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Abstract: Primary productivity plays a key role in aquatic lake ecosystems. This study addresses the
characteristics of primary phytoplankton productivity and its relationship with environmental factors
in a large, shallow, and eutrophic lake (Lake Taihu, China). Surface water samples were collected
in wet and dry seasons from eight lake areas to investigate physicochemical factors and primary
productivity. The results show obvious seasonal differences in phytoplankton primary productivity
and physicochemical factors in Lake Taihu. The primary productivity in the wet season is about
five times larger than that in the dry season, and the spatial distribution of primary productivity
is obviously inhomogeneous in the wet season, while in the dry season, there are no significant
differences in different lake areas. Most of the lake areas are in the middle eutrophic state regardless
of the season; the northwest region has the heaviest degree of eutrophication, while the southeast
region has the lightest degree of eutrophication. Pearson correlation indicated that nutrients are
the main factors affecting primary productivity in the wet season, while temperature is the most
important factor affecting primary productivity in the dry season. Multiple stepwise regression
suggested that chlorophyll-a (Chl-a), temperature (T), and water transparency (SD) can be used to
estimate the phytoplankton primary productivity in Lake Taihu in different seasons, and the main
influencing factors for primary productivity are Chl-a, nutrients, and SD/total suspended solids
(TSS) in the wet season and T, Chl-a, and SD/TSS in the dry season.

Keywords: phytoplankton primary productivity; environmental factors; eutrophication; vertically
generalized production model (VGPM); trophic level index (TLI)

1. Introduction

Lakes have various functions, such as water supply, shipping, atmospheric regulation,
water purification, soil conservation, and the maintenance of biodiversity, which are of
great significance to human production and life [1]. However, rapid economic development
and human activities have caused varying degrees of damage to the lake ecosystem, and a
variety of environmental problems have been triggered [2,3]. Eutrophication has become
a major ecological problem in lake and reservoir ecosystems [4]. Lake eutrophication can
stimulate the growth of phytoplankton and cause a series of environmental problems,
such as harmful algal blooms, hypoxic and anoxic conditions, noxious odors, adverse
water-quality problems, and the mortality of aquatic plants and animals [4–8]. There may
also be other potential problems, such as damage to biodiversity, degradation in the lake’s
ecological functions, damage to fishery resources, etc. Therefore, the protection of lakes
is urgent.

The causes of eutrophication in China’s major watersheds include external and in-
ternal factors [1,5,7,8]. External factors refer to the suitability of light intensity and water
temperature, domestic waste, industrial and agricultural pollutants, etc.; internal factors
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include the deficiency of microorganisms and the increase in and accumulation of nitrogen
and phosphorus content in the water body. The enrichment of nitrogen and phosphorus
will cause a rapid reduction in dissolved oxygen and an increase in plankton in the water,
which will eventually lead to the death of fish or other aquatic organisms [4,7,8]. Eutroph-
ication will bring huge losses to aquaculture, especially fish and shellfish farming [9]. If
people eat these aquatic products by mistake, they will cause chronic poisoning.

Primary productivity, as one of the basic links in aquatic ecosystem functions, refers
to the ability of phytoplankton, epiphytic algae, higher aquatic plants, and autotrophic
bacteria to convert inorganic matter into organic matter through photosynthesis or chemical
energy synthesis [10–12]. About 50% of the biosphere’s primary productivity is contributed
by phytoplankton; thus, phytoplankton have been considered the most important primary
producers [10]. Aquatic plants and benthic algae are negligible, and phytoplankton are
almost the only producers in deep waters [12]. Primary productivity is of great signif-
icance for the study of aquatic ecosystems and their environmental characteristics. A
quantitative assessment of the primary productivity of phytoplankton in lake ecosys-
tems not only helps us to understand the process of nitrogen and phosphorus circulation
and energy flow but also helps us to estimate the production potential of fisheries and
provides theoretical support for the rational utilization and management of aquatic bio-
logical resources in lakes [13–16]. In addition, phytoplankton primary productivity also
increases with the deepening of eutrophication; it is, therefore, an important indicator of
lake eutrophication [15,16].

