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Abstract: The friction coefficient is one of the dominant parameters affecting vehicle driving stability
on horizontal curves. However, there is no comprehensive framework to assess the traffic safety
on the horizontal curve with the evolution of the friction coefficient caused by the traffic flow. In
light of this, this paper developed an integrated risk-assessment framework to evaluate the safety on
the horizontal curve with the friction coefficient evolving under different traffic characteristics. The
speed distribution on the horizontal curve of the freeway is obtained through field experiments that
serve as the basic parameters of the model. A new multi-vehicle risk index (MRI) is introduced to
assess the traffic safety risk for the horizontal curve by coupling the reliability theory and negative
binomial. Three traffic characteristics are considered in the analysis: cumulative traffic volume (CTV),
annual average daily traffic (AADT), and average daily traffic of heavy goods vehicles (AADTHGV).
The results show that the AADT and AADTHGV have a considerable impact on the road risk level.
When the truck traffic volume is less than 1000 veh/d, the risk of horizontal curves changes less as
road operational time goes. The research results can provide a reference for the road maintenance
department to determine the timing of road maintenance.

Keywords: traffic safety; horizontal curve; reliability theory; pavement friction evolution; traffic flow

1. Introduction

The friction coefficient of the road surface seriously affects the accident risk on the
highway. Especially on horizontal curves, an insufficient friction coefficient will signifi-
cantly increase the severity of traffic accidents. According to the National Highway Traffic
Safety Administration (NHTSA), approximately 6.4 million people in the United States
are involved in traffic accidents each year, 3 million people are injured in these accidents,
and 42,000 people have died. Among these accidents, fatal accidents related to wet roads
accounted for 13.5%, and traffic accidents accounted for 25% [1]. Furthermore, according
to the accident data provided by the Texas Department of Transportation (TxDOT), Bud-
dhavarapu, et al. [2] analyzed the traffic accidents that occurred on the horizontal curve
from 2006 to 2009. They found that there is a significant negative correlation between
the lateral friction coefficient of the horizontal curve and the severity of the accident. In
other words, an insufficient friction coefficient will significantly increase the severity of the
accident. Therefore, sufficient road friction coefficient is of great significance to ensuring
road traffic safety.

The friction coefficient from the road is defined as the resistance to motion between
the vehicle tires and road surface. It is mainly dependent on the road surface texture, which
is defined by two scale levels: micro-texture and macro-texture [3]. Macro-texture helps
induce friction for vehicles travelling at high speeds and the micro-texture is related to
low slip speed friction [1]. However, the road surface texture varies under the polishing
of cumulative traffic volume (CTV) [4]. It is worth noting that these variations of the
surface texture due to traffic polishing will reduce the pavement friction resistance [3,5].
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The low friction may result in potential skidding risk for the vehicles on the horizontal
curve [6,7]. Specifically, when the vehicles traverse a horizontal curve, the friction supply
from pavement plays a critical role against the centrifugal force to stay driving stability of
vehicles [8]. If the friction coefficient supply from the road can’t meet the friction demand
for turning, the vehicles will be involved in departure [1,9]. Therefore, it is significantly
worthy to investigate the effect of the friction evolution due to polishing for traffic safety
on the horizontal curve.

