE =
1
N

N

∑
i=1
|yi − ŷi| (15)

MAPE =
1
N

N

∑
i=1

∣∣∣∣yi − ŷi
yi

∣∣∣∣ (16)

RMSE =

√√√√ 1
N

N

∑
i=1

(yi − ŷi)
2 (17)

SSE =
n

∑
j=1

(yi − ŷi)
2 (18)

where ŷi is the predicted value and yi is the actual value.

http://www.netztransparenz.de/


Sustainability 2022, 14, 9021 9 of 16

3.3. Comparable Methods

To verify the prediction performance of the proposed HGANN, it was compared with
10 advanced predictive models, involving PSO-ANFIS [34], VMD-GA-BP [35], EEMD-GPR-
LSTM [36], EMD-ISSA-LSTM [37], MWS-CE-ENN [20], CNN [38], WGAN [39], BLS [31],
OBLS, and WGAN-OBLS. Table 2 lists the parameter settings of six comparison methods.
BLS, WGAN, PSO-BLS, and PSO-WGAN-OBLS are the same as those of HAGNN to
perform the ablation experiment for HAGNN.

Table 2. Parameter settings of the models.

Model Parameter Setting

PSO-ANFIS itermax = 300, np = 40, c1= 1.0, c2= 2.0, nr = 4, nv = 52
VMD-GA-BP k = 11, itermax = 150, ep = 100, np = 40, lr = 0.1, nb1 = 9

EEMD-GPR-LSTM k = 11, ep = 200, nb1 = 100, nb2= 100, s1 = 50, σ = 20
MWS-CE-ENN ep = 1000, lr = 0.1, pr = 0.000001, np= 40, ni = 5, nb1 = 6, no = 1, itermax = 100, nstd = 0.2

EMD-ISSA-LSTM ep = 100, lr = 0.005, np= 10, itermax = 20, ve= 0.6, pd= 0.7, pe= 0.2

Proposed Model nstd = 0.01, np = 40, itermax = 100, c1 = 1.5, c2= 1.5, ep = 50, lr = 0.002, λ = 10−30,
nb1 = 48, nb2 = 96, nb3 = 384

In Table 2, itermax is the iterative number; ep is the number of network iterations; np is
population size; c1 and c2 are personal and global learning coefficients, respectively; nr, nv,
ni, and no are the number of rules, variables, input nodes, and output nodes, respectively; k
is the decomposition number of VMD/EEMD; nbi is the number of the ith hidden nodes; lr
is the learning rate of the network; pr is the training requirement accuracy; nstd is the noise
standard deviation in ICEEMDAN/CEEMDAN; ve is the early warning value; pd and ps
are the proportion of discoverers and sparrows aware of danger, respectively; and ˘ is the
regularization parameter for ridge regression.

3.4. Experimental Results

(1) Experiment I: Comparison Between Different Forecasting Methods

We experimentally verified the effectiveness and advancement of the proposed HGANN
by comparing it with PSO-ANFIS, VMD-GA-BP, EEMD-GPR-LSTM, MWS-CE-ENN, and
EMD-ISSA-LSTM. Considering that wind data characteristics show strong seasonality,
experiments were conducted using wind series from multiple seasons to further validate
the predictive performance of the model. We chose the HER and MHS datasets for March,
June, September, and December for this experiment. The training and testing processes
of each of the compared models were repeated 10 times. The experimental results of the
different datasets are presented in Tables 3 and 4, where the first-best predictions are high-
lighted. Figure 4 depicts the wind speed prediction results of the proposed model for the
HER dataset.

Table 3. Forecast results of different models for the HER data.

Season Metrics Proposed
Model PSO-ANFIS VMD-GA-BP EEMD-GPR-

LSTM
MWS-CE-

ENN
EMD-ISSA-

LSTM

Spring

RMSE 0.0065 0.0092 0.0128 0.0105 0.0093 0.0131
SSE 0.0180 0.0365 0.0817 0.0471 0.0370 0.0737

MAPE 0.0300 0.0402 0.0732 0.0493 0.0632 0.0536
MAE 0.0048 0.0068 0.0108 0.0083 0.0071 0.0096

Summer

RMSE 0.0112 0.0172 0.0134 0.0126 0.0152 0.0117
SSE 0.0537 0.1279 0.0768 0.0679 0.0989 0.0586

MAPE 0.0420 0.0641 0.0632 0.0596 0.0730 0.0500
MAE 0.0081 0.0123 0.0099 0.0114 0.0119 0.0093
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Table 3. Cont.

