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Abstract: Demand response programs can effectively handle the smart grid’s increasing energy
demand and power imbalances. In this regard, price-based DR (PBDR) and incentive-based DR
(IBDR) are two broad categories of demand response in which incentives for consumers are provided
in IBDR to reduce their demand. This work aims to implement the IBDR strategy from the perspective
of the service provider and consumers. The relationship between the different entities concerned is
modelled. The incentives offered by the service provider (SP) to its consumers and the consumers’
reduced demand are optimized using Stackelberg–particle swarm optimization (SPSO) as a bi-level
problem. Furthermore, the system with a grid operator, the industrial consumers of the grid operator,
the service provider and its consumers are analyzed from the service provider’s viewpoint as a tri-
level problem. The benefits offered by the service provider to its customers, the incentives provided
by the grid operator to its industrial customers, the reduction of customer demand, and the average
cost procured by the grid operator are optimized using SPSO and compared with the Stackelberg-
distributed algorithm. The problem was analyzed for an hour and 24 h in the MATLAB environment.
Besides this, sensitivity analysis and payment analysis were carried out in order to delve into the
impact of the demand response program concerning the change in customer parameters.

Keywords: demand response; energy; smart-grid; grid operator; industrial customer; Stackelberg–particle
swarm optimization

1. Introduction

A smart grid (SG) epitomizes an unprecedented chance to motivate the energy sector
into a new age of dependability, availability, and efficacy, contributing to future economic
and environmental conditions. As per the strength, weakness, opportunities, and threat
analysis report, the increasing per capita electricity consumption could be controlled by
implementing the demand response programs (DRPs) that form a focal point of SG [1].
The evolution of the renewable energy systems, in addition to the altered consumption
pattern of the consumers, aids in the effective implementation of DRPs. With the evolution
of multi-energy systems (MES), demand response (DR) programming has been broadened
into integrated DR [2]. DR is a sub-classification of a broader concept called demand side
management, which is further classified into price-based DR (PBDR) and incentive-based
DR (IBDR). PBDR relies on pricing in different ways, such as real-time and day-ahead
pricing, etc. IBDR programs are based on contracts involving various market entities such
as the grid operator (GO), retailers, and customers, etc. An IBDR scheme that provides
coupon incentives to the customers was designed by several researchers [3,4]. It benefits
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both the customers and the load-serving entities (LSE). In [5,6], a novel IBDR scheme has
been framed considering the various market operators that benefit the customers and the
utilities. The SG technology advancement has made DR program implementation easier.
The communication infrastructure of the SG technology has made it possible to implement
DR programs for all kinds of customers. The modeling of the IBDR program for the residen-
tial customers, including the loads of the customer to reduce the power consumption, are
carried out in the intelligent environment, thereby reducing the customer bill. The IBDR
models for handling DR problems, with optimization techniques such as the Stackelberg
game, GAMS, CPLEX, and others, are used in SG to obtain a better result of demand reduc-
tion and cost minimization [7–10]. In recent years, game-theory-based algorithms have been
implemented to solve the IBDR strategy bidding model from the SP and GO ends [11–13].
IBDR problems with pricing schemes such as day-ahead pricing and intra-day renewable
energy sources for procuring electricity at a minimal cost from the market were proposed
in [14,15]. A multi-stage algorithm involving uncertain renewable sources, for serving the
loads, considering entities such as GO and SP, was proposed in [16–19]. An integrated
IBDR model considering the uncertainties coupled with the renewable sources [20,21] was
proposed to improve the profit obtained by the customer [22]. An experimental setup based
on flexible incentive-based DR to reduce critical demand and maximize consumer profits
was proposed by Luo Zhe [23]. The IBDR was programmed using data mining for a virtual
power plant. The authors in [24] proposed the IBDR problem for the Danish low-voltage
(LV) grid with battery storage devices. Deepan et al. [25] proposed a novel self-reporting
baseline estimation and outperformed the method for solving the IBDR program involving
aggregators and consumers. The optimization techniques for effectively handling more
variables maximization and minimization problems along with parameter selection and
tuning are dealt with in [26–29].

Table 1 summarizes the highlights of the surveyed literature based on the objective
of the DR problem, the entities considered, adapted pricing schemes, and optimization
technology. The effect of inclusion and the interaction of the three market entities together
has not been analyzed, although many algorithms were developed to solve IBDR. The
influence of the customer parameters on the IBDR programs has also not been adequately
shown. Furthermore, the literature has not concentrated on the IBDR work on 24-h timing,
including all of the entities.

Table 1. Highlights of the literature survey.

