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Abstract: Emergency medical service (EMS) base allocation plays a critical role in emergency medical
service systems. Fast arrival of an EMS unit to an incident scene increases the chance of survival and
reduces the chance of victim disability. However, recently, the allocation strategy has been performed
by experts using past data and experiences. This may lead to ineffective planning due to a lack
of consideration of a recent and relevant data, such as disaster events, population density, public
transportation stations, and public events. Therefore, we propose an approach of the integration of
using spatial risk factors and social media factors to identify EMS bases. These factors are combined
into a single domain by using the kernel density estimation technique, resulting in a heatmap.
Then, the heatmap is used in a modified maximizing covering location problem with a heatmap
(MCLP-Heatmap) to allocate ambulance base. To acquire recent data, social media is then used
for collecting road accidents, traffic, flood, and fire incidents. Additionally, another data source,
spatial risk information, is collected from Bangkok GIS. These data are analyzed using the kernel
density estimation method to construct a heatmap before being sent to the MCLP-heatmap to identify
EMS bases in the area of interest. In addition, the proposed integrated approach is applied to the
Bangkok area with a smaller number of EMS bases than that of the existing approach. The simulated
results indicated that the number of covered EMS requests was increased by 3.6% and the number of
ambulance bases in action was reduced by approximately 26%. Additionally, the bases defined by
the proposed approach covered more area than those of the existing approach.

Keywords: emergency medical service base allocation; covering model; kernel density estimation;
social media information

1. Introduction

At present, rescue squads in many countries are encountering the problem of coping
with incidents that cost people lives and properties, e.g., natural disasters, terrorism,
political protests, chemical storage explosions or diseases. In a rescue squad, an emergency
medical service (EMS) is vital for victims [1–3]. Recent research reveals that survival rate
was increased and severe injury chance was reduced for the victim when an EMS unit
reached the scene of the incident within 8 min [4,5]. Therefore, it is necessary that the
EMS unit must always be ready and on stand-by close to the incident scene so that the
service can reach the scene as soon as possible. Generally, an EMS base is defined by the
experienced officer. Their decision primarily relies only on the demand factor. The decision
for the allocation of EMS bases is irrespective of other factors that may not be suitable for
an ever-changing environment.
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In Bangkok, there are currently 49 EMS bases (http://ws.niems.go.th/ITEMS_DWH/:
information technology for emergency medical systems of Thailand, accessed on 1 April
2020). Proportional to the area, 49 bases is a very high number because it was designed
such that the travelling time from the nearest base to the incident scene can be minimized
regardless of whether this number (49 bases) is optimal or not. Not only the number of
EMS bases can affect the travelling time, but a base location that is allocated closed to
high-population areas can also reduce the travelling time [6]. In Bangkok, the ratio between
population and an EMS base is 108.16, compared to that of Vienna, Rome, and Amsterdam,
which are 360.51, 279.0, and 545.3, respectively [7–10]. The ratio of Bangkok is the lowest,
implying that the EMS unit travelling times are high because the unit cannot respond to real-
time incidents due to base location, traffic, protocol, and management [11]. Recently, EMS
bases have been allocated based on the management person’s experience. This allocation
strategy is unlikely to be optimal [12]. By using their experience, the management person
reduced the high travelling time by adding new EMS bases. However, the growth in the
number of EMS bases seems to overly consume the resources. Therefore, the allocation
strategy must be changed to reduce the number of EMS bases and also the travelling time.

Recent research presents mathematical models, i.e., the covering model, for EMS base
allocation problems that mostly considered demand factors and the population density
factor, so called spatial risk factor, which is a vital factor for EMS base planning [13]. This is
consistent with research by [14,15] that examined factors affecting the planning of EMS base,
which can be divided into two types: firstly, demographic factors, for example, housing
density population in each area, workplaces with a high number of employees, community
sites, or public events with many participants. Secondly, geographic factors, such as areas
at risk of flooding, areas that are at risk of accidents, etc. Those factors are related to the
opportunity to call for EMSs.

