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Abstract: Making forecasts for the development of a given process over time, which depends on many
factors, is in some cases a difficult task. The choice of appropriate methods—mathematical, statistical,
or artificial intelligence methods—is also not obvious, given their great variety. This paper presented
a model of a forecasting system by comparing the errors in the use of time series on the one hand, and
artificial neural networks on the other. The model aims at multifactor predictions based on forecast
data on significant factors, which were obtained by automated testing of different methods and
selection of the methods with the highest accuracy. Successful experiments were conducted to forecast
energy consumption in Bulgaria, including for household consumption; industry consumption, the
public sector and services; and total final energy consumption.
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1. Introduction

The forecasting of the future is extremely important for the effective management of
a process or system. Forecasting is about predicting the future as accurately as possible,
given all of the information available, including historical data and knowledge of any
future events that might impact the forecasts [1]. From a scientific point of view, forecasting
is a scientifically based assumption about the future state and development of processes,
events, indicators, etc. [2]. Considering the possibility of the existence of many different
forecasts for the development of a given process in the future, forecasting can be defined
as a reasonable assumption of possible options for development in a given area and the
probability that they will be realized.

The synergy between mathematics and computer science has led to the development
of a wide variety of algorithms, approaches, methods, and tools for forecasting. Widely
used, with application in various fields are mathematical and statistical methods including
regression and clustering [1,3], time series [4,5], polynomial approximations [6], fuzzy
collaborative methods [7], as well as many methods for artificial intelligence predicting,
such as machine learning [8,9], etc. On the one hand, this diversity provides an opportunity
to choose a specific approach to solving a given task, but, on the other hand, it makes it
difficult to find the most effective solution.

In the process of our work on multifactor and multi-step forecasting of energy con-
sumption in the Republic of Bulgaria, we came to the need to forecast many socio-economic
factors through which to make the final forecast. The functions, by which the individual
factors change, as well as the energy consumption, can have a variety of linear and nonlin-
ear forms, where the appropriate forecasting methods for each of them may be different.
Determining the most accurate forecast values for the factors would have a positive effect
on the accuracy of forecasting the target value, which in our case is energy consumption.

The automation of the process of choosing the most effective method for any individual
factor or target value contributes to the acceleration of the process and the improvement of
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the forecast accuracy. Finding the most effective forecasting method requires experimenting
with several different approaches that are combined and compared. Making more effort to
solve the prognostic task could save future effort, time, and money. Fast, but essentially
inaccurate forecasts often lead to unreasonable investments or unrealized opportunities.

2. Predicting Electricity Consumption—State of the Art

Whether the forecast is long-term, medium-term, or short-term, predicting electricity
consumption has a key role to play in investment planning, the introduction of new
capacities or the decommissioning of unnecessary ones, and the assessment of the behavior
of the entire economic system. Effective modeling of electricity consumption is becoming
a vital task aimed at avoiding costly mistakes in unreasonable investments, shutting
down important facilities, improperly scheduled repairs or short-sightedness in exports or
imports. Therefore, we should not be surprised that in the literature on the subject there
are many proposed options for dealing with forecasting problems.

Official studies focused on the development of the energy sector in Bulgaria, factors
influencing electricity consumption and approaches for forecasting the consumption and
factors have been conducted by teams from the Bulgarian Academy of Sciences (BAS) and
Risk Management Lab. Traditional methods such as correlation and regression analyses
have been used in both studies.

In the research, conducted in BAS, a basic and in-depth analysis has been made of the
impact of individual factors influencing electricity consumption. Taken into consideration
are the country’s gross domestic product, gross value added by economy sectors, population
size, number of employees, income, prices, changes in temperature until 2040 according to
the Bulgarian National Institute of Meteorology and Hydrology, etc. Forecasts have been
made based on three different scenarios according to different expectation for changes in
factors [10].

The team of Risk Management Lab creates mathematical and statistical models for
forecasting the electricity balance (including as an element of itself and forecasting electricity
consumption). The study examines specific factors in terms of electricity consumptions by
households and the industry [11].

