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Abstract: One of the most important conditions for the efficient operation of solar power plants
with a large installed capacity is to ensure the systematic monitoring of the surface condition of the
photovoltaic modules. This procedure is aimed at the timely detection of external damage to the
modules, as well as their partial shading. The implementation of these measures solely through
visual inspection by the maintenance personnel of the power plant requires significant labor intensity
due to the large areas of the generation fields and the operating conditions. Authors propose an
approach aimed at increasing the energy efficiency of high-power solar power plants by automating
the inspection procedures of the surfaces of photovoltaic modules. The solution is based on the use of
an unmanned aerial vehicle with a payload capable of video and geospatial data recording. To perform
the procedures for detecting problem modules, it is proposed to use “object-detection” technology,
which uses neural network classification methods characterized by high adaptability to various image
parameters. The results of testing the technology showed that the use of a neural network based
on the R-CNN architecture with the learning algorithm—Inception v2 (COCO)—allows detecting
problematic photovoltaic modules with an accuracy of more than 95% on a clear day.

Keywords: monitoring; diagnostics; solar power plants; photovoltaic modules; unmanned aerial
vehicles; neural networks; machine vision

1. Introduction

During the operation of industrial solar power plants (SPP), problems associated with
pollution and damage to photovoltaic modules systematically arise, which significantly
reduces their energy efficiency and entails financial losses for companies servicing the
stations [1–4]. In this regard, the management of companies is faced with the task of
systematically monitoring and diagnosing the state of the surface of the photovoltaic
modules. The implementation of these procedures will allow you to quickly respond and
eliminate emerging problems, which will lead to an increase in the energy efficiency of the
plant [5,6].

The monitoring and diagnostics of the state of the surface of photovoltaic modules
are urgent tasks for all industrial solar power plants in the world and already have a
number of basic traditional solutions, for example: visual inspection of the surface of
photovoltaic modules by solar power station personnel, measurement and control of
electrical parameters by installing specialized sensors, and the photographic fixation of
the surface modules using unmanned aerial vehicles (UAV) with subsequent manual
processing of photo and video materials [7–12]. These solutions are not effective enough,
and their use is associated with large time and financial requirements, due to the need to
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install specialized sensors in each of the module strings and to either reconfigure the station
circuit or “manually” inspect all modules installed on the SPP territory.

Thus, there is a need to develop new methods and approaches to diagnosing and
monitoring the surface of photovoltaic modules, the basis of which should be new tech-
nologies that are completely or partially devoid of the above disadvantages. Therefore,
it was decided to consider the possibility of automating monitoring technology through
the combined use of advanced machine vision technologies based on the use of neural
networks (NN) and UAVs.

2. Materials and Methods
2.1. Existing Methods of Neural Network Monitoring and Diagnostics Photovoltaic Modules

Neural networks are an effective tool for the parallel processing of information and
the creation of generalizations, reasonably reliable results based on data that were not used
in the learning process [13–15]. It is thanks to this feature that NN have already proven
themselves in various areas of industry and the energy industry (nuclear energy, wind
energy) [16–20], are one of the tools for monitoring and diagnosing various energy facilities
(pipelines, wind turbines, power lines) [21–24], and are also widely used to detect and
monitor natural disasters [25,26]. The use of neural network technologies to solve the
problems of monitoring critical infrastructure objects indicates the reliability of their work
and minimal errors in the results. Thus, the use of neural network technologies seems
to be an effective solution for automating the procedures for monitoring and diagnosing
photovoltaic modules.

There are several main ways to use NN at SPP:
(1). Thermographic method. The method is based on a neural network analysis of

data obtained when shooting modules using an infrared camera attached to a UAV [27–29].
A method designed to search essentially overheated sections (hot spots) of photovoltaic
modules that occur due to an increase in the resistance of modules due to their prolonged
shading. The advantages of this method include the possibility of its use at any solar power
plant, without performing preparatory work related to changing the design solutions of the
station and installing additional sensors. However, the use of this solution is complicated
by the slow process of capturing objects of interest with an infrared camera. In view of
this, in order to obtain correct data, it is required to significantly limit the UAV flight speed.
Furthermore, this solution is ineffective for promptly responding to problems that have
arisen, due to the need to “manually” determine the location of the problematic object, as
well as the impossibility of accurately determining the cause of the hot spot.

(2). Electrical data analysis. A method based on a neural network analysis of data
obtained from the sensors of electrical parameters installed in photovoltaic modules [30–32].
The approach makes it possible to identify various types of damage to the modules on
which the used neural network was trained. This method is costly, due to the need to install
a large number of additional sensors, as well as changes in the circuit and design solutions
of the solar power plant. The method can be effectively used only at stations with a set of
necessary equipment installed.