Lake Taihu is China’s third largest (2338 km2) freshwater lake with a mean depth of
only 1.9 m. It serves flood detention, irrigation, fishery, drinking water, waterway carriage,
and tourism functions. Taihu is well known as a hyper-eutrophic lake and has been plagued
by algal blooms in recent years [1,17,18]. Cyanobacterial blooms even caused a drinking
water crisis in Wuxi city in 2007 [19]. With a series of treatment and protection measures, the
water quality of Lake Taihu has gradually improved in recent years, but there is still a big
gap between the improvements and the governance goal [20]. The present study analyzed
the characteristics of primary productivity in Lake Taihu in wet and dry seasons and its
relationship with environmental factors, aiming to provide a data basis and theoretical
support to increase the understanding of nutritional status, water environment protection,
and fishery proliferation management.

2. Materials and Methods
2.1. Field Sampling and Laboratory Analysis

Lake Taihu (30◦55′40′′–31◦32′58′′ N, 119◦52′32′′–120◦36′10′′ E) is located between the
middle subtropical zone and the north subtropical zone. It has a monsoon climate with
abundant rainfall. Summer rainfall can account for more than 35% of annual rainfall, and
its water depth can reach more than 3.8 m in the wet season [21]. The annual average wind
speed is generally below 10 m/s (4.3 m/s in the wet season; 0.9 m/s in the dry season) [21].
Sunny days with light wind were selected to conduct our field work.

Lake Taihu contains eight areas, and each lake area was set a sampling point (Figure 1),
namely Zhushan Bay (S1), Meiliang Bay (S2), Gonghu Bay (S3), East Epigeal Zone (S4), East
Taihu Bay (S5), Southwest Zone (S6), Northwest Zone (S7), and Central Zone (S8). The field
sampling was conducted in December 2017 (dry season) and August 2018 (wet season).
After GPS positioning was completed on-site, a Hach HQ40d water quality analyzer was
used to measure water temperature (T), pH, and dissolved oxygen (DO). The transparency
(SD), total suspended solids (TSS), and water depth (D) were determined by a Secchi
disc, Hach 2100Q portable turbidimeter (Loveland, CO, USA), and SM-5 depth sounder
(Unionville, VA, USA), respectively. After that, the surface (0.5 m) water sample was placed
in the bucket with a 5 L water collector, and a 1 L water sample was collected into the
sampling bottle and marked. A total of 500 mL was used for the filtration and determination
of chlorophyll-a (Chl-a), and the other 500 mL was used for the determination of total
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nitrogen (TN) and total phosphorus (TP). The sampling bottles were stored in a portable
refrigerator at 4 ◦C and transported back to the laboratory for testing.

Sustainability 2022, 14, x FOR PEER REVIEW 3 of 12 
 

 

was placed in the bucket with a 5 L water collector, and a 1 L water sample was collected 
into the sampling bottle and marked. A total of 500 mL was used for the filtration and 
determination of chlorophyll-a (Chl-a), and the other 500 mL was used for the determina-
tion of total nitrogen (TN) and total phosphorus (TP). The sampling bottles were stored 
in a portable refrigerator at 4 °C and transported back to the laboratory for testing. 

Chl-a water samples were filtered through a glass fiber membrane (pore size 0.45 
μm) and then determined using the acetone extraction method. TN and TP were deter-
mined by the sulfate oxidation method and the digestion-ascorbic acid method, respec-
tively [22]. 

 
Figure 1. Sampling sites in eight areas of Lake Taihu. 

2.2. Primary Productivity Estimation Based on Vertically Generalized Production Model 
(VGPM) 

Dark and white bottle oxygen measurement is a traditional method for estimating 
the primary productivity of phytoplankton, but its operation steps are cumbersome and 
time-consuming [22]. Therefore, some models using chlorophyll-a concentration and re-
lated ecological factors to calculate phytoplankton primary productivity have been pro-
posed [23–25]. Among them, the vertically generalized production model (VGPM), pro-
posed by Behrenfeld and Falkowski (1997), comprehensively considers chlorophyll con-
tent, daily surface light intensity, water temperature, depth of euphotic layer, and other 
factors [25]. This model underwent long-term validation in different waters and has been 
widely used to estimate the primary productivity of phytoplankton in lakes [26]. 