Due to the great social and economic importance of forecasting electricity consumption,
many scientists have proposed different types of forecasting models to solve the problem
in the last few decades. The methods for forecasting electricity consumption can be defined
in several categories:

• Statistical models for analysis—correlation methods and regression models—BAS
strategy [10], Risk Management Lab [11], Mohamed and Bodger [12];

• Time series—Lee, Gaik and Yee [13], Sun, Zhang et al. [14], Chou and Tran [15];
• Granger gray forecasting systems—Ding, Hipel and Dang [16], Lee and Tong [17],

Huang, Wang, et al. [18];
• Neural networks—Chung [19], Chernykh, Chechushkov and Panikovskaya [20], Khos-

ravani, Castilla, et al. [21], Yoo and Myriam [22], Hu and Yi-Chung [19], Jahn [23];
• Advanced machine learning methods—Bouktif, Fiaz, Ouni and Serhani [24], Alamani-

otis, Bargiotas and Tsoukalas [25], Alamaniotis [26], Chou, Truong [27], Kong, Dong,
Jia, Hill, Xu and Zhang [28], Moradzadeh, Moayyed, Zakeri, Mohammadi-Ivatloo and
Aguiar [29];

• Bagging and boosting methods—Khwaja, Anpalagan, Naeem and Venkatesh [30],
Khwaja, Zhang, Anpalagan and Venkatesh [31], Cao, Wan, Zhang, Li and Song [32];

• Hybrid methods—Karatasou, Santamouris and Geros [33], Cervená and Schneider [34],
Farsi, Amayri, Bouguila and Eicker [35], Chung, Gu and Yoo [36], Sajjad, Khan, Ullah,
Hussain et al. [37], Alamo, Medina, Ruano et al. [38] etc.

Each of the considered approaches has its advantages and disadvantages in different
specific tasks and situations. This shows that the creation of an automated forecasting
system in which multiple forecasting models can be implemented and compared could
bring many benefits in forecasting not only electricity consumption but also other quantities.
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3. Materials and Methods
3.1. Forecasting Process

In the general case, the solution of forecasting tasks is performed in a similar way and
the process can be reduced to several stages—data collection and processing, a study of
solution methods, solution, and analysis of the results [1]. The algorithm is iterative and
individual stages can be performed and overlap repeatedly over time.

Data collection is often associated with preliminary research in the subject area, which
provides additional information related to the set task. At this stage, an idea of the possible
factors influencing the predicted values is formed. In the best case, the data on the selected
factors are provided by the stakeholder or can be collected from one or more sources. In
other cases, new technical equipment and software applications must be built in order to
collect them.

The merging and synchronization of data by time, location, seasons, or other criteria
is an integral activity when using multiple data sources providing data for various factors.

Data analysis and processing include activities to check and clear incorrect input data;
conversion of data into structures suitable for modeling; and graphical representation of
the data through which trends, periodicity, seasonality, etc., can be detected. In some cases,
data behavior may be affected by various methodological and technological differences in
data collection, as well as social, societal, climatic, or other changes. This implies the use of
various methods for analysis and subsequent forecasting of the formed segments.

In the stage of research of methods for solving the problem of forecasting, various
existing methods and algorithms are considered or specific ones are created. Both standard
statistical and artificial intelligence methods and models can be used as forecasting methods.
The number of methods and their use may depend on the requirements of the specific task,
on factors related to the environment, performers, etc. An important part of this stage is
the definition of indicators for evaluating the effectiveness of forecasting methods. The
evaluation of efficiency may include various parameters depending on the volume of data,
technical capabilities of computer systems, cost, speed, etc.

In the last stages, one or several of the perspective models for forecasting are selected
and applied for the solution of the problem. After evaluating the results, individual steps
can be repeated many times in order to achieve better results.

This whole process requires a lot of time and resources. This raises the question—is it
possible to fully or partially automate the forecasting process, including the conducting
of experiments with various mathematical and artificial intelligence methods, comparing
errors, and choosing the best solution? This is the purpose of our work that is presented in
this article.