Social media is emerging as an important technology for emergency response. [16]
proposed an integration of social media data streams to efficiently identify a real-time EMS
base from the data stream from social media such as Twitter [17]. As an alternative to GIS
data [18], Social media can be thought of as social sensors that closely investigate incidents
or disasters such as a flood or earthquake [19]. Although social media factors and spatial
factors were proposed, they have not been integrated to construct a covering model for
an effective EMS base allocation. Therefore, this paper proposes integration of spatial risk
factors and social media factors to generate heatmaps of risk. Then, a mathematical model,
an improved MCLP-LF, is developed to make a decision for the EMS base allocation based
on the density generated by the heatmaps.

Our paper is organized as follows: Section 2 presents the background of some related
works, a utilization of spatial and social media data, multivariate density estimation, and a
covering model. The proposed approach of allocating EMS bases by using social media
and spatial factors is depicted in Section 3. The viability of our approach is demonstrated in
the Bangkok area, and its results are discussed in Section 4. The discussions are presented
in Section 5. Section 6 presents the conclusions and the future research direction.

2. Background

The strategy of the EMS allocation is divided into three levels to help the vehicle to
reach the incident scene effectively, namely strategic level, tactical level and operational
level [20]. Managing the standby site allocation in this study is considered as the strategic
level. Two levels of data are required: static (gradually changed data, e.g., annual data)
and dynamic (frequently changed data, e.g., monthly, weekly, daily or real-time data) [16].
In this paper, we present an allocation strategy integrating a covering model with utilized
spatial and social media information for collecting data in the form of both static and
dynamic characteristics. All the data are analyzed using the kernel density estimation
method to construct a heat map. Then, the map is used in the modified maximizing
covering location problem.

http://ws.niems.go.th/ITEMS_DWH/
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2.1. A Utilization of Spatial and Social Media Data

There have been several studies utilizing spatial and social media data in both static
and dynamic environments. The data were used to plan for emergency situations. [21,22]
suggested that most people interact via social media in daily life. They not only talk to
others, share their memorable moments or run their businesses on social media, but also
use it as a place to report incidents or emergency situations such as disasters, terrorism or
exhibitions being crowded. The authors suggest that the use of social media provides a lot
of benefits over the existing approach. For example, the collection of data can be performed
quickly or in real time. Due to this advantage, there are several studies that used the data
from social media to plan for EMS bases.

Refs. [14,23] studied the factors that affect the management of EMS. They defined
two types of factors, which are: 1. Demography, which is the factor describing population
and habitation in the area. 2. Geography; this factor describes a correlation between
number of medical service requests and other parameters such as population habitation
and geography. The authors concluded that a rise in the population increases the number of
medical service requests. They also studied the relationship among multiple factors such as
vehicle speed, road conditions, traffic, weather, population, workplace, temperature, special
events, etc. In addition, in the case of images containing demography and geography data,
some data extraction techniques based on deep learning method may be used [24,25].

Refs. [26,27] used data from social media to develop a decision-making tool to allocate
EMS bases. The results showed that an event that shares data on social media can be
used as a data source for computing a chance of medical service requests. The study
developed a mathematical model utilizing geographical data to support the decision.
This is in accordance with [28], who utilized social media and spatial data to develop a
risk assessment model for medical service requests. They also constructed an EMS base
allocation model based on multiple factors, i.e., the number of accidents, type of accident,
population, number of elderly people, and number and size of public events.

2.2. Multivariate Density Estimation

Multivariate density estimation is a statistical technique used in geographical analysis.
It describes spatial data such as population distribution, population density, and risk map.
Ref. [29] proposed spatial density estimation, which consists of two major components:
1. Statistical techniques used to estimate the density and distribution of the data and
2. Visual presentation

Refs. [30,31] investigated multivariate spatial density estimation methods, i.e., his-
tograms, naive estimator, kernel estimator, and the nearest neighbor method. The results
showed that the most frequently used was histograms and kernel estimator. These tech-
niques can accurately predict the incident area and allocate the EMS base.