Reference Entities/Participants Pricing Schemes Objective Methodology and
Simulation Tools

[3] LSE and retail
customers Flat rate pricing Optimizing social welfare CPLEX

[4] Service provider and
customer

A day ahead of
electricity pricing Optimal incentives for SPs Stackelberg game

theory-GAMS tool

[6] Utility and customers Spot pricing Maximizing benefits of
retailers MATLAB Yalmip toolbox

[7]
Grid operator,

multi-service provider
and customer

Incentive based pricing
Resource utilization in
minimizing cost and

maximizing profit of operators
Stackelberg game approach

[12] Service provider and
end-user Real-time pricing Peak demand and electricity

bill reduction
MATLAB toolbox for

optimization

[16] Retailer and end-user A day ahead of
electricity pricing

Minimizing peak demand and
finding hourly financial
incentives for customers

NSGA II

[19] LSE and ISO Real-time market LSE net revenue maximization CPLEX

Accordingly, the proposed work compares the changes involved in the inclusion of
various entities in the IBDR program using a novel SPSO algorithm. The IBDR problem
designed concerning Case 1 (SP-customers) and Case 2 (GO-SP-industrial consumers (IC)
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customers) was optimized using SPSO algorithms, and was compared with the Stackelberg
distributed algorithm for an hour and an entire day. A sensitivity analysis was also adapted
by altering the customer parameters, namely the discomfort factor, the customer attitude to
demand reduction, and the magnitude of demand change required to review the impact of
IBDR. Furthermore, payment analysis was made to focus on the benefits obtained by the
entities by varying the customer parameters.

The content of this paper is organized as follows: Section 2 elaborates on the problem
formulation of IBDR and Case 1. Section 3 focuses on the problem formulation of Case 2 of
the IBDR problem, followed by a briefing on the optimization technique adapted to solve
the IBDR problem in Section 4. Section 5 discusses the results obtained for the two different
cases. Finally, Section 6 presents the conclusions.

2. Problem Formulation of IBDR with One SP and Two Customers: Case 1

This section modelled and formulated an IBDR problem including GO, SP, IC and cus-
tomers to maximize or minimize the utility function depending on the entities considered
and the demand reduction.

An SP sells electricity to its retail customers and procures their capacity through
demand reduction. The SP can even sell the procured capacity and gain profit. The SP
provides incentives to those customers who agrees to reduce their demand when they are
told to do so by the SP. In this work, a system with one SP and two consumers is considered,
and the interaction between them is modelled using Stackelberg’s game theory.

a. Customer model

Let N be the total number of customers. Here, N is taken to be 2. Every customer i,
when provided with incentives from the SP, tries to increase their demand reduction to
gain more incentives. Here, time t ranges from 1 to T, where T is taken as 24. The customer
will aim to maximize the utility function by using their demand reduction, and the above
can be framed as follows [4]:

max
Di

Ui =
T

∑
t=1

Di,t × πt − µi ×
T

∑
t=1

ϕi,t(Di,t) (1)

which is subjected to

0 ≤ Di,t ≤ Dtar
i,t − Dmin

i,t , ∀ i ∈ N, ∀ t ∈ T (2)

Equation (1) represents the customer utility function, which has to be maximized
using demand reduction as the variable. The constraint given by Equation (2) restricts
the demand reduction from going beyond Dtar

i,t − Dmin
i,t , which represents the available

quantity of demand reduction. The first term of Equation (1) means the income gained by
the customer by reducing the demand Di,t for the incentive πt. The second term represents
the discomfort of the customer. The weight factor µi decides the level of discomfort each
customer can accept. The small value of µi represents less importance given to discomfort.
The dissatisfaction cost (ϕi,t) represents the customer’s discomfort involved in demand
reduction. The dissatisfaction cost is modelled as follows:

ϕi,t(Di,t) =
θi
2

(
D2
(i,t) + λi × Di,t

)
θi > 0, λi > 0 (3)

θi and λi are parameters set based on the customer’s attitude towards demand reduction.

b. Service provider model

The SP gains profit by selling the capacity procured from the customers, and can profit
by procuring the capacity (i.e., the demand reduction) at a minimal incentive. Thus, the SP
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aims to minimize the utility function using the incentive offered as the variable. This can
be modeled as follows [4]:

min
π

USP =
T

∑
t=1

N

∑
i=1

Di,t × πt −
T

∑
t=1

N

∑
i=1

Di,t × Pt (4)

which is subjected to
πmin

t ≤ πt ≤ πmax
t , ∀ t ∈ T (5)

N

∑
i=1

Di,t ≥ Dreq
t , ∀ t ∈ T (6)

The first term of Equation (4) represents the incentive payments given by the SP to
the consumers according to their demand reductions, and the second term represents the
amount gained by the SP in selling the procured capacity to the market.

c. Stackelberg game formulation and analysis

The interaction between the SP and the customers is framed as a Stackelberg game.
Here, the SP acts as a leader and sets incentives for its customers; thus, a one-leader
N-follower Stackelberg game is framed (here, one leader and two followers). The SP
act provides incentives as a motivation for the customers to reduce their demand. The
optimization equations are solved using PSO. The SP model is solved to obtain the optimal
incentive set by the SP to its customers, and this is utilized in solving the customer model,
thereby obtaining the corresponding optimal demand reduction; this iteration process
tries to reach the global condition. The customer and SP models are reformulated using
the Stackelberg theory. If the incentive value set by the leader (SP) is identified, then the
customer’s optimal demand reduction can be obtained.

d. Optimal solution for customers

By solving the first-order derivative of the Equation (1), concerning Di,t, the optimal
value of the demand reduction can be obtained as:

Di,t =
πt − µi × λi

µi × θi
(7)

The value of the second-order derivative of Equation (1) for Di,t gives −µiθi < 0. This
equation is always negative; as such, the customer utility function is strictly concave for
the feasible values of Di,t. The optimal value of πt obtained from the SP is substituted in
Equation (7) to obtain the optimal demand reduction.