3.2. Multifactor Forecasting System through Automated Selection of the Best Methods

The successful solution of the set task for forecasting energy consumption in the na-
tional power system is directly related to the correct assessment of the factors influencing
energy consumption. These are macroeconomic and demographic indicators, social param-
eters, weather conditions, and others. This work investigated several factors influencing
electricity consumption: gross domestic product; energy intensity; population size; popula-
tion income; price of electricity; expected temperatures for the respective period; energy
efficiency; and electricity consumption in a preceding period.

The automation of various stages and activities of the forecasting process requires
careful planning. Such a system must support the following basic capabilities:

• mechanisms for integrating different forecasting methods into the system;
• potential to work with a different number of factors;
• automated search and selection of effective forecasting methods when solving a

specific task.

In our proposed model for an automated search of effective forecasting methods, two
main approaches are used:
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• Complex forecasting, which is multivariate time series forecasting. It is applicable
to multifactor forecasting, in which preliminary forecasting of individual factors
is performed;

• Simple forecasting, which is univariate time series forecasting.

The long-term goal of our research is to develop a neurocybernetic system for energy
consumption forecasting that supports various mathematical and artificial intelligence
methods. In the first version, we used a neural network in its basic version. Further work
on the system involves adding other forecasting methods.

3.3. Mathematical Model of the Forecasting Task

The main approach to work in the forecasting system through artificial neural networks
can be formally presented as follows:

Let us assume we have the following event:

S = S
(→

X1,
→
X2, . . .

→
Xk

)
,

whose outcome is determined by k influencing factors
→
X1,

→
X2, . . .

→
Xk. Let a sample of

values be provided for each of the factors
→
Xi

→
Xi :

(
xi,1, xi,2, . . . xi,ji

)
, i = 1, 2, . . . k, i, ji ∈ N.

The main steps performed by the system when using complex forecasting are
the following:

(1) Automatically searches for and constructs a neural network NN with input vectors
→
Xi, approximating S with minimal error ENN ;

(2) Based on the samples
(
xi,1, xi,2, . . . xi,ji

)
forecasts the future behavior of the factors

→
Xi

using p in a number of different factors {mt}t=1...p;

(3) For each of the factors
→
Xi the efficiency of the used forecasting methods is compared

separately;

(4) For the final forecast value of
→
Xi, the forecast of the respective most effective method

is selected;

(5) Through the forecasted values of the factors
→
Xi and the method M, the outcome of the

event is predicted.

Various criteria can be used to evaluate the effectiveness of forecasting methods, such
as decision error, cost, speed, computer resources used, etc. In our study, we chose to call
the method M1 more effective than M2 if it has a lesser prediction error, i.e.,

EM1 ≤ EM2 . (1)

Condition (1) allows us to introduce a formula for the efficiency of a forecasting
method as the inversely proportional values of the error that occurs when forecasting
with it:

e f f iciency =
1

error
. (2)

Absolute error (AE) or root mean square error, obtained when forecasting on an n-
tuple data array, can be used. For single point forecasts created on (n− 1) the sample
element, the absolute forecasting error for the last element is:

AE = |Realn − Forecast(n)|, (3)

where
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• Realn is the actual value of the measured value,
• Forecast(n) is the predicted value proposed by the method used.

For multi-step forecasts for the last k elements of the data array, one of the most
popular error metrics were used—the mean absolute error (MAE), mean square error
(MSE), and symmetric mean absolute percentage error (SMAPE) [39]. They are calculated
by the formulas:

MAE =
1
k ∑n

i=n−k+1|reali − f orecast(i)|, (4)

MSE =
1
k ∑n

i=n−k+1[reali − f orecast(i) ]2. (5)

SMAPE =
100%

n

n

∑
i=1

|Forecast− Real|
|Forecast|+ |Real| (6)

3.4. System Architecture

The modules in a forecasting software system automate the main activities (Figure 1).
The user of the system accesses the individual modules through a common interface
provided by the Manager module. In addition to the connection with the user, it provides
management and control over the other modules.
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Figure 1. Main modules and the connections between them in an automated forecasting system.

The data entry module assists the user in entering data and their initial classification.
Merging and synchronization tools are useful in cases where data from different

sources are used. At the user’s choice, through functions or parameters, the data are
converted into a format suitable for making forecasts. The data analysis is supported by
graphical tools integrated in the module and standard statistical methods, providing the
user with opportunities for additional classification and clearing of incorrect data, as well
as preparation of various data models.