The simplified VGPM model can be used to estimate the gross primary productivity 
of the euphotic layer (PPeu, mg C/m2). The formula is as follows: 

0

0
0.66125 4.1⋅ ⋅ ⋅ ⋅B

eu eu opt irropt
EPP = P Z C DE +  (1)

Figure 1. Sampling sites in eight areas of Lake Taihu.

Chl-a water samples were filtered through a glass fiber membrane (pore size 0.45 µm)
and then determined using the acetone extraction method. TN and TP were determined by
the sulfate oxidation method and the digestion-ascorbic acid method, respectively [22].

2.2. Primary Productivity Estimation Based on Vertically Generalized Production Model (VGPM)

Dark and white bottle oxygen measurement is a traditional method for estimating
the primary productivity of phytoplankton, but its operation steps are cumbersome and
time-consuming [22]. Therefore, some models using chlorophyll-a concentration and
related ecological factors to calculate phytoplankton primary productivity have been
proposed [23–25]. Among them, the vertically generalized production model (VGPM),
proposed by Behrenfeld and Falkowski (1997), comprehensively considers chlorophyll
content, daily surface light intensity, water temperature, depth of euphotic layer, and other
factors [25]. This model underwent long-term validation in different waters and has been
widely used to estimate the primary productivity of phytoplankton in lakes [26].

The simplified VGPM model can be used to estimate the gross primary productivity
of the euphotic layer (PPeu, mg C/m2). The formula is as follows:

PPeu = 0.66125PB
opt·

E0

E0 + 4.1
·Zeu·Copt·Dirr (1)

where PB
opt is a function of temperature, representing the maximum photosynthetic rate of

the water column (mg C/(mg·Chl·h)); its expression is as follows:

PB
opt =


1.13 (T ≤ −1.0)
4.0 (T ≥ 28.5)

PB
opt (−1.0 ≤ T ≤ 28.5)

(2)
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When −1.0 ≤ T ≤ 28.5, PB
opt can be calculated by the following formula:

PB
opt = 1.2956 + 2.749 × 10−1 T + 6.17 × 10−2 T2 − 2.05 × 10−2 T3 + 2.462 × 10−3

T4 − 1.348 × 10−4 T5 + 3.4132 × 10−6 T6 − 3.27 × 10−8 T7 (3)

In Equation (1), E0 is the photosynthetically active radiation intensity on the lake
surface. Previous research has reported that the annual photosynthetically active radiation
in the middle and lower reaches of the Yangtze River is 2200 MJ/m2 [27]; thus, E0/(E0 + 4.1)
is calculated as 0.87. Zeu refers to the depth of the euphotic layer, which can be calculated
using the formula Zeu = 1.7239 × SD + 0.1685 (R2 = 0.8408); the depth of the euphotic layer
can be represented by water depth, while the latter is less than the former [27]. Copt is the
chlorophyll concentration at the depth with maximum carbon fixation rate, which can be
denoted by the Chl-a concentration measured in the surface layer. Dirr means the light
cycle. The sunrise and sunset times of the sampling points can be calculated according to
the latitude and longitude to obtain the light cycle data. The Dirr value of Lake Taihu is
represented by the day length in Wuxi city.

2.3. Trophic Level Index (TLI) Method

The TLI method was proposed by the China Environmental Monitoring Station in
2001 and has been widely used for lake eutrophication assessment in China [28]:

TLI =
m

∑
i=1

Wj · TLIj (4)

Wj = r2
ij/

m

∑
i=1

r2
ij (5)

where m indicates the number of nutrient parameters used in this evaluation and Wj
means the weight of the TLI for the jth parameter. rij represents the relation of Chl-a with
other nutrient parameters, which has been summarized as shown in Table 1 (for lakes in
China) [29].

Table 1. The relationship between chlorophyll-a (Chl-a) and total phosphorus (TP) and total nitrogen
(TN) for lakes in China.

Parameters Chl-a TP TN

rij 1 0.84 0.82
rij

2 1 0.7056 0.6724

TLIj is the trophic level index (TLI) for the jth parameter. Chl-a, TP, and TN are
considered the three most important parameters for TLI evaluation [30]; their expressions
are as follows:

TLI (Chl-a) = 10 (2.5 + 1.086 ln Chl-a) (6)

TLI (TP) = 10 (9.436 + 1.62 ln TP) (7)

TLI (TN) = 10 (5.453 + 1.69 ln TN) (8)

There are five levels of trophic status: oligotropher (TLI < 30), mesotropher (30 ≤ TLI ≤ 50),
light eutropher (50 < TLI ≤ 60), middle eutropher (60 < TLI ≤ 70), and hyper eutropher
(TLI > 70).