Refs. [32,33] suggested that EMS bases for road accidents should be allocated using
accident history and risk maps constructed using kernel estimator. Kernel estimator
provides three advantages: 1. It does not require an expert to estimate the maps and
interpret the results. 2. This technique requires less computational time than the other
techniques compared. 3. It provides more accuracy than the other techniques compared.
Recent research shows that kernel estimator is one of the most frequently used techniques
that is used to predict EMS requests. It is also used to construct heatmaps.

Refs. [34,35] used kernel estimator to estimate the chance of crime in an area of
interest by using criminal history to construct a heatmap that describes frequency of crime.
Likewise, [28,36] constructed a heatmap to investigate unusual events represented by the
color. The author used color temperatures to describe the risk of receiving EMS.

Kernel Density Estimators

Kernel density estimators (KDE) are nonparametric estimators of both univariate and
multivariate densities. There are several articles about its properties. It has been used in
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a wide range of applications [29,31,37]. The KDE technique is also used to estimate the
spatial density between two points to determine the density of the area.

The general form of a kernel estimator is:

∧
λ(s) = ∑n

i=1
1
τ2 k

(
s− si

τ

)
(1)

where
∧
λ(s) is the estimate of the density of the spatial point pattern measured at location

s, si is the observed ith event, k() represents the kernel weighting function, and τ is the

bandwidth. Figure 1 illustrates parameters used to compute KDE
∧
λ(s).
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The KDE function allows one to estimate the intensity of a point pattern and to
represent it by means of a smoothed three-dimensional continuous surface that represents
the variation in density of point events across the study region. The procedure can be
organized in three steps [38]:

1. A fine grid is placed over the study region and the distribution of events;
2. A moving three-dimensional function visits each cell and calculates weights for each

point within the function’s radius (threshold or bandwidth). In most of the kernel functions
considered, events closer to the center are given a higher weight than those located at
the edge of the search function, therefore contributing more to the reference cell’s density
value; and

3. Grid cell values are calculated by summing the values of all surfaces for each
location.

The routine therefore calculates the distance between each of the reference cells and
the event’s locations, evaluates the kernel function for each measured distance, and sums
the results for each reference cell.

2.3. A Covering Model

The location-allocation problem is an approach that optimally organizes the service
locations to sufficiently serve the demands in the area of interest [39]. This problem has
drawn a large portion of interest in recent research [40].

Generally, there are two models used to solve location-allocation problems: the p-
median model and covering model. For p-median, a number of service spots, called p, are
allocated in the area of interest such that travelling time from the nearest service spot to the
demand point is minimized [41], while the covering model aims to establish service spots
such that the travelling time or distance from the nearest service spot to the demand point
is under the threshold [42].

In this research, we prefer the covering model because we have set the travelling time
threshold at 8 min, referring to [4,5] that the survival rate was increased and severe injury
chance was reduced for the victim when an EMS unit reached the incident scene within
8 min.
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For the covering model, to solve EMS base allocation problems, [43,44] proposed
covering models to allocate EMS bases to sufficiently serve the need of medical services in
a specific area. A model for the location set covering problem (LSCP) proposed by [45] is
regarded as the first covering model. It was developed to minimize the number of ambu-
lances and their bases that sufficiently provide a service in the area of interest. Then, [46]
proposed the maximum covering location problem (MCLP) to allocate EMS bases to cover
the need in a specific area with limited resources. [11] proposed the maximum covering
location problem with location forced (MCLP-LF). This model describes the forced selection
of an area as an EMS base from a control chart that is constructed based on data from social
media. In this study, maximum covering location problem with location forced (MCLP-LF)
was chosen as a model for improvement by applying spatial factors and social media
information.

3. Our Proposed Approach

Parameters:

γj: The density level of the area j obtained from kernel density estimation.
Ri: The lowest density level that is used to forcibly select the standby site in area i.
di: Demand in area i.
p: Number of possible EMS bases.
M: A large number.