Some efforts have been made to investigate how the friction on the curves affects traffic
safety. The studies could be divided into two categories: crash-data-based approach and
the proactive one. For the former, statistic models, such as the probit model and Poisson
model, etc. are commonly adopted in the analysis [2,10,11]. For instance, Buddhavarapu,
Banerjee, and Prozzi [2] utilized an ordered probit (OP) response model for crash-level
injury severity analysis by integrating a crash and pavement surface database. Historical
crash and friction data are collected to conduct safety analysis in their research. They found
that significant correlation is evident between pavement friction and crash injury severity.
Nevertheless, there are key limitations associated with crash data including under-reporting
and unobserved heterogeneity [12–14]. Hence the proactive studies have been conducted
to investigate impact of the horizontal curve friction on traffic safety. For example, based
on the reliability theory, Echaveguren, Bustos, and de Solminihac [9] proposed a limit
state function determined as the difference between friction supply on the exiting road
and friction demand. A nice concept was developed to evaluate the safety margin on
the existing road in their works. However, they did not consider the impact of friction
coefficient changes on traffic safety. Although You, et al. [15] had conducted some attempts
to address this issue, the friction factors were determined by authors’ assumption in their
models, lacking guidance for policy and practice. Traffic flow is one of the critical factors
leading to the reduction of the friction coefficient during the road operation, but as far as
we know, the influence of friction evolution due to traffic polishing for traffic safety is still
not investigated.

In order to understand the relationship between the evolution of friction and the traffic
safety, this paper proposed a novel risk assessment framework to evaluate the effect of the
friction evolution due to traffic on safety for horizontal curves. The reliability theory is
employed to calculate the single-vehicle skidding probability for cars and heavy goods
vehicles. Then a multi-vehicle risk index is developed to analyze the multi-vehicle safety on
horizontal curves by combining the single-vehicle failure probability and negative binomial.
The research results can evaluate the risk of existing roads in different operational periods
and provide a reference for road maintenance departments to determine the timing of
road maintenance.

In the following sections, the methodology proposed in this paper will be introduced
and followed by an intelligible numerical study.

2. Methodology

A risk-assessment framework is developed by combining reliability theory and neg-
ative binomial to investigate the influence of friction coefficient evolution due to traffic,
and it is shown in Figure 1. The friction demand mainly depends on the speed of vehicles.
The road friction evolution model proposed by Hofko, et al. [16] is utilized to determine
the friction supply. Then a skidding limit state function is set up by difference between
the friction supply and the friction demand. After that, the reliability theory is used to
calculate the single-vehicle skidding probability (SSP). Finally, a multi-vehicle risk index
is developed by SSP and a negative binomial. The specific process is described in detail
as follows.
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2.1. Single-Vehicle Risk Assessment Model
2.1.1. Evolution of Friction Supply

Under the effect of long-term polishing of traffic volume, the friction coefficient
of the road surface will decrease. Hofko, Kugler, Chankov, and Spielhofer [16] used
the cumulative traffic volume (CTV) and the average annual traffic flow of heavy goods
vehicles (AADTHGV) to establish the friction evolution model of the SMA asphalt pavement,
expressed by Equation (1):

f60 = −0.039 ln(PP) + 0.7357, (1)

where f60 is the the road friction coefficient when the vehicle speed is 60 km/h, and PP is
the number of polishing times of traffic flow, given by Equation (2):

PP = 5336.6× CTVW,HGV − 5099.5 , (2)

where CTVW,HGV is the weight of traffic flow, calculated by Equation (3):

CTVW,HGV =
CTV × AADTHGV

106 × 104 , (3)

where CTV is the cumulative traffic volume (veh), and AADTHGV is the average annual
traffic flow of heavy goods vehicles (veh/d).
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Equations (1)–(3) can calculate the friction coefficient f60 under the polishing of dif-
ferent traffic levels, but this model is only applicable when the car speed is 60 km/h.
Wambold, et al. [17] provided a model to calculate friction coefficient at different driv-
ing speeds:

fV = f60 × exp
(

60−V
SP

)
, (4)

where fV is the friction coefficient when the car speed is V, V is the driving speed (km/h),
and Sp is the speed constant (km/h) and its value is related to the pavement texture. The
Equation is expressed as below:

Sp = a + b× TX , (5)

where a, b are the constants of texture structure measuring equipment. The values of
reference Donnell et al. [18] are a = 14.32, b = 89.7. TX is the mean profile depth (MPD),
with a value from 0.5 to 50 mm [19]. It should be noted that Hofko, Kugler, Chankov, and
Spielhofer [16] measure the coefficient of friction in the straight. When the car is traversing
a horizontal curve, the radial friction coefficient is 0.925 times of the straight [20]. The value
of the radial friction coefficient from horizontal curve can be obtained by Equation (6):

fsupply = 0.925 fV . (6)

As for heavy goods vehicles (HGV), studies have shown that the friction coefficient
for HGV is only 70% of the car [21].