2.4. Data Processing and Analysis

An independent sample nonparametric test (Kruskal–Wallis one-way ANOVA) was
used to analyze the differences in environmental factors in different seasons, and Pearson
correlation was used to analyze the relationship between PPeu and environmental factors.
After the standardization of PPeu, multiple stepwise regression was used to analyze the
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main physical and chemical factors affecting this. All the above analyses were completed
using SPSS Statistics 23.0 (IBM, Armonk, NY, USA). The spatial distribution maps were ob-
tained using inverse distance weighting (IDW) interpolation in ArcGIS 10.2 (Esri, Redlands,
CA, USA), and the data processing was completed using Excel 2019 (Microsoft, Redmond,
WA, USA).

3. Results and Discussion
3.1. Variations of Environmental Factors in Wet and Dry Seasons

The statistical results of the physicochemical factors and primary productivity of
Lake Taihu in wet and dry seasons are shown in Table 2. The physicochemical factors of
Lake Taihu significantly changed in different seasons. Among them, the water depth (D),
transparency (SD), pH, temperature (T), chlorophyll-a (Chl-a), total phosphorus (TP), and
primary productivity (PPeu) values were significantly higher in the wet season than in the
dry season, while the dissolved oxygen (DO), total nitrogen (TN), and total suspended
solids (TSS) values in the dry season were higher than those in the wet season.

Table 2. Statistical physicochemical parameters of wet season and dry season in Lake Taihu
(mean ± standard deviation).

Parameters Wet Season Dry Season

D/m 2.55 ± 0.26 1.94 ± 0.23
SD/m 0.63 ± 0.04 0.44 ± 0.03

pH 9.40 ± 0.18 7.86 ± 0.19
T/◦C 30.58 ± 2.54 9.35 ± 0.67

DO/(mg/L) 6.09 ± 0.25 11.36 ± 0.55
Chl-a/(mg/L) 45.57 ± 3.11 15.81 ± 1.28

TP/(mg/L) 0.14 ± 0.02 0.10 ± 0.02
TN/(mg/L) 1.83 ± 0.26 2.75 ± 0.42
TSS/(mg/L) 43.14 ± 5.29 51.47 ± 4.37

PPeu/(mg C/(m2·d)) 1586.83 ± 542.01 320.82 ± 110.34

Lake Taihu is in midsummer in August (wet season), at which point the temperature
(T) significantly increases. At this time, phytoplankton rapidly grows and reproduces, the
chlorophyll concentration (Chl-a) significantly increases, and the primary productivity
(PPeu) also reaches the highest value (Table 2). In addition, with the increase in rainfall
and runoff, a large amount of exogenous nutrients are imported into the lake, which also
provides favorable conditions for the growth and reproduction of phytoplankton. As the
water level (D) rises, the transparency (SD) of the water body also improves because it is
more difficult for the suspended solids (TSS) to reach the upper layer. The photosynthesis
of algae consumes CO2 in the water body, thus increasing the pH. For the total phosphorus
(TP), growing algae need to consume the dissolved phosphorus in the early and middle
stages of algal blooms, but then, the decomposition of algae will release a large amount of
phosphorus to the water body and eventually lead to an increase in TP in summer [31].

The dry season is in winter (December), at which point the temperature drops and the
growth of phytoplankton is slow. Some algae such as cyanobacteria are in a dormant state
and settle to the bottom of the water column, resulting in a low level of primary productivity.
Lake Taihu is large but very shallow; it has been reported that the hydrodynamic force
of Lake Taihu is mainly affected by wind waves [32,33]. Therefore, the TSS increases
with the decrease in water level in the dry season. The dissolved oxygen (DO) in the dry
season (11.36 mg/L) is nearly twice as high as in the wet season (6.09 mg/L) because the
growth and death of algae are very large during the bloom period (wet season) and the
decomposition process consumes a large amount of DO. At the same time, the formation
of the bloom inhibits atmospheric reoxygenation. Different from TP, the nitrogen (TN)
is significantly higher in the dry season than in the wet season, which is consistent with
previous research findings [34]. The main reasons for this are as follows: (1) the water
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level of the lake will drop due to there being less rainfall in the dry season, which will
further concentrate the nitrogen; (2) the use of chemical fertilizers during spring ploughing
will cause many nitrogen-containing substances to enter the lake, increasing the nitrogen
concentration; (3) the high temperature in summer promotes denitrification and consumes
nitrogen in the lake. Furthermore, an increase in rainfall in the wet season will dilute the
nitrogen concentration in the lake to a certain extent, leading to there being a higher TN
content in winter [35].