Decision Variables:
xj:

{
1
0

If area j is allocated for a standby site.
Otherwise.

yi:
{

1
0

If area i is covered by at least one standby site.
Otherwise.

Indices:

i: Area index; i ∈ V.
j: Possible EMS base index; j ∈W.

Sets:
V: A set of area.
W: A set of possible EMS bases.
Wi: A set of EMS bases that covers area i.

As described earlier, our proposed approach is an integration of spatial risk factors
and social media factors to generate heatmaps. Then, the density from the heatmaps is
used in the decision-making process using an improved MCLP-LF. To demonstrate our
proposed approach, we divide it into four steps: data collection, data preparation and
analysis, decision making, and model validation using simulation, as shown in Figure 2.
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3.1. Data Collection

There were two types of factors collected in this work:
1. Spatial factors were collected from the department of public works and town and

country planning. The factors include hospital location, community location, etc.
2. Social media factors were obtained from social media users (verified Twitter users),

such as Thailand traffic radios, e.g., JS100 Station (@js100radio). Their Twitter accounts
report traffic and unusual events (accident, exhibition, public event).

Figure 3 shows the data transformation process from social media (Twitter) to the
location of an incident after receiving message reports with unusual incident events being
tweeted, such as accidents, fires, or floods. Usually, those messages are in text format
and contain unnecessary text for analysis, for example, retweeted posts or advertising.
Therefore, before using the data, the tweeted text must be cleaned by eliminating these
irrelevant details. Then, we must identify where incidents occur by locating road names or
places in the cleaned messages. Next, the accidents with their location will be transformed
to a spot on a real map.
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3.2. Data Preparation and Analysis

In this step, spatial and social media data are taken into kernel density estimation. The
results obtained from kernel density estimation are presented in a heatmap. The colors
in the map represent the density of risk factor in such an area, ranging from a red color,
representing a high density of risk factors to a dark green color, representing a low density
of risk factors. In this work, five levels of density are defined with five different colors, as
used in [47], which identify and prioritize the most critical regions in an area prior to the
occurrence of the natural disaster. The meaning of each level is shown in Table 1.

Table 1. Colors representing density levels and meaning of each level.

Color Meaning Density Level
Red Very high chance of emergency medical service request 5

Orange High chance of emergency medical service request 4
Yellow Moderate chance of emergency medical service request 3

Light Green Low chance of emergency medical service request 2
Dark Green Very low chance of emergency medical service request 1

3.3. Decision Making

After the map is generated, a covering model [11] will forcibly select the EMS base
in very-high- and high-density areas on the map. Then, the other standby sites will be
identified using a covering model. However, in this work, we proposed a constraint to
the model (Equations (2)–(7)) to select the standby site. Our assumptions of the modified
covering models include that the demands in different time periods are independent; in
each time period, the demand is deterministic and determined by data collected from
social media (Twitter application). Note that in real-time situation, the demand can be
forecasted [48]; all location bases must be available to set as an ambulance base; it is
assumed that social media and communication infrastructure are available at all areas;
and for each location, only one ambulance/base can be assigned. The modified covering
models are described as follows:
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Objective Function
Maximize ∑i∈V diyi (2)

Equation (2) is the objective function used to maximize the area that is covered by the
EMS bases which is subjected to the following constraints.

Subject to
∑j∈Wi

xj ≥ yi; i ∈ V (3)

Equation (3) is a constraint that describes that an area needing medical service (yi)
must be covered by at least one EMS base xj (xj).

∑j∈Wi
xj ≤ p (4)

Equation (4) says that the total number of allocated EMS bases (xj) must not exceed
the total number of allocable EMS bases (p).