The forecasting module presents an opportunity to choose one or more forecasting
methods, as well as an opportunity to evaluate the most effective method. An important
feature that the system must support is easy integration of new forecasting and evaluation
methods in the module.

The presentation module contains graphical tools for visualization of the results
obtained from the most effective method, as well as from all other methods used.

The data storage and management module provide access to various types of data that
can be used in the configuration, training of forecasting methods and their subsequent use:

• primary input–output data and initial parameters;
• data models used by forecasting methods;
• maximum permissible error criteria set by the users;
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• number and type of methods used;
• errors obtained in each of the methods;
• identifier of the most effective method;
• results from forecasting tasks, etc.

3.5. Multifactorial Multi-Step Forecasts

The forecasting module (Figure 2) provides us with two different forecasting approaches:

• simple forecasting—direct forecasting with known behavior of the factors, or if we
consider the values of the target variable as a time series;

• complex forecasting—the forecasting of the target value is based on additionally
created forecast data for the individual factors.
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During the process of factor forecasting, for each of the factors the most effective
method was sought, which could be used repeatedly (Figure 3). It is appropriate to forecast
the individual factors in parallel and to use cloud computing to save time and resources.

The factor forecasting module receives a two-dimensional array of input data{
xi, j

}j=1...ni
i=1...k , containing the sample for k in number factors, each with nk values. Other

input parameters are the number of desired forecast values c ∈ N and the lower limit of
the desired e f f iciency. For each of the factors, independent forecasts were made using the
library of “prediction methods”.

The set of forecasting methods {mt}t=1...p, p ∈ N was pre-set in the software system
and could be extended. The methods include a variety of time series forecast models, mod-
els based on artificial neural networks in which parameters such as the number of neurons,
activation functions, learning algorithms and other artificial intelligence algorithms can
be changed. Models with time series and artificial neural networks are integrated in the
system so far.

Applying the forecasting methods, for each of the factors there are approximating
functions with the desired efficiency

{
ft(xi, j)

}t=1...p
j=(ni−c+1)...ni

, i = 1, 2, . . . k.
In the process of evaluating the effectiveness, using the AE, MAE, and MSE errors,

the efficiencies of the tested methods or variants of methods were compared. The most
appropriate forecasting model was selected, including the method mt1 ∈ {mt}t=1...p and its
corresponding parameters.
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The end result of the process is a set of ordered triples <factor, factor data, se-
lected forecasting method and its corresponding parameters>, i.e.,

{(
i, xi, j, mti

)}j=1...n
i=1...k ,

mti ∈ {mt}t=1...p. When the data change, the same selected method can be used, or the
process can be restarted to search for a new method.

3.6. Algorithm for Searching for an Optimal Artificial Neural Network

To solve a task, many different neural networks can be built, with different numbers
of neurons in the hidden layer, with greater or lesser error and different result functions,
which have similar behavior in the input–output samples used. An error is not always an
indicator of the complexity of the neural network. The lesser number of neurons implies
faster and easier learning of the neural network and, subsequently, faster work. The optimal
neural network for solving a certain task has characteristics such as a minimum number of
neurons and compliance with the user-specified allowable error in training, testing, and
validation with the available input-output samples. Its effectiveness in newcomer input
data can be evaluated at a later stage. An algorithm providing capabilities for automated
construction of multiple neural networks would help choose the optimal solution.

One of our experimented approaches for creating an optimal neural network is iter-
ation over various parameters (Figure 4) needed to create neural networks: number of
neurons in the hidden layer, activation functions (Table 1), training algorithms (Table 2),
and number of training epochs. It successively changes the parameters for creating neu-
ral networks and examines the efficiency of the current neural network. The first neural
network that meets the requirements set by the user is considered optimal. Therefore, an
important part of the algorithm is how to change the iterative parameters. Since the creation



Sustainability 2022, 14, 11074 8 of 18

and training of each neural network requires a certain amount of computer resources and
time, the iterative approach is appropriate to use on single-processor machines only for
tasks where finding the appropriate neural network is expected to have a relatively small
number of iterations.
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Table 1. Used activation functions.