3.2. Trophic Status of Lake Taihu in Wet and Dry Seasons

Based on the trophic level index method, the TLI values of eight lake areas in Taihu
were calculated as shown in Table 3; the relevant distribution is presented in Figure 2. Most
of the lake areas are in the middle eutropher regardless of the season; only a small part
of the lake is in the light eutropher or hyper eutropher levels. There are three lake areas
where the trophic status changes with the seasons. Zhushan Bay and Meiliang Bay are
hyper-eutrophic areas in the wet season and become middle eutrophic in the dry season,
Gonghu Bay is in the middle eutropher level in the wet season and changes to the light
eutropher level in the dry season. East Epigeal Zone and East Taihu Bay are always in the
light eutrophic state. The degree of eutrophication in the eastern region is less than that
in the western region, and the southeast region has the lightest degree of eutrophication,
while the northwest region has the heaviest degree of eutrophication.

Table 3. Trophic level index (TLI) for different lake areas in Taihu.

TLI S1 S2 S3 S4 S5 S6 S7 S8

Wet season 71.73 70.10 67.53 56.02 54.59 60.79 65.88 63.64
Dry season 66.67 60.78 57.12 56.00 54.78 60.40 63.17 60.94
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The reason for the above distribution is that there are dense ports in the northwest area
entering the lake, including Taige Canal, Caoqiao River, Chendong Port, Dapu Port, and
Shuangqiao Port, which are the main sources of pollution in Lake Taihu. This area has been
affected by developed cities, industry and agriculture, and domestic sewage; therefore, the
rivers entering the lake have serious pollution levels. Furthermore, the southeast wind
prevails in Lake Taihu during the summer bloom period, causing the serious accumulation
of cyanobacterial blooms in this area, which aggravates a further deterioration in water
quality. In addition, this is the lake bay area, with a long water retention time and poor
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circulation; therefore, the self-purification ability of the water is poor. In contrast, the
southeast lake area has the best water quality and is used as a drinking water source.
East Epigeal Zone and East Taihu Bay are typical grass-type lake areas with a strong self-
purification ability and less blooms [29]. After the drinking water crisis in 2007, Gonghu
Bay became the focus of prevention and control of cyanobacteria bloom in Lake Taihu; the
water quality in this area improved after a series of treatment and protection measures [20].

3.3. Spatial Distribution of Primary Productivity in Wet and Dry Seasons

The spatial distribution of phytoplankton primary productivity in Lake Taihu in differ-
ent seasons was analyzed based on ArcGIS. The results are shown in Figure 3. The primary
productivity in the wet season varies from 725.25 mg C/(m2·d) to 2237.71 mg C/(m2·d),
which is much higher than that in the dry season (changes from 207.67 to 477.71 mg C/(m2·d)).
The average value of primary productivity in the wet season (1586.83 mg C/(m2·d)) is
about five times larger than that in the dry season (320.82 mg C/(m2·d)) (Table 2). Zhushan
Bay (S1) and Meiliang Bay (S2) always have the largest PPeu values, which are significantly
higher than those of other lake areas, while East Epigeal Zone (S4) and East Taihu Bay (S5)
have the lowest PPeu, regardless of the season. In the wet season (Figure 3a), the spatial
distribution of primary productivity is inhomogeneous, and the difference is obvious. The
PPeu of the entire northern half of the lake is relatively high, while Zhushan Bay (S1),
Meiliang Bay (S2), Northwest Zone (S7), Gonghu Bay (S3), and the upper half of Central
Zone (S8) also have large PPeu values (1714.69–1958.80 mg C/(m2·d)). In contrast, the PPeu
of the southern part of Lake Taihu is relatively low. Different from the situation in the wet
season, the distribution of PPeu in the dry season (Figure 3b) is uniform in different lake
areas and does not show significant differences. Except for Zhushan Bay and Meiliang
Bay, all the other six areas have similar primary productivity levels (about 200–300 mg
C/(m2·d)). The reasons for the above distribution characteristics in PPeu are similar to the
analyses of the TLI distribution in Section 3.2.
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3.4. Influencing Factors of Primary Productivity and Its Correlation with Environmental Factors