β j ≤ xj; j ∈W (5)

In Equation (5), an unusual situation area or an area that lies outside the boundary in
the control chart (β j) must be forced to allocate an EMS base (xj).

xj ∈ {0, 1}; j ∈W (6)

yi ∈ {0, 1}; i ∈ V (7)

Equations (6) and (7) say that (xj) and (yi) are binary variables.
Although MCLP-LF utilizes data from social media to select an area, it lacks efficiency

in utilizing spatial data because the model considers the request for medical service only
from recipients calling. Therefore, this research proposes an improvement in the MCLP-
LF by changing from a forced selection of an area by using a control chart to a forced
selection of an area by using the spatial density, which is approximated using the data from
social media.

γj − Ri ≤ M·xj −
(
1− xj

)
; j ∈W, i ∈ V (8)

This constraint forces that a standby site must be placed on any area that has a density
level γj higher than Ri.

3.4. Model Validating Using Simulation

In this step, the effectiveness of the assigned standby sites using the proposed approach
and the existing standby sites are compared. Network analysis is used to analyze the
distance to reach an incident scene. The distance is measured from the standby site to the
incident scene along possible roads in the area of interest. The analysis tool used in this
step is the location-allocation technique. The testing steps are as follows and are shown in
Figure 4:

1. Determine the ambulance bases obtained from the proposed covering model and the
ambulance bases allocated by the existing approach (management person’s experience)
for use in the simulation.

2. Determine EMS request (empirical distribution)
3. Analyze the road network using the location-allocation technique based on real roads.
4. Compare the results in terms of bases, demand access, and average distance.
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4. A Demonstration in Bangkok Area and Its Results
4.1. General Data of the Area of Study

In this study, Bangkok, Thailand is selected as the area of interest. It has 50 districts
covering 1568.74 km2. The population is 5,993,656. According to a report from Road
Accident Victims Protection Company Limited (Accessed: 15 April 2020) [49], there were
52,187 cases of road accidents in 2020, which caused 61,960 deaths and injuries combined.
Primarily, Emergency Medical Foundation of Thailand (EMFT) is responsible for EMS
in Bangkok. In 2020, EMFT had 156 EMS units in Bangkok, of which 59 were advanced
emergency service units. There were 133 medical service requests/day. The number of
incident scenes reached was 22,968 times/year. The time taken to reach the incident scene
was 9 min or longer.

4.2. Spatial Data and Social Media Data
4.2.1. Spatial Data

We collected general data and road data in Bangkok from [50–52] and take the data
of interest as suggested by [53]. The total number of roads in the area is 2413 and several
types of places in the area are shown in Table 2.

Table 2. Spatial Data in Bangkok.

No. Type of Place Number

1. Risky Intersection 81
2. Community 2011
3. BTS (skytrain) 30
4. MRT (metro) 18
5. Fresh market 148
6. Flood area 323
7. Shopping mall 127

Total 2738
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4.2.2. Social Media Data

Twitter is an extremely trendy social media platform in Thailand, with over 5.3 million
users (18% increase since 2015), and most of these users are active on mobile devices (EPC
Global Social Media Trends 2015). In this research, social media data were used from
official/reliable news agencies, i.e., @JS100radio, @Thairath_News, and @FM91_Trafficpro.
The collection began with searching keywords related to road accident reports, fire reports,
and flood reports in the Bangkok area. The data were collected for 1 month in March 2020
with a total of 3521 messages, and after that the redundant and irrelevant messages were
cleaned/filtered for representation in a heatmap (Table 3); moreover, the 1-month accident
data pattern is used to demonstrate monthly service demand. In this work, the importance
of each incident is assumed to be equal since we cannot guarantee the seriousness of the
damage occurring in each incident.

Table 3. Data collected from social media.