e. Optimal solution for the service provider

Equation (7) is substituted in Equation (4), and the SP utility function becomes

min
π

USP =
T

∑
t=1

N

∑
i=1

(
πt − µi × λi

µi × θi

)
× πt −

T

∑
t=1

N

∑
i=1

(
πt − µi × λi

µi × θi

)
× Pt (8)

which is subjected to
πmin

t ≤ πt ≤ πmax
t , ∀ t ∈ T (9)

The constraints can be modified by arranging equation (7) as

πt = Di,t(µi × θi) + µi × λi (10)

Constraints (5) and (6) can be modified using the above-obtained equations. Thus, the
value of πmin

t and πmax
t , in (9), can be replaced by Equations (11) and (12).

πmax
t = min

(
πmax

t , min
{((

Dtar
i,t − Dmin

i,t

)
× µi ∗ θi + µi × λi

)
∀ i ∈ N

})
(11)
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πmin
t = max

πmin
t , max{µi × λi, ∀ i ∈ N},

Dreq
t + ∑N

i=1
λi
θi

∑N
i=1

1
θi

 (12)

The optimization equation in (8) is solved using PSO, and the optimal incentive
is obtained.

3. Problem Formulation of IBDR with GO, ICs, SPs and Consumers: Case 2

The role of the GO in IBDR is re-studied in this section. Here, IBDR is implemented in
a system consisting of GO, ICs, and SPs under the GO, and the customers under each SP.
The GO sets the incentive for the ICs and the SPs. The GO procures the capacities from its
SPs and ICs to meet the demand deficit. The SPs set the incentive for the customers under
them. The SPs procure the capacity from the customers regarding demand reduction and
sell it to the GO. The GO meets the required demand deficit of the day either through the
generators or by procuring the capacity from the SPs and ICs (i.e., through their demand
reductions), and the GO aims to reduce the cost of procuring these capacities. Figure 1
depicts the role of each domain in the smart grid. The mathematical models of the entities
are framed and solved using the Stackelberg game theory, where the outcome of the leader
is first obtained (i.e., the incentive of GO), and then this outcome is utilized to solve the
model of the IC and the customers of the SP for demand reduction.
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a. Industrial consumer model

The IC aims to maximize its utility function, thereby maximizing the gain obtained
as an incentive from the GO. The IC’s utility function involves the gain obtained by the
energy consumed and the incentive profit obtained from the GO for demand reduction. Let
L be the total number of ICs. For each ICl, where l ∈ L, the utility function is given by [15].

max
DIC,l

UIC,l =
T

∑
t=1

Ψl

(
Dava

l,t − DIC,l,t

)
+ DIC,l,t × πGOIC,t (13)
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which is subjected to
0 ≤ DIC,l,t ≤ Dava

l,t (14)

The constraint in (14) restricts the value of the demand reduction within the range
of the available amount of demand reduction, and Ψl is the term used to describe the ICs’
profit; it is calculated by the following formula:

Ψl =

{
ωl ×

(
Dava

l − DIC,l
)
− σl

2 ×
(

Dava
l − DIC,l

)2 i f 0 ≤
(

Dava
l − DIC,l

)
≤ ωl

σl
ωl

2

2σl
i f
(

Dava
l − DIC,l

)
≥ ωl

σl

(15)

σl and ωl denote the rate and magnitude of the profit change of the IC when the power
consumption of the IC is varied. As σl increases, the IC gains more by selling its resource to
the GO.

b. Service provider model

The SP procures capacity from its customers by giving incentives to them, and it sells
the procured capacity to the GO at the incentive rate the GO gives. As such, the utility
function of the SP involves these terms. The SP aims to maximize its profit obtained by
trading with the GO and its customers. Here, if the SP model is compared with Case 1,
the second term of the equation is modified into Equation (16). In Case 1, the second term
describes the capacity sold by the SP to the market at the electricity pricing, whereas in (16),
it describes the capacity sold by SP to the GO at the incentive rate given by GO. Let K be
the total number of SPs, and for each SP, the utility function can be written as follows [15]:

max
πSP,k DSP,k

USP,k =
T

∑
t=1

DSP,k,t × πGOSP,t − DSP,k,t × πSP,k,t (16)

which is subjected to
DSP,k,t = ∑

i∈Nk

Di,k,t (17)

The customer receives incentives from SP in return for their demand reduction. The
utility function of the customers will also involve the dissatisfaction cost. While comparing
Equation (18) with Case 1 customer model, it could be seen that the number of SPs consid-
ered in Case 2 is more than that in Case 1, and the incentives the SPs give to their customers
differ. As such, the customers belonging to different SPs receive different incentives. The
utility function of the customers is written as follows [4,7]:

max
Di,k

Ui,k,t =
T

∑
t=1

Di,k,t × πSP,k,t − µi,k,t × ϕi,k,t (18)

which is subjected to
0 ≤ Di,k,t ≤ Dava

i,k,t (19)

The dissatisfaction cost function ϕi,k,t is a function of Di,k, and the level of discomfort
that a customer might experience due to the reduction of demand is modeled by ϕi,k.