2.1.2. Skidding Limit State Function

The current road design theory [8,22] regards the vehicle as a point-mass model, using
the critical conditions of skidding to calculate the radius of the horizontal curve:

R =
v2

g( f + e)
=

V2

127( f + e)
, (7)

where g is the gravitational acceleration (9.81m/s2), v is the driving speed (m/s), f is the
side fraction factor, and e is the superelevation. The anti-skid friction demand fp−demand of
the mass point model is shown in Equation (8):

fp−demand =
V2

127R
− e. (8)

However, all vehicles now have a suspension system. When the vehicle traverses a
horizontal curve, the suspension system will rotate outward under the action of centrifugal
force. The force diagram is shown in Figure 2. In order to improve the defects of the point-
mass model, Chang [23] analyzed the mechanical stability of a vehicle with a suspension
system when driving in a curve, and derived a radius based on the vehicle’s sideslip
stability, which is given by

R =
V2

127
[(

1− hr
hg

)
e + f

][1 + rΦ

(
1− hr

hg

)]
, (9)

where hr is the distance from the center of rotation to the road surface (m), hg is the distance
from the center of gravity of the vehicle to the road surface (m), and rΦ is the rotation rate
of the suspension system. From Equation (9), the anti-skid friction demand fs−demand of a
vehicle with a suspension system can be obtained as

fs−demand =
V2

127R

[
1 + rΦ

(
1− hr

hg

)]
− e
(

1− hr

hg

)
. (10)
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Figure 2. Vehicle model with suspension system.

The skidding limit state function Z1 of the mass-point model can be obtained by
Equation (8), which is shown as

Z1 = fsupply − fp−demand = fsupply −
V2

127R
+ e. (11)

From Equation (10), the skidding limit state function Z2 of a vehicle with a suspension
system is obtained as

Z2 = fsupply − fs−demand

= fsupply − V2

127R

[
1 + rΦ

(
1− hr

hg

)]
+ e
(

1− hr
hg

) (12)

2.2. Reliability Theory

In the engineering structure, assuming that the load-bearing capacity of the structure is
R and the load is S, the performance function Z of the structure is defined as Equation (13):

Z = R− S. (13)

The distribution of structural performance function Z can be obtained by using the
distribution of structural resistance R and load S. The reliability β = µZ

σZ
. The probability of

failure expression Pf can be given by Equation 14:

Pf = P(R < S) = P(Z < 0) = 1−Φ(β). (14)

When the structural performance function is affected by multiple variables, it can
be written as Z= g(X) = g(X1, X2, . . . , Xn). Xi(i = 1, 2, . . . , n) represents the response
variable of the structural performance function. The limit state of the structure is expressed
as g(X) = 0. When the structural performance function Z = g(X) is a linear or non-
linear expression of the response variable. Hasofer and Lind [24] proposed the first-order
reliability method (FORM) to solve the structural probability of failure Pf .

In single-vehicle risk assessment model developed in this paper, the friction supply
of the road surface represents the structural resistance R, and the friction demand for
automobile anti-skid refers to the load S. The random factors affecting the supply and
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demand of the friction are adopted as the response variable Xi. The structural performance
function Z is expressed by the difference between the supply and demand of the friction.

2.3. Multi-Vehicle Risk Index

The probability of failure calculated by reliability theory is a single-vehicle risk in-
dex [6], which could only evaluate the risk for the single vehicle. In order to comprehen-
sively understand the safety on horizontal curves, this paper developed a risk-assessment
model for multiple vehicles by negative binomial.