Function

Hyperbolic tangent sigmoid transfer function
Log-sigmoid transfer function
Hard-limit transfer function

Symmetric hard-limit transfer function
Competitive transfer function

Elliot symmetric sigmoid transfer function
Elliot 2 symmetric sigmoid transfer function

Inverse transfer function
Positive linear transfer function

Radial basis transfer function
Normalized radial basis transfer function

Saturating linear transfer function
Symmetric saturating linear transfer function

Soft max transfer function
Triangular basis transfer function

Table 2. Used training methods.

Method

Levenberg–Marquardt
Bayesian Regularization

Scaled Conjugate Gradient
BFGS Quasi-Newton

Resilient Backpropagation
Conjugate Gradient with Powell/Beale Restarts

Fletcher-Powell Conjugate Gradient
Polak–Ribiére Conjugate Gradient

One Step Secant
Variable Learning Rate Backpropagation

Levenberg–Marquardt
Bayesian Regularization
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Finding the optimal solution faster is associated with:

• Indication of parameters for changing the number of neurons. Reducing the limits
of variation in the number of neurons will reduce the total number of iterations in
the algorithm and therefore will accelerate the achievement of the final result—the
creation of an optimal neural network. In some cases, the expected number of neurons
can be justified mathematically [40,41].

• Arrangement of the used training methods and activation functions. Different ac-
tivation functions are suitable for different tasks. To solve problems requiring the
application of mathematical logic, we included the hard-limit transfer function and
its variant—the Symmetric hard-limit transfer function. These functions provide an
interrupted binary signal along the axon of neurons and are suitable in case there is
a need to solve problems requiring binary logical thinking. On the other hand, to
forecast the future development of continuous processes, we used a large number of
efficient and convenient transfer functions. Priority in the order of use is given to those
with a sigmoid character such as hyperbolic tangent sigmoid transfer function and
log-sigmoid transfer function, useful in a very wide range of problems [42].

• Necessity to change the number of learning epochs. Sometimes, to reach the optimal
neural network it is only necessary to change the number of training epochs. Increasing
the iterations slows down the neural network learning process, but often even a slight
change in this parameter leads to a surprising overcoming of a small plateau of neural
network errors and leads to a sharp improvement in the final approximation.

The iterative algorithm for automated construction of artificial neural networks (Figure 5)
has the following main steps:

(1) Preparation of input data:

• Tensor data—input data for the factors, which are usually in the form of a one-

dimensional—{xi}i=1...k—or two-dimensional array—
{

xi, j
}j=1...ni

i=1...k .
• Number of forecasted results—c—which is 1 for single-point forecasts or a larger

integer for multi-step forecasts.
• Desired efficiency—e f f iciency—of the trained neural network.

(2) Preparation of the parameters on which iteration is performed:

• List of training methods lms = {mi}, where i varies from 1 to the number of
methods (Table 2). Depending on the task, to achieve the desired result faster, it
is possible to arrange the methods in the list according to the expected efficiency,
and some of them may even be excluded if they are considered inappropriate.

• List of activation functions a f s =
{

a f j
}

, where j varies from 1 to the number of
functions (Table 1). Here, too, the functions can be arranged at the discretion of
the appropriateness of their use in the specific task.

• Minimal and maximal number of neurons—min_n u max_n, as well as a step by
which neurons change—step_n. The current number of neurons we denote by n.
For more elementary tasks, the number of neurons may start from 1 (min_n = 1)
and the step by which their number increases is also 1. The maximum number
limits the possible iterations related to the number of neurons.

• The epochs epochs change from min_ep to max_ep with a step step_ep. Values
we have experimented with are minep = 1000, maxep = 5000, step_ep = 1000,
where usually 3–4 iterations are enough to assess whether the change of epochs
affects the efficiency of the trained neural network.