Incident Keyword Report Frequency

R
oa

d
A

cc
id

en
t

Two-car clash 6
Car-motorcycle clash 5
Car hit Street-isle 3
Two-motorcycle clash 5
Lost-controlled motorcycle 7
Fallen motorcycle 3
Two-truck clash 7
Truck fall off the road 1
Car, truck and motorcycle clash 1
Flipped SUV 1
Lost-controlled car 1
A car clash 19
Lost-controlled car hit 2
Lost-controlled soil grader 1
Motorcycle clash 25
Car clash 31
Van-motorcycle clash 1
Trailer clash 5
Lost-controlled trailer 1
Truck clash 11
Lost-controlled clash 2
Accident 95

Total 233

Fire
Fire 73

Total 73

Flood
Flood 7
Water waiting to drain 3

Total 10

Total Incident 316

4.2.3. Kernel Density Estimation

The results from kernel density estimation are the density values that will be used to
identify the temperature of each sub-area in the heatmap shown in Figure 5. The whole area
is divided into 187 sub-areas (blocks). The estimated density in each sub-area is matched
with the density level. Then, the level color is painted onto the sub-area.
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4.2.4. EMS Base Allocation

To allocate the standby site, an MCLP-heatmap model is used. From the optimiza-
tion results, 48 standby sites are allocated, which cover 369 possible EMS request spots
throughout Bangkok, as shown in Figure 6. Figure 7 shows the heatmap with sub-area
numbers. The red crosses in sub-areas represent the allocated standby sites. A summary of
the allocated standby sites is illustrated in Table 4.
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Table 4. Summary of the EMS base allocation.

Subarea Standby Site

2, 9, 16, 17, 20, 23, 26, 45, 46, 47, 48, 52, 55, 56, 66, 67, 68, 69, 79, 84,
87, 88, 89, 93, 96, 102, 103, 107, 108, 109, 118, 121, 126, 127, 128, 129,
130, 131, 132, 142, 145, 147, 152, 154, 171, 173, 176, 184

Allocated (48 bases)

1, 3, 8, 10, 14, 21, 22, 24, 25, 28, 29, 31, 32, 34, 42, 44, 49, 50, 51, 65,
70, 71, 73, 75, 76, 77, 78, 80, 82, 83, 86, 91, 92, 94, 95, 99, 104, 106,
110, 111, 112, 113, 114, 115, 117, 119, 120, 122, 123, 124, 125,133,
135, 137, 138, 140, 141, 143, 144, 146, 148, 149, 151, 153, 155, 156,
157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170,
172, 174, 175, 177, 178, 179, 180, 181, 182, 183, 185, 186, 187

Not Allocated (139 bases)

Table 4 presents the allocated and unallocated EMS bases in Bangkok. Based on the
generated blocks, there are 48 allocated areas and 93 unallocated areas.

4.2.5. Simulation Results

The results obtained from the MCLP heatmap are validated by a simulation technique.
The events with EMS requests were simulated. A total of 187 daily requests were randomly
generated with 10 replicates, as shown in Table 5. In the simulation model, the number
of standby sites in action was 36.6–36.7 bases with 95% confidence interval, which was
approximately 26% less than the existing standby sites (46.8–49.6 bases).

Table 5. The comparison for the results between MCLP heatmap and current EMS bases.

No.
MCLP-Heatmap (48 Locations) Current Emergency Ambulance Bases (59 Locations)

Bases Demand
Access

Avg. Dist.
(Meter) SD. Bases Demand Access Avg. Dist.

(Meter) SD.

1 40 183 3554.91 1912.85 46 175 2922.16 2135.74
2 38 184 3437.11 1814.99 47 179 3162.5 2338.56
3 34 182 3473.40 1811.34 45 179 3234.4 2424.14
4 38 186 3446.99 1887.49 49 178 3094.18 2188.60
5 39 183 3389.75 1994.36 51 174 3026.53 2100.30
6 37 179 3555.87 1934.54 49 174 3157.67 2363.94
7 36 183 3215.01 1875.58 48 179 3104.8 2337.71
8 40 185 3461.70 1833.09 50 177 3062.48 2287.46
9 41 184 3432.11 1916.46 50 176 3299.99 2542.19
10 38 182 3619.93 1992.12 47 175 3290.46 2497.60

CI 95% (36.6, 36.7) (181.7, 184.7) (3387, 3562) - (46.8, 49.6) (175.1, 178.1) (3019, 3235) -

Then, the traveling distances from the standby sites allocated by two approaches to
the incident scenes are compared. The standby sites allocated using the proposed approach
yielded a traveling distance of 3387 m to 3562 m, while the existing approach yielded a
traveling distance of 3019 m to 3235 m.