ϕi,k =
θi,k

2

(
D2
(i,k) + λi,k × Di,k

)
, θi,k > 0, λi,k > 0 (20)

Here, θi,k and λi,k are the parameters set based on the customer’s attitude towards
demand reduction. By increasing the value of θi,k, the customer is more reluctant towards
the demand reduction.
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c. Grid operator model

The GO tries to minimize the cost of capacity procurement. Let the expected demand
deficit be taken as Dreq. The GO compensates for the demand deficit by acquiring capacities
from SP and IC. The utility function of the GO can be framed as follows [15]:

min CGO =
T

∑
t=1

Cgen(G) + πGOIC,t ×∑
i∈L

DIC,l,t + πGOSP,t ×∑
i∈L

DSP,k,t (21)

which is subjected to
πmin

GO,t ≤ πGOSP,t ≤ πGOIC,t ≤ πmax
GO (22)

G = Dreq −∑i∈L DIC,l −∑i∈L DSP,k (23)

The value of the cost of generating the required quantity G is calculated as follows:

Cgen(G) = a
(

G2
)
+ b(G) + c (24)

In Equation (21), the first term represents the cost required for generation, and the
second and the third terms represent the cost of procuring the capacities from the IC and SP.

d. Stackelberg game formulation and analysis

The interaction between the various entities involved in IBDR is modelled using
Stackelberg’s game theory. Including GO and IC in the problem makes it a leader–multi-
follower game, increasing the complexity compared to Case 1. The GO model is solved,
and the optimal incentive set by the GO for IC and SP is found, and then those optimal
incentive values are utilized for the calculation of the optimal demand reductions. The GO
fixes the incentives for the IC and SP using the following equations:

πGOSP = πGO (25)

πGOIC = ρ× πGO, 0 ≤ ρ ≤ 1 (26)

e. Optimal solution for the industrial consumer

Using the first-order derivative of the utility function in (13) with respect to DIC,l when
equated to zero, we can obtain the equation for DIC,l , as follows:

DIC,l = Dava
l − ωl

σl
+

ρ× πGO
σl

(27)

The total demand reduction of all of the ICs could be summed as

∑
i∈L

DIC,l = ∑
l∈L

Dava
l − ωl

σl
+ ∑

l∈L

ρ× πGO
σl

(28)

For convenience, the constant terms in the equation are taken as follows:

η = ∑
l∈L

Dava
l − ωl

σl
, γ = ∑

l∈L

1
σl

> 0 (29)

For Equation (29), when it is substituted into (28), we obtain

∑
i∈L

DIC,l = η + γ× ρ× πGO (30)
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The constraint in (14) can be regulated to make the IC contribute the minimum load
by replacing the zero to Dmin.

Dmin = max
(

0, min
(

Dava
l − ωl

σl

))
(31)

The optimal demand reduction of IC can be found by substituting the optimal GO
incentive using (30).

f. Optimal solution for the service provider and its customers

The optimal demand reduction of the SP can be calculated as follows:

DSP,k =
1
2

πGO ×∑i∈Nk

1
µi,k × θi,k

− 1
2 ∑i∈Nk

λi,k

θi,k
(32)

The total demand reduction of all SPs could be found as follows:

∑
k∈K

DSP,k =
1
2

πGO × ∑
k∈K

∑
i∈Nk

1
µi,k × θi,k

− 1
2 ∑

k∈K
∑

i∈Nk

λi,k

θi,k
(33)

For convenience, the constant terms in the equation are taken as follows:

α = ∑k∈K ∑i∈Nk

1
µi,k × θi,k

> 0, β = ∑k∈K ∑i∈Nk

λi,k

θi,k
> 0 (34)

For Equation (34), when substituted in (33), we obtain

∑
k∈K

DSP,k =
α

2
(πGO)−

β

2
(35)

In order to solve the customer equation, the second derivative of Equation (18) with
reference to Di,k is taken and equated to zero. The demand reduction of each customer
under each SP can be found as follows:

Di,k =
πSP,k − µi,k × λi,k

µi,k × θi,k
(36)

g. Optimal solution for the grid operator

The cost function of the GO in (21) can be rewritten by substituting (24) and (23) into
it, as follows:

min CGO = a
(
(Dreq − ∑

i∈L
DIC,l − ∑

i∈L
DSP,k)

2
)
+ b
(

Dreq − ∑
i∈L

DIC,l − ∑
i∈L

DSP,k

)
+

c + πGOIC × ∑
i∈L

DIC,l + πGOSP × ∑
i∈L

DSP,k

(37)

By substituting (29) and (34) into (37) and equating the first derivative of the obtained
equation to zero, we can realize the optimal incentive of the GO.

π∗GO =
2a (Dreq + 0.5β− η)× (0.5α + γρ) + b(0.5α + γρ) + 0.5β− ρη

2a(0.5α + γρ)2 + α + 2γρ2
(38)

The obtained optimal incentive value of the GO is utilized to obtain the optimal
demand reduction of ICs and SPs.

h. Stackelberg distributed algorithm

The parameters of the IC and SP customers must be disclosed to the GO, which is
difficult in practice. As such, the distributed algorithm is used [15]. Here, the incentive of
the GO is used as the variable, and SP and IC demand reductions are found.
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The initial value of the GO incentive π∗GO is initialized to πmin
GO . A value of ρ is chosen,

and the value of πGOIC and πGOSP are calculated. Then, the initial values of D∗IC,l and
D∗SP,k are calculated using Equations (27) and (32), respectively.