• By iterating over the number of neurons, training methods and activation func-
tions, a neural network with their current values is created—the ordered triple
(n, lm, a f ) and the input data. The nesting of the loops for the specific task is a
matter of judgment, which determines the sequence of the parameters change.
In the experiments, we chose to increase the number of neurons in the outermost
loop, as we wanted to find a neural network with the lowest number of neurons.
Training methods and activation functions change in inner loops.
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(3) After the creation of the current neural network, it is trained, tested, and validated.
(4) The desired efficiency is compared to the efficiency of the current neural network,

and then:

• If the neural network meets the condition, its data is saved and the task
is completed;

• Otherwise, attempts are made to increase the efficiency of the neural network
by increasing the number of learning epochs. The information about the most
efficient neural network found (with the smallest error) is saved, and it can be
current or obtained in a previous iteration.

(5) The end result of the algorithm is a trained neural network having the closest possible to
the specified efficiency, as well as parameters for its architecture and training—efficiency,
number of neurons n, training method lm, activation function af, and epochs ep.

The use of the “brute force” method, by traversing all possible values of the iterative
parameters and finding the neural network with the optimal ratio “number of neurons—
efficiency” is not the most rational approach. Tracking changes in the specified ratio can
lead to the creation of heuristic variants of the algorithm by automated changing of the
order of change of the iterative parameters.

The availability of sufficient computing power predisposes to the use of different
parallel algorithms for such automated search for an optimal neural network (Figure 5)
in which, for example, all combinations of training methods and activation functions
can be started in parallel processes—(lmi, a f j), where i and j are changed from 1 to the
corresponding number of training methods and activation functions. After the completion
of the individual processes, the efficiencies of all neural networks created during their
implementation are compared and the most appropriate one is selected.
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4. Results and Discussion

A prototype was developed for approbation of the presented model. The program
MatLab was used, with which the described basic modules and functionalities were imple-
mented. The prototype was tested to solve prognostic tasks in the field of energy.

4.1. Setup of the Experiment

The problem of forecasting the demand and respectively—the consumption of electric-
ity is extremely important for the planning and management of the national energy system
of every country. Accurate forecasting of probable electrical loads is an important prerequi-
site for effective planning of production capacity, proper maintenance of the transmission
and distribution network, planning of future exports or imports of electricity, the behavior
and direction of energy flows both in the country and in related international networks.

The developed prototype was used to solve three tasks for forecasting electricity con-
sumption in the National Power System of Bulgaria. The targets subject to forecasting were:

(1) Total final consumption in the national power system;
(2) Electricity consumption in the industry, the public sector, and services;
(3) Electricity consumption in households.

The forecasts were made by taking into account their dependencies on the following
socio-economic factors:

(1) Gross domestic product (GDP);
(2) Energy intensity (EI);
(3) Population;
(4) Income of the population;
(5) Energy efficiency;
(6) Price of electricity.

These factors have been identified as significant in studies carried out by the Bulgarian
Academy of Sciences (BAS) and Risk Management Lab [10,11]. A subsequent step would
be to build a module for the automated study of correlations between the factors with the
aim of minimizing their number and optimizing post-processing.

In order to forecast the target values for a specific year, we first made forecasts for the
factors for the respective year.

In the process of work, data from official sources such as the National Statistical
Institute [42], Information System INFOSTAT [43], Electricity System Operator [44], The
World Bank Group [45], and Eurostat [46] were used. All available data on factors and
target values for 17 years were used for the study.

The factor forecasting module uses different models of the time series trend. A
substructure involving the use of neural networks to predict these factors provides for
the possibility of further processing of the input data. Some of the data are submitted to
the neural networks normalized, which is implemented by multiplying them by a specific
coefficient. This reduces the radius vector of the input data and facilitates the training of
this type of artificial intelligence. The general scheme showing the joint operation of the
modules is shown in Figure 6:

(1) Modules for factor forecasting, respectively through time series and neural networks;
(2) Error estimation module (mediator module) for the various methods and parameters;
(3) Consumption forecasting module.

4.2. Single-Point Forecasts for the Factors

The use of the prototype for forecasting electricity consumption in single-point (annual)
factor forecasting showed different results for the effectiveness of different types of trends
in time series (Figure 6).