Season Metrics Proposed
Model PSO-ANFIS VMD-GA-BP EEMD-GPR-

LSTM
MWS-CE-

ENN
EMD-ISSA-

LSTM

Autumn

RMSE 0.0088 0.0120 0.0137 0.0126 0.0132 0.0204
SSE 0.0331 0.0615 0.0806 0.0676 0.0746 0.1779

MAPE 0.0422 0.0514 0.0524 0.1177 0.0619 0.0851
MAE 0.0059 0.0077 0.0092 0.0089 0.0082 0.0129

Winter

RMSE 0.0063 0.0090 0.0067 0.0093 0.0104 0.0086
SSE 0.0172 0.0354 0.0190 0.0370 0.0463 0.0317

MAPE 0.0575 0.0880 0.0683 0.0722 0.0923 0.0620
MAE 0.0043 0.0064 0.0047 0.0069 0.0073 0.0056

Table 4. Forecast results of different models for the MHS data.

Season Metrics Proposed
Model PSO-ANFIS VMD-GA-BP EEMD-GPR-

LSTM
MWS-CE-

ENN
EMD-ISSA-

LSTM

Spring

RMSE 0.0237 0.0344 0.0264 0.0276 0.0339 0.0291
SSE 0.2404 0.5054 0.2977 0.3250 0.4918 0.3624

MAPE 0.0724 0.0830 0.1007 0.1055 0.0990 0.0866
MAE 0.0146 0.0244 0.0187 0.0198 0.0229 0.0203

Summer

RMSE 0.0156 0.0267 0.0179 0.0205 0.0189 0.0236
SSE 0.0104 0.3045 0.1375 0.1799 0.1529 0.2384

MAPE 0.0433 0.0857 0.0588 0.0697 0.0680 0.0765
MAE 0.0110 0.0200 0.0136 0.0171 0.0149 0.0192

Autumn

RMSE 0.0166 0.0245 0.0190 0.0183 0.0214 0.0262
SSE 0.1179 0.2570 0.1543 0.1433 0.1960 0.2937

MAPE 0.0410 0.0641 0.0505 0.0439 0.0762 0.0658
MAE 0.0131 0.0185 0.0149 0.0137 0.0170 0.0211

Winter

RMSE 0.0266 0.0394 0.0309 0.0325 0.0286 0.0312
SSE 0.3034 0.6645 0.4075 0.4521 0.3501 0.4166

MAPE 0.0828 0.1698 0.1540 0.1215 0.0937 0.1200
MAE 0.0190 0.0284 0.0228 0.0276 0.0193 0.0257

Figure 4. Forecasting results of HER wind speed data sets: (a) experiment results of spring wind
speed sequences; (b) experiment results of summer wind speed sequences; (c) experiment results of
autumn wind speed sequences; (d) experiment results of winter wind speed sequences.
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Interestingly, it can be seen from Tables 3 and 4 that the proposed HGANN had the
best prediction performance for each of the RMSE, SSE, MAPE, and MAE indicators on
four datasets among all models. Wind speed forecasts at different times or at different
locations may yield different results. Notably, our model achieved promising predictive
results on both the geographically distinct German dataset HER and the Chinese dataset
MHS. Furthermore, our model showed competitive prediction performance for wind
series in different seasons. This indicates that our model can be extended to more general
environments for wind speed prediction.

The abscissa and ordinate in Figure 4 represent the actual wind speed and the predicted
wind speed, respectively; the blue line indicates that the predicted value is equal to the
actual value. The ordinate of the green point is the predicted value, so the fit of the green
point to the straight line reflects the accuracy of the prediction. As can be seen from Figure 4,
the green points are very close to the blue line, which indicates that our model can predict
wind speed effectively.

(2) Experiment II: Multi-Step Prediction Experiment

Multi-step forecasting can be built based on single-step forecasting. Compared to single-
step forecasting, multi-step forecasting is more practical for power systems. Therefore, in
wind speed prediction, multi-step prediction is of high practical value. The experiment
aimed to demonstrate the predictive performance of the HGANN model in multi-step fore-
casting. We selected 2880 samples from 23 August to 22 September from the HER dataset for
the one-step, two-step, and three-step experiments. Performance metrics involved RMSE,
SSE, MAPE, and MAE. Benchmark models covered PSO-ANFIS, VMD-GA-BP, EEMD-GPR-
LSTM, MWS-CE-ENN, and EMD-ISSA-LSTM. The training and testing processes of each
model were repeated 10 times. The experimental results of the proposed model and the
benchmark models are shown in Table 5.