The initial value of the procurement cost of the GO is calculated as

C∗GO =

(
a(Dreq − ∑

i∈L
DIC,l + ∑

i∈L
DSP,k)

2 + b
(

Dreq − ∑
i∈L

DIC,l + ∑
i∈L

DSP,k

)
+ c
)

+πGOIC × ∑
i∈L

DIC,l + πGOSP × ∑
i∈L

DSP,k
(39)

These initial values are then used to calculate the optimal value of CGO with πGO as
the variable which is updated for every iteration, as shown below:

Step 1: for the iteration m = m + 1;
Step 2: update the value of πm

GO using

πm+1
GO = πm

GO + ∆πGO (40)

where
∆πGO = δ

(
ev|Cm

GO−Cm−1
GO | − 1

)
(41)

Step 3: the value of Dm+1
IC,l and Dm+1

SP,k are updated from Equations (27) and (32), respectively,
and the πm+1

GO value;
Step 4: with the values found in step 3, the value of Cm+1

GO is calculated as follows:

Cm+1
GO = (a(Dreq − ∑

i∈L
Dm+1

IC,l + ∑
i∈L

Dm+1
SP,k

)
2

+b
(

Dreq − ∑
i∈L

Dm+1
IC,l + ∑

i∈L
Dm+1

SP,k

)
+ c
)

+πGOIC × ∑
i∈L

Dm+1
IC,l + πGOSP × ∑

i∈L
Dm+1

SP,k

(42)

Step 5: f Cm+1
GO ≤ C∗GO and πm+1

GO ≤ π∗GO, then update the values of GO as π∗GO = πm+1
GO and

C∗GO = Cm+1
GO ;

Step 6: end if;
Step 7: end for;
Step 8: these steps are repeated until the condition shown in (43)∣∣∣Cm+1

GO − Cm
GO

∣∣∣ ≤ ε (43)

Step 9: the equilibrium is reached when the value of CGO does not decrease further.

4. Optimization Technique

Optimization techniques are utilized to find the best results from the set of feasible
solutions. In this work, the interaction between the market entities is modelled using
Stackelberg game theory, and the minimization and maximization equations of the entities
are solved using PSO [30]. In the IBDR problem considered, there is a need for a repeated
iteration with either maximization or minimization equations for the leader (GO) and the
followers (IC, SP and customers) with two to three variables. As the Stackelberg game
theory-based IBDR problem considered for optimization is a complicated iterative problem,
the inertia-based PSO is considered for optimization in order to reduce its complexity.

In Case 1, the maximization equation of the customer is solved by setting the demand
reduction as a variable, and the minimization equation of the SP is solved by setting the
incentive as a variable. In Case 2, the industrial customer’s maximization equations are
solved using the demand reduction as the variable; the SP is maximized by compromising
the GO and customer by varying the demand reduction from customers and the incentives.
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Furthermore, the GO tries to minimize the cost of capacity procurement with the demand
reduction obtained from IC and SP by varying the incentives.

The PSO procedure to solve the formulated Stackelberg-based problem for all of the
entities is given below:

Step 1: initialize a set of particles in the search space;
Step 2: each particle will have a position and velocity. Initially, we generate the positions
randomly based on the minimum and maximum limits of the variables shown in Table 2;
Step 3: for each particle, evaluate the incentives and utility function (objective) as per
Equations (13), (16), (18) and (21), and in the entities, each particle will have a position and
velocity;
Step 4: store the local and global best values (pbest and gbest);
Step 5: if the utility function for the new particle changes, based on maximization or
minimization of the problem, update the pbest and gbest values;
Step 6: update the inertia weight factor by using w = w × wdamp;
Step 7: update the position and velocity of the particle. The velocity update is given in (44);

Velocity = w × velocity + C1 × rand () × Pbest + C2 × rand () × gbest (44)

Step 8: velocity clamping is performed to maintain the velocity of the particle within the limit;
Step 9: check the termination condition; if satisfied, stop; else, go to Step 3.

Table 2. Variables and their bounds for Case 2’s optimization.

Entities Variables Lower and Upper Bounds Number of Variables

Grid operator Incentive (πigo) (3, 10) 1
Industrial consumer Demand reduction of IC1 (DIC1)

Demand reduction of IC2 (DIC2)
Demand reduction of IC3 (DIC3)

(0, 45.4)
(0, 36.2)
(0, 56.5)

3

Service provider Incentive of SP1 (πSP1)
Incentive of SP2 (πSP2)

(3, 10)
(3, 10)

2

Consumer Demand reduction of customer 1 (Dk,1,t)
Demand reduction of customer 2 (Dk,2,t)
Demand reduction of customer 3 (Dk,3,t)

(0, 11.35)
(0, 16.55)
(0, 12.77)

3

The optimization is carried out by considering the maximum iteration count as 1000,
the number of particles as 100, and the acceleration coefficients C1 and C2 as 1.5 and 2. In
this work, the inertia weight is dynamic, with a weight-damping ratio of 0.99.