When forecasting GDP, population, and average annual income, maximum efficiency
was achieved with a linear trend of the time series. The forecasting of the energy intensity,
the price of the electricity for the household, and the price of the electricity for the industry
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achieved good results respectively in logarithmic, quadratic, and hyperbolic trends of the
time series. Models for the most efficient neural networks, forecasting the same factors, are
presented in Figure 7.
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Figure 7. Forecasting the behavior of the factors influencing the electricity consumption in NEES
through separate artificial neural networks. (a) Gross domestic product, (b) energy intensity of the
economy (Net_Int), (c) population, (d) average annual income, (e) price of electricity for households,
(f) price of electricity for the industry.
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During neural network training, all factors were considered as functions of time in
order to enable the comparison of the results of forecasting in time series. The type of
training that proved to be most effective for current tasks is the Lavenberg–Marquardt
algorithm. The most appropriate activation function of neurons in the hidden layers for
Energy intensity of the economy neural network is the logarithmic sigmoid function:

g(x) = σ(x) =
1

1− e−x ,

and for every other it is the hyperbolic tangent:

g(x) =
ex − e−x

ex + e−x .

The activation function of the output neuron in all neural networks is linear:

g(x) = x.

The comparative analysis between the efficiency of the found neural networks in a
one-year forecast and the type of trend in time series, leading to minimal error, is presented
in Figure 8.
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Figure 8. Comparison of efficiency between the most effective time series trend and the results of the
forecasts of artificial neural networks.

The use of the presented prototype with time series and artificial neural networks
showed a significant advantage in favor of neural networks in the case of forecasting GDP,
population, and average annual income. In the other three cases, single-point forecast of
energy intensity, price of electricity for households and its price for the economy sector, the
module for comparison of errors showed some advantage in the efficiency of time series.
In these cases, the type of trend was logarithmic, quadratic, and hyperbolic, respectively.
Based on them, forecasts were made for the development of the values of the factors
presented in Table 3.
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Table 3. Single-point forecasts for the factors for the last year of the available dataset.

Factor Predicted Value The Most Effective Method SMAPE (%)

GDP 102,954.73 Neural network 0.15
Energy intensity of the economy 0.42 Time series with logarithmic trend 3.65

Population 7,006,425.85 Neural network 0.65
Average annual income 6196.5 Neural network 1.57

Price of electricity for households 22.56 Time series with quadratic trend 4.98
Price of electricity for the industry 21.77 Time series with hyperbolic trend 4.8

4.3. Multifactor Single-Point Forecasts of Target Values

In the second part of the conducted experiments, the influence of the considered factors
on the target values in the National Power System of Bulgaria was studied. Appropriate
optimal neural structures were created for their forecast (Figure 9):

(1) Total final consumption in the National Power System—the neural network named
Net_Nees, with 54 neurons in the hidden layer;

(2) Electricity consumption in industry, public sector and services—Net_Industry neural
network with 35 neurons in the hidden layer;

(3) Electricity consumption on households—Net_Household neural network with 47 neu-
rons in the hidden layer.
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Figure 9. Neural networks for consumption forecasting. (a) Total final consumption in the NES
(Net_Nees), (b) electricity consumption in industry, public sector, and services (Net_Industry), and
(c) electricity consumption in households (Net_Households).

Activation functions of all neural networks found by the software system were hyper-
bolic tangent, and of the output neuron, linear.

The deviations of the forecast results from the actual data for single-point forecasts
(for one-year consumption) were relatively small (Table 4) as the largest deviations in
forecasting consumption in the industry are about 41 thousand tons of oil (toe) equivalent,
i.e., about 1.525%. The deviation in forecasting consumption in the entire energy system
was 0.0739%, and household consumption was 0.0302%.
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Table 4. Forecasting of consumption with artificial neural networks, in thousand toe.

Neural Network Actual Value Predicted Value Absolute Error SMAPE (%)

Net_Nees 9737.9 9745.1 7.2 0.04
Net_Industry 2721.3 2679.8 41.48 0.77

Net_Households 2318.7 2318.0 0.7 0.02

Considering complex values as time series did not provide good results. The errors
obtained with the best approximations of time series were many times worse than the
corresponding neural networks (Table 5).

Table 5. The comparative table of errors in the use of these neural networks and time series.