The negative binomial has been widely employed to model traffic accidents [12,25–27],
and it defines the number of cars skidding as a random variable N with values of 0, 1, 2,
. . . before the count of cars that traverse the horizontal curve safely reaches a certain value
within the counting interval of a day [27]. The probability of each value is as follows:

P{N = k} = Cn−1
n+k−1 pk(1− p)n, k = 0, 1, 2, . . . (15)

where n is the annual average daily traffic volume (AADT), p is the probability of failure
(POF), and k is the number of cars skidding. Then we developed a multi-vehicle risk index
(MRI), which represents the probability that at least one car skids during the counting
interval and it is as follows:

MRI = P{N ≥ 1} = 1− P{N = 0}. (16)

3. Numerical Study
3.1. Basic Model Parameters

Among the basic parameters of the above framework, the speed of the vehicle and the
mean profile depth (MPD) are considered as random variables. The speed of the vehicle on
the horizontal curve was collected through the laser gun, and the K-S test was adopted to
verify that the speed distribution state of the vehicle is normal. MPD referenced the data
from Plati and Pomoni [28]. The radius of the horizontal curve, the superelevation, the
height of the center of gravity of the vehicle, and the height of the center of rotation of the
suspension system are considered as deterministic variables. The radius and superelevation
of the horizontal curve adopt the data of the Xianyang–Chunhua motorway in Shaanxi
Province, China, supplied by CCCC First Highway Consultants Co. Ltd. The height of the
gravity center of the vehicle and the height of the rotation center of the suspension system
adopt the values recommended by Gillespie [29]. The specific parameters information is
illustrated below subsections.

3.1.1. Speed

The Xianyang–Chunhua Motorway in Shaanxi Province, China with a small traffic
volume (e.g 250 veh/h in the peak hour) is convenient for collecting vehicles’ speed under
good driving conditions. The midpoint of a horizontal curve with a radius of 1000 m is
selected as the measuring location. There is no speed limit sign on the experimental road
section. The geometric data of the experimental road is provided by CCCC First Highway
Consultants Co. Ltd, as shown in Table 1.

Table 1. Geometric data.

Radius
(m)

Design
Speed
(km/h)

Posted
Speed(km/h) Lane Length

(m)
Gradient

(%)
Superelevation

(%)

1000 100 100 4 574 2.84 5

Laser guns were used to collect the speed of cars and HGV. During the data collection
process, the experimenters concealed themselves in the bushes beside the motorway to
prevent the driver from disturbance. A total of 117 samples of cars and 79 of HGV are
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effectively collected in the experiment. The specific information of the data is shown
in Figure 3. Velocity mean and standard deviation of car are 103.27 and 11.17, which is
employed in model Z1 and Z1 for the car. The counterparts of HGV are 78.56 and 9.38,
utilized in model Z1 and Z1 for HGV. The Kolmogorov–Smirnov test results of the speed
data are shown in Table 2. The two-tailed asymptotic significance value is 0.2, which
is greater than 0.05. Therefore, it could be considered that the speeds of cars and HGV
have a normal distribution in a statistical significance. This finding was consistent with
Sil, et al. [30] and Himes [31].
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Table 2. Kolmogorov–Smirnov test.

Vehicles Sample
Size

Normal Parameters Most Extreme Differences Kolmogorov-
Smirnov Z

Asymp.sig.
(2-Tailed)Mean Std.Deviation Absolute Positive Negative

Car 117 103.27 11.17 0.06 0.06 -0.04 0.06 0.20

HGV 79 78.56 9.38 0.09 0.09 -0.07 0.09 0.20

Note: HGV, heavy goods vehicle.