5. Results and Discussions

The IBDR problem for Cases 1 and 2 is analyzed and optimized with the load data
and the customer parameters considered.

a. Results of Case 1 with one SP and two customers

In this case, one SP and two customers are considered. The minimum and target
demands of customers 1 and 2 for each hour are illustrated in Figures 2 and 3. The
customer-related parameters (µi,θi,λi) for the two customers are shown in Table 3.
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Table 3. Parameters of Case 1, for customers 1 and 2.

Parameters Customer 1 Customer 2

µ (0.8, 1) (0.8, 1)
θ 3.0 4.5
λ 10.0 10.0

The hourly electricity market pricing required for the calculation of the SP’s utility
function is represented in Figure 4.
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Figure 5. Available and required demand reduction of Case 1.

The optimal incentive of the SP is obtained using PSO for two different values of µ,
namely 0.8 and 1, for both customers. The optimal SP incentive and the optimal mean
demand reductions of customers 1 and 2 are taken and plotted. The obtained optimal
solutions for the corresponding incentives are given in Figures 6 and 7. In order to ensure
that the Stackelberg game is implemented correctly, Case 1 is tested with an existing
system [4], and the results are obtained. The comparisons of the results for µ = 1.0 and 0.8
are listed in Tables 4 and 5.
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Table 4. Comparison with the existing system for µ = 1.0.

Incentive by SP ($) Demand Reduction (MW) Incentive by SP ($) Demand Reduction (MW)

For one hour (16th hour) For 24 h
Stackelberg

[4] SPSO Stackelberg
[4] SPSO Stackelberg

[4] SPSO Stackelberg
[4] SPSO

38 39 18.2 18.3 486.8 425.2 195.4 240.59

Table 5. Comparison with the existing system for µ = 0.8.

Incentive by SP ($) Demand Reduction (MW) Incentive by SP ($) Demand Reduction (MW)

For one hour (16th hour) For 24 h
Stackelberg

[4] SPSO Stackelberg
[4] SPSO Stackelberg

[4] SPSO Stackelberg
[4] SPSO

32 32 18.5 19 439 394.8 230.02 253.44
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The tables show that the results obtained are better than the existing system results
when optimization is performed using SPSO to solve the IBDR program.

The value of the weight factor represents the importance given by the customer to the
discomfort involved in reducing the demand. A small value of µi represents less importance
given to discomfort. This can be seen in Figure 7. The demand reduction curve for µ = 0.8
is high compared to that for µ = 1.0, which shows that the customers with a smaller µ value
impose less weightage on the dissatisfaction cost, i.e., they can afford to have more demand
reduction, without giving too much consideration to the discomfort caused. However, the
customers with a higher µ value impose more weightage on dissatisfaction, such that they
reduce their demand less compared to those with lower values of µ.

b. Sensitivity analysis for Case 1

Here, two conditions for which the value of µ is different for both customers are
considered. At first, the values of µ1 = 0.8 and µ2 = 1.0 were taken. It could be inferred
from the output graphs in Figures 8 and 9 that for the same optimal incentive curve obtained
by the SP, the customer with a µ = 0.8 value shows more interest in demand reduction
than the customer with µ = 1.0. This also happens when the condition is vice-versa; i.e.,
when µ1 = 1.0 and µ2 = 0.8, the demand reduction is more for customer 2, as depicted in
Figures 10 and 11.
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c. Case 2 with GO, ICS and SPS optimized using Stackelberg-distributed and
SPSO algorithms

This case considers GO, IC, SP and its customers. The number of ICs is three and the
number of SPs is two, with each SP being connected to three customers. The generator
coefficients used are a = 0.2, b = 0, c = 0, and the value of ρ is chosen as 0.6. The value of δ is
taken as 2.5, v is taken as 0.13, ε is taken as 10−4, and µ is taken as 1. Initially, the results
are tested for SPSO and the Stackelberg-distributed algorithm for an hour using the test
data and parameters specified in Tables 6 and 7.

Table 6. Test data used in Case 2 for the ICs [15].

ICs IC1 IC2 IC3
Load (kW) 45.4 36.2 56.5

σ 0.1 0.12 0.13
ω 8 8 8
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Table 7. Test data used in Case 2 for the SPs.

SPs SP1 SP2

End Users User 1 User 2 User 3 User 1 User 2 User 3

Load (kW) 11.4 7.5 14.4 5.5 13.7 9.2
θ 3.0 4.5 5.0 4.0 5.5 6.0
λ 2.0 2.0 2.0 3.0 3.0 3.0
µ 1.0 1.0 1.0 1.0 1.0 1.0