Consumption Method Type Method Absolute Error
(Thousand Toe) SMAPE (%)

Total final consumption in the National
Power System

Time series Cubic trend 199.33 1.01
Neural network Net_Nees 7.2 0.04

Electricity consumption in industry, public
sector and services

Time series Combined trend 111.16 2
Neural network Net_Industry 41.48 0.77

Electricity consumption in households Time series Linear trend 24.47 0.52
Neural network Net_House holds 0.7 0.02

The analysis of the weights of the neural networks can show us the influence of the
individual factors on the predicted value of the target variable.

Let us denote by wi,p the weights by which the i-th factor is transmitted to the neuron
p from the hidden layer of the already trained neural network, as i, p ∈ N. We choose the
value as a criterion for the significance of factor i:

INPFi =

∣∣∣∣∣ r

∑
p=1

wi,p

∣∣∣∣∣,
where r is the number of neurons in the hidden layer of the neural network.

The study showed that the largest impact on the total electricity consumption in the
national network belongs to the gross domestic product of the country with INPF1 = 11.6,
and the least to the average annual income per capita with INPF4 = 1.06. For consump-
tion in the industry sector, things are similar. The most significant factor was GDP with
INPF1 = 5.01, and the one with the least importance was the price of electricity for the
household—INPF6 = 2.3. The most important factors in the energy consumption of
households are population (INPF3 = 13.82) and average annual income—INPF4 = 6.16.

4.4. Multi-Step Forecasts

Using the created neural structures for factor forecasting, we created forecasts for a
period of 7 years. Their accuracy can be determined over time (Table 6). Similarly, we
created 7-year forecasts for the studied multifactorial values (Table 7). The forecast results
showed that household electricity consumption, as well as total final consumption, will
gradually increase, while electricity consumption in industry, the public sector, and services
will decrease.
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Table 6. Seven-year forecasting of factors.

Factor 2021 2022 2023 2024 2025 2026 2027

GDP (Million levs) 102,932 106,693 110,455 114,217 117,978 121,740 125,501

Energy intensity of the economy 0.400 0.395 0.390 0.385 0.380 0.376 0.371

Population 6,804,441 6,746,144 6,687,847 6,629,550 6,571,253 6,512,956 6,454,659

Average annual income 6671 6798 6942 7013 7105 7241 7339

Price of electricity for industry (in
stotinki per kWh and without VAT) 26.79 27.62 28.46 29.29 30.12 30.96 31.79

Price of electricity for households (in
stotinki per kWh and without VAT) 19.22 19.35 19.47 19.58 19.69 19.79 19.89

Table 7. Seven-year forecast for electricity consumption in the National Energy System, made through
artificial neural networks.

Consumption 2021 2022 2023 2024 2025 2026 2027

Total final consumption in the National
Power System 13,832 13,856 13,858 13,858 13,858 13,858 13,858

Electricity consumption in industry,
public sector and services 3103 3101 3100 3099 3099 3098 3098

Electricity consumption in households 2800 2800 2800 2800 2800 2800 2800

5. Conclusions

Forecasting is a complex task. The availability of a wide variety of mathematical and
statistical methods, and artificial intelligence methods, combined with the pursuit of the
most accurate forecasting, usually requires a lot of time and effort. The use of software
tools to automate some of the activities greatly simplifies the work.

The article proposed a model for multifactor forecasting which automatically selects
the best method for forecasting significant factors and then uses the data predicted by
them to create a complex multifactor forecast. The developed model was successfully
experimented with to make multiple forecasts for the energy consumption of households,
industry, and total consumption—for a one-year and a seven-year period. By automating
the forecasting process in an indicative way, we made it easier to make predictions with
fewer errors than previously.

The presented model has wide applications in various subject areas. It can be used for
air quality forecasting, demographic forecasting, forecasting in industry, etc.

In the future, the system can be expanded in several directions. An important part of
its development is the integration of additional forecasting methods. The development of a
module to evaluate the correlation between the individual factors and the target variable
would also help to optimize the forecasting process. Automated generation of graphics
and documentation for each step in the overall forecasting process would be beneficial to
the end user of the system.
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