3.1.2. Mean Profile Depth (MPD)

As an important parameter to characterize the texture structure of the road surface,
MPD has been proven by previous studies to obey a normal distribution [9]. Plati and
Pomoni [28] measured the MPD of the road in the initial period and after 11 years. The de-
tailed traffic and road geometric data with regard to MPD are shown in Table 3. The means
and the standard deviations are 1.26 mm, 0.17 mm and 1.36 mm, 0.24 mm respectively. The
change in mean and standard deviations is relatively little. Therefore, this study assumes
that the MPD of the road has a normal distribution with a mean value of 1.3 mm and a
standard deviation of 0.2 mm, namely MPD~N

(
1.3, 0.22).

Table 3. Measurements of MPD for 11 Years.

Section Geometrical
Design CTV (veh) Initial MPD

(mm)
Recent MPD

(mm)

A1
Straight/relatively

straight
alignment and
slope less than

3%

22 × 107 1.02 1.04
A2 22 × 107 1.02 1.04
A3 22 × 107 1.08 1.15
A4 21.7 × 107 1.16 1.22
A5 34.2 × 107 1.1 1.14
A6 33.6 × 107 1.17 1.16
B1 Straight/relatively

straight
alignment and
slope less than

3%

9.16 × 107 1.26 1.31
B2 5.31 × 107 1.26 1.43
B3 9.47 × 107 1.42 1.66
B4 5.07 × 107 1.27 1.61
B5 3.58 × 107 1.19 1.26
C1 Higher

curvature and
maximum slope

3–6%

17 × 107 1.59 1.69
C2 18.5 × 107 1.55 1.73
C3 8 × 107 1.34 1.5
C4 8.41 × 107 1.27 1.46

Note: CTV-cumulative traffic volume.

3.1.3. Vehicle Parameters

The present study refers the values recommended by Gillespie [29] in Fundamentals of
vehicle dynamics. For a typical car, rΦ ≈ 0.1 rad/g, hr/hg ≈ 0.5, and t/2hg ≈ 1. For a typical
heavy goods vehicle, rΦ ≈ 0.05 rad/g, hr/hg ≈ 0.25, and t/2hg ≈ 0.31.

3.2. Parametric Study Results

The proposed framework is demonstrated in the horizontal curve mentioned above.
All parameters are illustrated in the previous section except the traffic flow characteristic.
In order to investigate the impact of friction coefficient evolution due to traffic on safety,
the risk-assessment framework introduced by the earlier section is adopted to calculate
the single-vehicle risk index and multi-vehicle risk index (MRI) under different traffic
flow characteristics.

3.2.1. Influence of Traffic Characteristics on Friction Coefficient

Figure 4 shows the evolution of friction coefficient caused by traffic characteristics.
The friction coefficient for the Y-axis refers to the f60, which is the road friction coefficient
when the vehicle speed is 60 km/h. It is found that the friction coefficient decreases with
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the increase of cumulative traffic volume (CTV) and annual average daily traffic of heavy
goods vehicles (AADTHGV). In the early stage of road operation (e.g., CTV = 30 million
vehicles or less), the friction coefficient drops dramatically as the CTV increases. After that,
the rate of decrease of the friction coefficient slows down with the increase of CTV. This
evolution trend of friction coefficient is consistent with Kane, et al. [32].

Sustainability 2022, 13, x FOR PEER REVIEW 10 of 15 
 

the risk-assessment framework introduced by the earlier section is adopted to calculate 
the single-vehicle risk index and multi-vehicle risk index (MRI) under different traffic 
flow characteristics. 

3.2.1. Influence of traffic characteristics on friction coefficient 
Figure 4 shows the evolution of friction coefficient caused by traffic characteristics. 

The friction coefficient for the Y-axis refers to the 60f , which is the road friction coeffi-
cient when the vehicle speed is 60 km/h. It is found that the friction coefficient decreases 
with the increase of cumulative traffic volume (CTV) and annual average daily traffic of 
heavy goods vehicles (AADTHGV). In the early stage of road operation (e.g., CTV = 30 
million vehicles or less), the friction coefficient drops dramatically as the CTV increases. 
After that, the rate of decrease of the friction coefficient slows down with the increase of 
CTV. This evolution trend of friction coefficient is consistent with Kane, et al. [32]. 