Pearson correlation analysis was conducted of phytoplankton primary productivity
and environmental factors in different seasons in Lake Taihu. The results showed that
phytoplankton primary productivity was positively correlated with Chl-a, TP, TN, and TSS
and negatively correlated with SD in the wet season (Table 4). In the dry season (Table 5),
phytoplankton primary productivity had a positive correlation with Chl-a and T and a
negative correlation with TSS.
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Table 4. The correlations between phytoplankton primary productivity and environmental factors in
wet season of Lake Taihu.

PPeu SD pH T DO Chl-a TP TN TSS

PPeu 1
SD −0.799 * 1
pH 0.435 −0.734 * 1
T 0.583 −0.816 * 0.474 1

DO −0.520 0.689 −0.850 ** −0.266 1
Chl-a 0.975 ** −0.831 * 0.456 0.607 −0.580 1

TP 0.953 ** −0.775 * 0.392 0.574 −0.545 0.985 ** 1
TN 0.895 ** −0.698 0.331 0.637 −0.386 0.927 ** 0.959 ** 1
TSS 0.776 * −0.949 ** 0.756 * 0.704 −0.765 * 0.830 * 0.817 * 0.746 * 1

* Significant values p < 0.05; ** significant values p < 0.01.

Table 5. The correlations between phytoplankton primary productivity and environmental factors in
dry season of Lake Taihu.

PPeu SD pH T DO Chl-a TP TN TSS

PPeu 1
SD 0.676 1
pH 0.643 0.151 1
T 0.829 * 0.661 0.618 1

DO −0.511 −0.244 −0.890 ** −0.757 * 1
Chl-a 0.732 * 0.001 0.644 0.474 −0.702 1

TP 0.375 −0.039 0.569 0.553 −00.549 0.517 1
TN 0.585 0.079 0.685 0.573 −00.548 0.734 * 0.902 ** 1
TSS −0.712 * −0.914 ** −0.356 −0.767 * 0.463 −0.130 −0.204 −0.296 1

* Significant values p < 0.05; ** significant values p < 0.01.

As a primary productivity feature, chlorophyll-a is an important factor affecting the
primary productivity of phytoplankton, which showed a significant positive correlation
regardless of the season [36,37]. In summer, primary productivity was highly correlated
with nutrients, with correlation coefficients of 0.953 with TP and 0.895 with TN, which
means that nutrients were the main factors affecting primary productivity in the wet season.
However, temperature (T) became the most important factor affecting PPeu in the dry
season (with a correlation coefficient of 0.829), and the effect of nutrients may be negligible
due to the limit of temperature [38]. In addition, the correlation coefficient between PPeu
and TP was larger than that between PPeu and TN (0.953 > 0.895) in the wet season, while
the results were the complete opposite in the dry season (0.375 < 0.585). This indicates that
from summer to winter, the effect of phosphorus on primary productivity decreases, while
the effect of nitrogen increases, which is consistent with previous research findings [38].