Table 5. Multi-step prediction results for 15 min wind speed.

Model
RMSE SSE MAPE MAE

1-Step 2-Step 3-Step 1-Step 2-Step 3-Step 1-Step 2-Step 3-Step 1-Step 2-Step 3-Step

Proposed 0.0091 0.0136 0.0178 0.0356 0.0679 0.1361 0.0463 0.0712 0.1087 0.0061 0.0098 0.0134
PSO-ANFIS 0.0120 0.0174 0.0238 0.0615 0.1299 0.2428 0.0514 0.0885 0.1270 0.0077 0.0119 0.0161

VMD-GA-BP 0.0137 0.0151 0.0203 0.0806 0.0976 0.1764 0.0524 0.0721 0.1123 0.0092 0.0101 0.0213
EEMD-GPR-LSTM 0.0126 0.0164 0.0192 0.0676 0.1151 0.1578 0.1177 0.1353 0.1536 0.0089 0.0129 0.0157

MWS-CE-ENN 0.0132 0.0176 0.0213 0.0746 0.1326 0.1942 0.0619 0.0826 0.1121 0.0082 0.0172 0.0224
EMD-ISSA-LSTM 0.0109 0.0139 0.0183 0.0508 0.0827 0.1433 0.0503 0.0919 0.1325 0.0086 0.0134 0.0192

From Table 5, it can be seen that the one-step, two-step, and three-step prediction
results of the proposed HGANN model provided lower RMSE, SSE, MAPE, and MAE
values than those of the benchmark models. For instance, the proposed HGANN provided
0.0091 (one-step), 0.0136 (two-step), and 0.0178 (three-step) on RMSE, compared with EMD-
ISSA-LSTM, which provided the predictive results of 0.0109 (one-step), 0.0139 (two-step),
and 0.0183 (three-step). Furthermore, we also provide clear visual results of multi-step
predictions for the six models in Figure 5. The results from Table 5 and Figure 5 indicate
that the proposed HGANN model had the best robustness and the highest wind speed
prediction accuracy among all compared models.
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Figure 5. Multi-step forecasting experiments under RMSE, SSE, MAPE, and MAE indicators: (a) ex-
periment results on the RMSE indicator; (b) experiment results on the SSE indicator; (c) experiment
results on the MAPE indicator; (d) experiment results on the MAE indicator.

(3) Experiment III: Ablation Experiment Between Single Models and Hybrid Models.

To verify the rationality of the proposed HGANN model, it was compared with WGAN-
OBLS, OBLS, WGAN, BLS, and CNN on the HER dataset. The generator of HGANN is
OBLS and its discriminator is the discriminator of WGAN. To emphasize the effectiveness of
OBLS, it was compared with the generator of WGAN, namely, CNN. Similarly, all compared
models were repeatedly trained and tested 10 times. In the HER dataset, 2880 data from
23 August to 22 September were selected for this experiment. The experimental results
are shown in Table 6, where the first-best predictions are highlighted with dark gray
backgrounds. The forecast results for 22 September 2019 are plotted in Figure 6, which also
shows the forecast errors in superimposed shades.

Table 6. Forecasting performances of the proposed model and reference models.

Indicators Proposed Model WGAN-OBLS OBLS WGAN CNN BLS

RMSE 0.0088 0.0119 0.0122 0.0138 0.0221 0.0308
SSE 0.0331 0.0603 0.0642 0.0819 0.2090 0.4058

MAPE 0.0422 0.0506 0.0546 0.0571 0.0601 0.0648
MAE 0.0059 0.0076 0.0080 0.0086 0.0161 0.0164

Figure 6 shows that among all the compared models, our proposed model had the best
curve fitting and the smallest predicted error. The suggested model consistently outper-
formed WGAN-OBLS, PSO-BLS, WGAN, OBLS, CNN, and BLS, as shown in Table 6. This
further demonstrates the advantages of our proposed model, as it combines CEEMDAN,
OBLS, and WGAN.
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Figure 6. Forecasting results in HER dataset (22 September 2019).