Moreover, the impacts of AADTHGV on friction coefficient is more substantial for a 
higher CTV (e.g., CTV over 40 million vehicles). When CTV exceeds 20 million vehicles, 
most of the curves tend to be parallel. Pavement friction coefficient in these curves with 
AADTHGV = 5000 veh/d is only 80% of AADTHGV = 1000 veh/d for a certain value of CTV. 
This result verifies the point that the friction coefficient of the road is significantly af-
fected by the truck [1,32]. Therefore, freeways with numerous truck volumes need more 
road maintenance work to ensure that the road can provide sufficient friction coefficient 
for vehicles. 

 
Figure 4. Influence of AADTHGV and CTV on friction coefficient. CTV, cumulative traffic volume. 

3.2.2. Model comparison 
Figure 5 compares the reliability (gray line) and the skidding probability (red line) 

for the mass point model Z1 and the suspension vehicle model Z2 under different CTV 
where AADTHGV equals to 2000 veh/d. It can be seen that the reliability of model Z2 is 
lower than that of model Z1 for car. Therefore, the skidding probability of model Z2 is 
higher than model Z1. This result indicates that the car’s suspension system reduces the 
safety when turning, which is consistent with You, Sun, and Gu [15]. A similar finding is 
obtained for HGV. 
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Moreover, the impacts of AADTHGV on friction coefficient is more substantial for a
higher CTV (e.g., CTV over 40 million vehicles). When CTV exceeds 20 million vehicles,
most of the curves tend to be parallel. Pavement friction coefficient in these curves with
AADTHGV = 5000 veh/d is only 80% of AADTHGV = 1000 veh/d for a certain value of
CTV. This result verifies the point that the friction coefficient of the road is significantly
affected by the truck [1,32]. Therefore, freeways with numerous truck volumes need more
road maintenance work to ensure that the road can provide sufficient friction coefficient
for vehicles.

3.2.2. Model Comparison

Figure 5 compares the reliability (gray line) and the skidding probability (red line) for
the mass point model Z1 and the suspension vehicle model Z2 under different CTV where
AADTHGV equals to 2000 veh/d. It can be seen that the reliability of model Z2 is lower
than that of model Z1 for car. Therefore, the skidding probability of model Z2 is higher
than model Z1. This result indicates that the car’s suspension system reduces the safety
when turning, which is consistent with You, Sun, and Gu [15]. A similar finding is obtained
for HGV.
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It is worth noting that for HGV, the probability of failure for the model with the
suspension system (HGV-Z2) is very small (close to 0). However, compared to the HGV,
the suspension system substantially affects the safety for car. This result illustrates that
the mass point model adopted by current road design theory has less impact for skidding
failure probability of HGV, but has strong influence for the car. The reason may be that
the driving speed of HGV is too low in contrast with the cars’ speed, leading to a reduced
skidding risk.

An interesting finding is that the failure probability difference between Car-Z1 and
Car-Z2 becomes more and more significant as the road operation time goes. When the CTV
is equal to 100 million vehicles, the skidding probability for Car-Z2 is about 22 times that of
the Car-Z1. It not only demonstrates that traditional road design theory underestimates
the risk of cars, but also that the hidden dangers caused by such underestimation will be
magnified over time.

3.2.3. Safety Assessment for Different Traffic Characteristics

From the analysis in Section 3.2.2, it is concluded that the probability of failure (POF)
for cars with a suspension system is much higher than that of heavy goods vehicles (HGV)
and the point model cars, so the risk assessment of the suspension car model will be carried
out below.