Figures 12 and 13 depict the optimal incentive and total cost of GO executed using
the Stackelberg PSO. The results show that the SPSO can obtain the optimal converged
output obtained by the Stackelberg distributed algorithm [31]. As per [15], the optimal GO
incentive should be 7.27 cents/kWh, and that obtained by the distributed algorithm was
7.3, whereas with SPSO, the obtained global optimal solution was exactly 7.273 cents/kWh,
as shown in Figure 12. From the results, it can be observed that the optimal incentive for
the GO is 7.27 cents/kWh [4]. With the distributed algorithm, the result obtained was 7.29,
with an error percentage of 0.275 [15], whereas with SPSO, the result was 7.273, with an
error percentage of 0.041.
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Furthermore, the optimal incentive of the SPs obtained is shown in Figure 14, and the
demand reduction of the three customers under SP1 and SP2 is given in Figures 15 and 16,
respectively. The comparison of the obtained optimal incentive for GO, IC, SP, and the total
cost of GO with SPSO and the distributed algorithm are tabulated in Table 8. Compared
with the Stackelberg distributed algorithm, the SPSO can reach the exact optimal solution.
Similarly, Case 2 with GO, IC, SP and its customers is considered for 24 h, and optimization
is carried out using both Stackelberg-distributed and SPSO algorithms. Figures 17–19
illustrate the evaluated load data for Case 2 for 24 h of the ICs and the customers under
SP1 and SP2.
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Table 8. Result comparison of Case 2’s Stackelberg-PSO and distributed algorithm.

Parameters
Stackelberg

PSO Algorithm Distributed Algorithm

Grid operator incentive (cents/kWh) 7.273 7.290
Total cost ($) 5.028 5.060

IC Incentive (cents/kWh) 4.363 4.38

SP incentive to users (cents/kWh)
SP1 SP2 SP1 SP2

4.665 5.0 4.7 5.1
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Figure 19. Available load data of the customers belonging to SP2.

The customer and IC parameters are the same as those in Tables 6 and 7. The load
data was taken for the entire day. These parameters remain the same throughout the day.
The value of ρ is taken as 0.6. The required demand reduction optimized for the whole day
is obtained, as illustrated in Figure 20. This demand reduction was used in the modeling of
GO required for the calculation of the quantity of power generated [32].

The optimal incentive of GO is found using the Stackelberg equation which was
derived, and the optimized incentives are utilized in the evaluation of the total cost. The
total cost is further minimized using SPSO. The optimized incentive and the total cost
incurred by the GO in procuring the capacities are depicted in Figure 21. The entire study
is conducted for a day; therefore, the incentives and demand reductions vary daily.
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The demand reductions of each ICs in response to the optimal GO incentive are
optimized using PSO, and the results are given in Figure 22a. The customers with a
larger value of σ are the ones contributing to more load reduction. It could be observed
that customer 3, with a higher σ value, contributes to a greater demand reduction. The
optimized GO incentives are utilized, and the incentives for SP1 and SP2 are found. The
optimized values of the incentives of the SPs are given in Figure 22b. It is seen that SP2
has a higher incentive compared to SP1. The corresponding demand reduction of each
customer under SP1 and SP2 is depicted in Figure 22c,d. These figures show that the
demand reduction of customer 1 is high compared to customers 2 and 3.

The effect of various parameters on the results is studied using sensitivity analysis.
Before starting with the altering of the parameters, from the results obtained from Case 2, it
could be inferred that the demand reduction of customer 1 of SP1 is higher compared to
that of customer 1 of SP2, which is visible in Figure 22c,d. This result could be attributed
to the fact of the θ value. The increase in the θ value means that the customer’s interest in
demand reduction is low. From the input data of Tables 6 and 7, it is visible that customer
1 of SP1 has a lower θ value (i.e., 3.0) compared to customer 1 of SP2 (i.e., 4.0); therefore,
the demand reduction is high for customer 1 of SP1. Furthermore, from Figure 22a, it
can be said that the ICs with a larger value of σ will reduce more load. It could be seen
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that customer 3, with a higher σ value, contributes to a greater demand reduction. µ for
the SP customers and ω for the ICs are changed to investigate the changes caused by the
parameters, and one hour’s (hour 16) output was observed and analyzed. Tables 9 and 10
present the input data of the performed analysis. The required demand deficit of the hour
considered is 96 kW.

Table 9. Load data of the IC for the hour considered for the sensitivity analysis in Case 2.

ICs IC1 IC2 IC3

Available load (kW) 45.4 36.2 56.5
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SP incentive, (c) the optimal demand reduction of the three customers of SP1, and (d) the optimal
demand reduction of the three customers of SP2.

Table 10. Load data of SP for the hour considered for the sensitivity analysis in Case 2.

SPs SP1 SP2

Users User 1 User 2 User 3 User 1 User 2 User 3
Load (kW) 11.54 7.47 9.29 11.35 16.55 12.77

The values of ω of the ICs considered are 8 and 5 for the three ICs. The values of µ for
the SP customers considered are 1 and 0.8. These changes in the outputs are also shown in
Tables 11 and 12 for IC and SP, respectively. The demand reduction of IC, the total cost of
GO, and the incentive of GO are reduced when the value of ω is diminished.
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Table 11. Optimized output with changes in the ω value.

Parameters ω=8 ω=5

Incentive of GO (cents/kWh) 7.3593 3.3383
Total cost of GO ($) 4.0397 2.0634

IC demand reduction (kW) 13.6714 4.9452 40.5349 8.2034 6.3111 34.7609

Table 12. Optimized output for changes in the µ value.