Primary productivity was positively correlated with TSS and negatively correlated
with SD in summer due to the massive growth and death of algae, which results in increased
water turbidity (TSS) and reduced transparency (SD). It is worth noting that the correlation
between PPeu and TSS was positive in the wet season and negative in the dry season, which
indicates that the influence of TSS change on the primary productivity of phytoplankton is
not a definite process and can be either promoted or inhibited. Previous studies have shown
that suspended solids are mainly disturbed by wind waves, causing the resuspension of
lakebed sediments and the release of nutrients, thereby increasing the level of primary
productivity in the water column [32,33,39]. However, an increase in TSS concentration
will cause a decrease in water transparency and euphotic depth, restricting the level of
primary productivity. Harrison et al. (1997) believed that TSS has a great extinction effect,
which can inhibit the growth of algae and reduce the level of primary productivity in
water bodies [40]. Therefore, the effect of TSS on phytoplankton primary productivity is a
contradictory process.
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To test the main influencing factors of phytoplankton primary productivity, PPeu and
related parameters were standardized and used as the dependent variable and independent
variable to carry out multiple stepwise regression. The results are shown in Table 6. Chl-a,
T, and SD can be used to estimate phytoplankton primary productivity in different seasons;
the regression equation of PPeu in the wet season is: PPeu = 0.658Chl-a + 0.201SD + 0.187T,
Chl-a alone accounts for 94.3% of primary productivity. Chl-a, SD, and T jointly account for
99.3% of primary productivity. The regression equation in the dry season is: PPeu = 0.163T
+ 0.681Chl-a + 0.536SD, accounting for 99.9% of primary productivity (R2 = 0.999). In the
equations, SD can also be expressed by TSS, as they are significantly correlated with each
other (p < 0.01), with the correlation coefficient of −0.949 in the wet season and −0.914
in the dry season (Tables 4 and 5). Similarly, Chl-a in summer can be represented by TP
(0.985, p < 0.01) and TN (0.927, p < 0.01). In sum, the main influencing factors of primary
productivity are Chl-a, TP, TN, and SD/TSS in summer and T, Chl-a, and SD/TSS in winter.

Table 6. Multiple stepwise regression between PPeu and environmental factors.

Period Multiple Stepwise
Regression Equations R2 F p

Wet season
PPeu = 0.975Chl-a 0.943 116.931 <0.001

PPeu = 0.831Chl-a + 0.233SD 0.972 104.470 <0.001
PPeu = 0.658Chl-a + 0.201SD + 0.187T 0.993 83.960 <0.001

Dry season
PPeu = 0.840T 0.656 14.377 0.009

PPeu = 0.619T + 0.466Chl-a 0.823 17.281 0.006
PPeu = 0.163T + 0.681Chl-a + 0.536SD 0.999 1563.688 <0.001

4. Conclusions

The present study analyzed the characteristics of phytoplankton primary productivity
and its relationship with environmental factors in wet and dry seasons in Lake Taihu. The
following conclusions can be drawn:

(1) Phytoplankton primary productivity and physicochemical factors in Lake Taihu
showed obvious seasonal differences. D, SD, pH, T, Chl-a, TP, and PPeu were signifi-
cantly higher in the wet season than in the dry season, while DO, TN, and TSS were
higher in the dry season than in the wet season.

(2) Most of the lake areas in Taihu are in the middle eutrophic state regardless of the
season; there are only three areas (Zhushan Bay, Meiliang Bay, and Gonghu Bay) where
the trophic status changes with the seasons. The northwest region has the heaviest
degree of eutrophication due to the dense ports, prevailing summer wind, and long
water-retention time. The southeast region has the lightest degree of eutrophication,
as it is a typical grass-type area with strong self-purification ability and less blooms.

(3) The primary productivity in the wet season is about five times larger than that in the
dry season. Zhushan Bay and Meiliang Bay have the largest PPeu values, which are
significantly higher than those of other lake areas regardless of the season, while East
Epigeal Zone and East Taihu Bay always have the lowest PPeu values. The spatial
distribution of primary productivity is obviously inhomogeneous in the wet season,
while the distribution of PPeu in the dry season is uniform in different lake areas and
does not show significant differences.

(4) Chl-a, T, and SD can be used to estimate phytoplankton primary productivity in Lake
Taihu in different seasons, and the regression equation of PPeu in the wet season is:
PPeu = 0.658Chl-a + 0.201SD + 0.187T (R2 = 0.993). The equation in the dry season
is: PPeu = 0.163T + 0.681Chl-a + 0.536SD (R2 = 0.999). The main factors influencing
primary productivity are Chl-a, TP, TN, and SD/TSS in summer and T, Chl-a, and
SD/TSS in winter.

This research presented a comprehensive analysis of the characteristics of phyto-
plankton primary productivity and its relationship with environmental factors within an
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important water source. The findings reported in this paper provide data support for phyto-
plankton primary productivity research in Lake Taihu, which may have certain theoretical
significance for lake eutrophication control and contribute to future monitoring research.
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