The truck traffic volume is assumed as a determined value (AADTHGV = 2000 veh/d)
to analysis the impact of AADT for safety on the horizontal curve over time. Figure 6
exhibits the multi-vehicle risk index of the varying AADT changes over the years. It is
found that the safety on the horizontal curve is very sensitive to the AADT. Among these
five traffic characteristics, the AADT with a value of 10,000 veh/d has the least threat to
vehicle accident risk. Although for a curve with a heavy traffic volume (e.g., AADT over
30,000 veh/d), the multi-vehicle risk index (MRI) rises rapidly to 100% after four years,
indicating that the road has not be maintained during this period, the probability that one
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or more cars skid will reach to 100%. Therefore, this result suggests that the freeway with
heavy traffic flow need to be frequently maintained.
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As discussed earlier, different truck traffic volume has a considerable impact for
the friction coefficient. In order to further investigate the influence of truck traffic in
skidding risk on the horizontal curve, the multi-vehicle risk indexes (MRI) of different
truck traffic volume are compared in this section when the AADT equals to 20,000 veh/d.
The MRI changes for five kinds of truck traffic volume over the years are displayed in
Figure 7. It can be seen that the MRI shows a similar trend for all five types of truck
traffic characteristics. The MRI will increase rapidly over the years when the truck traffic
volume is over 2000 veh/d whereas accident risk on a road with low truck traffic volume
(AADTHGV = 1000 veh/d) will rise much slower. This result indicates that the large truck
traffic volume not only leads to lower friction coefficient, but also causes higher hidden
slippery risk.
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4. Conclusions

Based on the reliability theory and negative binomial, an integrated framework assess-
ing the influence of the friction evolution caused by traffic on safety for the horizontal curve
is proposed in this paper. The present research provides a dynamic insight to understand
the relationship between road service life and traffic safety. The main conclusions from the
numerical study are as follows.

(1) At the beginning of road operation, the friction coefficient decreases rapidly under
traffic flow polishing. As the road use time increases, the friction coefficient decreases
at a slower rate. After further analysis, we found that the traffic volume of heavy goods
vehicles significantly affects the value of the friction coefficient. Large truck traffic volume
will lead to more serious road wear and lower friction coefficient.

(2) The modern road design theory regards the car as a mass point model, which
underestimates the skidding risk when a car traverses the curve. Furthermore, we found
that with the increase of cumulative traffic volume, the mass point model underestimates
the skidding risk more and more seriously. This conclusion can help road designers
re-recognize the defect of the mass point model.

(3) The multi-vehicle risk indexes (MRI) are highly sensitive to the AADT. The MRI
for the road with heavy traffic volume will reach 100% after 4 years without any road
maintenance. In addition, we found that the truck volume also has a noteworthy impact for
the MRI. The larger the truck traffic volume, the higher hidden slippery risk. The conclusion
can help road maintenance department evaluate the risk for the road with different traffic
conditions and determine the time of road retreatment.

This study provides a proactive evaluation framework to analyze the effect of pave-
ment friction evolution due to traffic polishing on traffic safety. The proposed method can
be further employed for both practice implications and the benefit of the research commu-
nity. In terms of practice implication, a skidding risk assessing system for the horizontal
curve could be developed to get rapid assessment for pavement friction according to the
framework in this paper. This nice idea has been validation and the software can be found
in https://www.ccopyright.com.cn/ (accessed on 25 June 2021). For the research commu-
nity, the framework developed in this study could be expanded to appraise skidding risk

https://www.ccopyright.com.cn/
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in rainy or snowy days. The pavement friction will be affected by water film on rainy days
or snow in snowy days, leading to a similar analysis process of this study.

This paper proposed an innovative risk assessment framework, but it also has some
limitations remaining for future improvements. The evolution model of friction coefficient
adopted in this paper is established for the SMA pavement. Therefore, the risk-assessment
framework proposed in this paper is limited to this one. In the future, different risk-
assessment models can be established for different types of pavement. In addition, the
relationship between the MRI and the realistic traffic accident data needs to be further
investigated and validated. Finally, the influence of model parameters on the results is
interesting. For instance, MPD is a critical parameter because it stands for texture structure
of road surface. The impact of MPD on skidding failure probability need further research.
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