Parameters µ=1.0 µ=0.8

Incentive of GO (cents/kWh) 7.3593 9.9254
Total cost of GO ($) 4.0397 5.2703

SP incentive (cents/kWh) 3.0415 3.9544 3.1819 3.8468
Demand reduction of SP1

customers (kW) 0.18 0.12 0.11 0.52 0.35 0.31

Demand reduction of SP2
customers (kW) 0.11 0.08 0.07 0.42 0.31 0.28

The demand reduction of SP, and the total cost and the incentive of GO increase when
the value of µ is reduced. The customer output of both of the SPs shows that as the value
of µ is small, the customer shows more interest in demand reduction, and when observed
closely, it is noted that the θ value also affects the demand reduction.

As θ increases, the value of the demand reduction decreases, which highlights that the
customers show less interest in demand reduction as the value of θ increases.

A payment analysis is used to evaluate the benefits gained by each entity, and the
results are tabulated. In Case 1, the demand reductions obtained by this approach for the
entire day are much higher—the SP gains by selling these demand reductions at market
prices. The incentive payment to be given to the customer is calculated. The incentive
given by the SP to its customers is 5263 dollars for µ = 1.0. If the IBDR implementation
was not performed, the SP must purchase the required demand reduction at the market
price as tabulated in Table 13.

Table 13. Payment analysis in Case 1.

Entity Considered Incentive Benefits ($)

Incentives given by SP to customers in dollars 5263
SP purchasing Dreq

t at market price (with no IBDR) in dollars 6357.7

The gain obtained by SP1 and SP2 can be found in Table 14 as USD 126.77 cents. The
total cost incurred by the GO from Figure 22 is USD 60.1813, which is USD 6018.13 cents;
lesser than the cost obtained using generators to serve the entire demand. Therefore, all of
the entities involved in the IBDR program is benefited.

Table 14. Payment analysis in Case 2.

Entity Considered Incentive Benefits (Cents)

Incentives obtained by IC from GO (cents) 3900
Total incentives obtained by SP1 and SP2 from GO (cents) 237.4676

Total incentives given by SP1 and SP2 to its customers (cents) 110.69

6. Conclusions

A novel IBDR is implemented considering the viewpoint of the SP and the GO. It
could be said that the introduction of the GO into the system brings many changes in how
incentives are provided, and in the demand reductions being evaluated. The interactions
between the various entities are modeled using the Stackelberg game, and the contradicting
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parameters are brought to equilibrium. In order to solve the optimization problems, PSO
is used, which provides the best-optimized results. The interaction between the SP and
its two customers is a one-leader, two-follower game, but due to the presence of multiple
entities with the introduction of GO, the game becomes a little complex as a one-leader
multi-follower game. For the first IBDR case implemented (considering only the SP and
its two customers), the incentive of the SP and the corresponding demand reductions
of its customers were optimized. For the second case, with the involvement of the GO,
the IC, and the SP, the incentives of the GO, the total cost of the GO, the corresponding
demand reduction of the ICs under GO, the incentives set by the SP to its customers, and
the demand reductions of the customers under SP were optimized. A sensitivity analysis
was conducted to study the influence of varying customer parameters on the proposed
IBDR program. The results proved that various changes in the outcomes are obtained
due to the effect of the customer parameters, and a change made to a parameter of one
entity affects the results of other entities. In the first case, the discomfort weight factor
and the customer’s attitude towards demand reduction are modified, and the outputs are
monitored. In the second case, the discomfort weight factor and the customer’s attitude
towards the demand reduction of the SP and the IC parameters are varied, and the results
are evaluated. The results show that the IBDR proves itself as a valuable tool to help the
SP and GO procure resource capacities, thereby enabling them to solve the demand deficit
issue. This work can be extended in the future by increasing the number of customers,
SPs and ICs, and by considering the effect of integrating renewable energy sources on
the results.
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Glossary

DR Demand response
IBDR Incentive-based demand response
PBDR Price-based demand response
SPSO Stackelberg–particle swarm optimization
LSE Load serving entities
SG Smart grid
MES Multi-energy systems
GO Grid operator
SP Service provider
IC Industrial customer
PSO Particle swarm optimization
Sets, parameters and variables
i Customer
t Time
πt Hourly incentives
µi Weight factor
Di,t Demand reduction
ϕi,t
(

Di,t
)

Dissatisfaction cost
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Dmin
i,k,t Minimum demand

Dtar
i,k,t Target demand

Dreq
t Required demand

Pt Electricity pricing
πmin

t , πmax
t Minimum and maximum incentive

πGOIC Incentive for the IC
Dava

l,t Available load for the IC
DIC,l,t Demand reduction of the IC
Ψl Profit for the IC
Dava

l − DIC,l Energy consumed by the the IC
UIC,l Utility function of the IC
σl , ωl Rate and magnitude of profit of the IC
K Number of service providers
Nk Total number of customers under the kth SP
DSP,k,t Demand reduction of all customers belonging to the kth SP
Nk Number of customers under the kth SP
πSP,k,t Incentive offered by the kth SP
πGOSP,t Incentive offered by the GO to the SP
G Quantity of power being generated
Cgen(G) Cost of generating power
a, b, c Coefficients of generation
πGO Incentive of the GO
πGOSP Incentive set by GO for the SP
πGOIC Incentive set by GO for the IC
πmax

GO , πmin
GO Maximum and minimum incentive of the GO
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