Furthermore, first, compared with WGAN-OBLS without CEEMDAN, the proposed
model had better predictive performance due to its covering CEEMADN and WGAN-OBLS,
thus showing the effectiveness of CEEMDAN. Second, compared with WGAN or OBLS,
WGAN-OBLS provided better predictive performance due to combing OBLS and WGAN,
thus showing the effectiveness of OBLS and WGAN in WGAN-OBLS. Third, compared
with BLS, OBLS provided better predictive performance due to using the improved PSO,
thus showing the effectiveness of PSO in OBLS. Fourth, OBLS had better predictive results
compared to the generator of WGAN, namely, CNN. This demonstrates the advantage of
OBLS over CNN as a generator. This may be due to the flexible structure and better error
convergence of OBLS.

4. Discussion

Our model was compared with five advanced models to evaluate its performance and
advantages in various wind sequence experiments. Experimental results show that the
proposed model had better predictive performance. The reasons behind this fact are given
as follows.

First, the wind speed data were one-year data from wind farms in Germany and
China, which cover complex fluctuation characteristics. Therefore, our HGANN model uses
CEEMDAN to smoothen the volatility of the data and improve the predictive performance.

Second, HGANN uses OBLS as the generator to provide a special shallow broad
incremental learning network structure, which can not only be beneficial for improving
prediction accuracy for one-dimensional wind speed prediction compared to CNN but
also greatly decrease computational cost using pseudo-inverse operations to determine the
network weights instead of using convolution operations.

Third, in our HGANN model, the proposed OBLS uses an improved PSO to optimize
the hyper-parameters of its network, which can search in a wider range and obtain the
optimal parameters over BLS. Therefore, OBLS has better generalization ability than BLS.

Finally, HGANN can better extract the deeper features of wind speed data by playing a
minimum–maximum game between the generator and discriminator for wind speed predic-
tion.

5. Conclusions

Although existing various hybrid predictive models have provided competitive per-
formance in ultra-short-term wind speed prediction, they still need to be further improved—
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for instance, how to effectively reduce the computational cost of hybrid predictive models,
and how to effectively deal with the multicollinearity problem of the hybrid forecasting
model based on weighted strategy, which leads to the problem of reduced forecasting
accuracy. To enhance the predictive power and decrease the computational cost, this paper
proposes the HGANN model for ultra-short-term wind speed forecasting. HGANN is a
generative adversarial network in which the generator and discriminator play against each
other to obtain wind speed predictions with high accuracy. In HGANN, we developed
OBLS and the convolutional structures as the generator and the discriminator, respec-
tively, which enables them to obtain effective synergies to improve predictive performance.
Particularly, OBLS involves a special shallow broad incremental learning network struc-
ture, which can effectively deal with one-dimensional wind speed data. Furthermore,
the shallow network structure of OBLS can also significantly decrease computational cost
via using pseudo-inverse operations rather than convolution operations. In addition, the
proposed OBLS applies an improved PSO to obtain the optimal network hyper-parameters.
CEEMDAN performs noise reduction and decomposition of the wind data. Via the above
rational combination, the proposed HGANN provides high predictive accuracy and gener-
alization ability with low computational cost in ultra-short-term wind speed prediction.
The experimental results indicate the above fact. For instance, the RMSE predictive errors
of the proposed model were 29.35%, 49.22%, 38.09%, and 30.10% compared to the four
state-of-art predictive models PSO-ANFIS, VMD-GA-BP, EEMD-GPR-LSTM, and MWS-
CE-ENN on the spring wind data of the HER dataset, respectively. In the future, we plan to
use parallel computing to speed up the process of PSO optimization of BLS during training.
Furthermore, the proposed HGANN will be extended to a wider range of applications,
such as financial time-series forecasting, electricity-load forecasting, traffic forecasting, etc.
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Nomenclature

ANFIS Adaptive-network-based fuzzy inference system
BLS Broad learning system
BP Back propagation
CEEMD Complementary ensemble empirical mode decomposition
CEEMDAN Complete ensemble empirical mode decomposition with adaptive noise
CNN Convolutional neural network
EEMD Ensemble empirical mode decomposition
EMD Empirical mode decomposition
GA Genetic algorithm
GMDH Group method of data handling neural network
GNN Graph neural network
GAN Generative adversarial network
GPR Gaussian process regression
ICEEMDAN Improved CEEMDAN
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IMF Intrinsic mode function
IOWA Induced ordered weighted averaging
LSTM Long short-term memory
MAE Mean absolute error
MAPE Mean absolute percentage error
MTO Multi-tracker optimizer
PSO Particle swarm optimization
OBLS Optimized broad learning system
RBF Radial basis function
RMSE Root mean square error
SSE Sum of squared error
SVR Support vector regression
VMD Variational mode decomposition
WGAN Wasserstein generative adversarial network
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