However, the standby sites allocated by the proposed approach covered 181.7 to 184.7
EMS requests, while those of the existing approach covered 175.1 to 178.1 EMS requests
(3.6% increased).

In summary, the standby site allocation using the proposed approach is different from
that of the existing approach with 95% confidence interval. The number of standby sites
provided by the proposed approach is lower than that of the existing approach. However,
with the proposed approach, the traveling distance to reach the incident is longer than
that of the existing approach because there are fewer standby sites, but they are better
distributed. An example of the simulation of the MCLP heatmap model is shown in
Figure 8.
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Figure 8. An example of the simulation of the MCLP heatmap model where “C” represents EMS
base, dot represents EMS-requested location and red line represents the distance from an EMS base
to an EMS-requested location.

5. Discussion

Recently, most EMS bases have been planned using expert experiences. The incident
report history was the only factor used to allocate the EMS bases. Other factors that can
affect the chance of requesting EMS were not considered, such as spatial and social media
data. However, at present, data from social media can be utilized to better plan EMS bases
because the data are fresh and real-time. There have been studies [16,25,26] that utilized
social media data to monitor emergency incidents and capture it as data for EMS base
allocation. However, those works did not use the data to create a decision-making tool.
This work used social media data to create a decision pattern for EMS base allocation.

This study also utilizes geographical analysis. Kernel density estimation was used
as an analysis tool because it is not complicated and provides as good results as the other
complex methods. The results from the estimation were then used with an optimization
technique to construct a visualization tool, a heatmap that was a decision-making tool. This
is in accordance with [32]. The author used the kernel density estimation to assess risk of
emergency incident occurrence in an area of interest.

In the decision-making step, we proposed an MCLP heatmap model to identify the
EMS bases. Similarly, [11] proposed a mathematical model to identify the minimum number
of EMS bases to cover an area of interest. However, those authors considered data from
accident history and traffic to identify the standby site, while this work relied on social
media and spatial data. We believe that the model proposed by the two studies can provide
comparable results. Users may use these works as reference and select factors that are
suitable for the area of interest to achieve the best results.

6. Conclusions and Future Work

This paper presents integrating spatial risk factors with social media data analysis
for an EMS base allocation strategy in Bangkok. These factors are combined into a single
domain by using kernel density estimation techniques, resulting in a heatmap. Then, the
heatmap is used in a modified maximizing covering location problem with a heatmap
(MCLP heatmap) to allocate an EMS base. The results indicated that the number of covered
EMS requests was increased by 3.6% and the number of EMS bases in action was reduced
by approximately 26%. Although the cost of emergency planning management should not
be considered the highest priority, efficient planning should be considered simultaneously.
As a result, the bases defined by the proposed approach covered more area than that of the
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existing approach and responded to a higher number of service requests. Our approach
can be used as an alternative for EMS base allocation planning.

Since the data used in this work are in a near real-time environment, the allocated
EMS bases were not relocated according to real-time incidents. Additionally, a decision-
making tool for real-time EMS base relocation is still missing. However, in the future, if
our proposed approach is applied to larger areas, applied to larger populations or used
with more factors or real-time environments, additional tools can be used to help reduce
the computational time, such as K-means clustering. Currently, the proposed approach can
be used to plan EMS bases in Bangkok and other areas, which may have different factors
affecting the decision. Additionally, weighting techniques can be applied to each factor to
rank the importance, which is applicable for other applications. In addition, the number of
accidents was collected from only Twitter, but using it as the main source of information
could be biased. Therefore, other sources such as traffic congestion should be considered.
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