(3). Simulation modeling. A method based on a neural network simulation of the
processes occurring in photovoltaic modules (with known values of solar radiation, tem-
perature, etc.) and comparing them with the obtained real data [33,34]. The use of this
solution is complicated by the variety and variability of factors affecting the operation of
photovoltaic modules.

Table 1 presents a summary result of a qualitative evaluation of the methods of
monitoring and diagnostics of the surface of photovoltaic modules under consideration.
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Table 1. Qualitative evaluation of the methods.

Method Speed of Operation Detection Accuracy Information of the Problem Cost Implementation Complexity

Thermographic method Slow Medium Low High Easy
Electrical data analysis Fast High Low High Hard
Simulation modeling Fast Low Low Medium Medium

Proposed method Normal Medium High Low Easy

Since the described methods have a number of disadvantages, to solve the problem of
monitoring and diagnosing SPP, it is proposed to use a different approach that combines the
individual advantages of the methods presented above (traditional and neural network),
allowing them to compensate for their weaknesses. This approach will automatically
determine the coordinates of problem modules with their visualization on an interactive
map, due to the integrated use of technology based on the use of UAVs and machine vision
methods that implement neural network classification. The use of such systems is the next
logical step in the development of automated complexes for monitoring objects located in
large areas.

2.2. Platform for Employing an Automated Complex

At present, there are already a number of examples of the successful use of UAVs
with specialized monitoring equipment installed, which makes it possible to solve the
problems of recognizing and classifying various objects (people, cars, buildings, etc.) [35–39].
The solution of the above tasks is associated with the implementation of complex, multi-
level processes, such as data processing and filtering, intelligent image analysis, and the
recognition and classification of various objects. The implementation of the above processes
is associated with the use of high computing power for the fast and correct processing
of the received data, which imposes certain restrictions on the operating modes and the
equipment used. In view of this, the choice of a platform for an automated complex is an
important task.

During the development of the complex, three main options for the implementation
of the neural network analysis of photo and video data obtained using the UAV camera
were considered:

(1). Neural network data analysis is performed on the UAV using the onboard software
and hardware system [40–42]. The essence of this option is to process the UAV camera video
stream directly on board the device, followed by sending the analysis results to the SPP
personal computer, wherein the data will be interpreted and displayed on an interactive
map of the station. This method will make it possible to build a map of problematic
photovoltaic modules in real time, as well as to remotely direct the UAV to areas of interest
to the station. However, the solution of these problems requires high computing power,
which imposes certain restrictions on the UAV operation mode and negatively affects
its capabilities. This is due to the fact that, in order to obtain satisfactory results for the
recognition and classification of objects of interest, it is required to obtain images or video
images with a fairly high resolution, which leads to a significant decrease in the speed
of their analysis. The experience of using such systems shows that the processing of one
image with a resolution of 1920 × 1080 pixels, using on-board computing devices, can be
done within a few seconds. As a result, it is necessary to limit the speed of the UAV, which
negatively affects the time of its flight. Furthermore, when implementing this option, it
is important to take into account that the remote transmission of video data is associated
with the occurrence of interference and distortion in the signal, which leads to the need to
develop a method for noise-immune data coding with a subsequent decoding procedure. At
the same time, it should also be noted that the presence of a high-performance computing
device on board is an additional electrical and weight load for the UAV.

(2). Neural network analysis is performed on the UAV using a programmable logic
device (PLD) [43]. The essence of this option is similar to the above, but the differences are
in the tool for performing neural network analysis. PLDs are based on the use of a large
number of logical elements that are connected into a single system. This method involves
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an increase in the speed of data analysis, due to the possibility of parallel processing, which
will significantly increase the speed of the UAV in comparison with the first option. The use
of a PLD is associated with an increase in energy consumption and a rise in the cost of the
complex due to the greater number of elements used to solve problems and the complexity
of the connection between them. Furthermore, the problem of the remote transmission
of video data remains, which will require the development of a method for encoding and
decoding. In addition, when using a PLD, it becomes difficult to debug and refine the
automated complex being developed, due to the need for significant software and physical
changes in the circuit used when making any adjustments to the designed system. The use
of a PLD can be effective only after the final development, testing, debugging, and field
testing of the developed complex.

(3). Neural network analysis is performed on a remote server, and the UAV is used
exclusively to receive video data [44,45]. Since the solution of the problem of monitoring
a solar power plant does not require the detection and classification of problem areas in
real time, further complicated by the above factors, it becomes possible to transfer all
calculations to a remote server. A SPP personal computer or specially purchased equipment
can be used as a server, the cost and configuration of which will depend on the current
and future needs of the station, and it can also be improved over time. Thus, the station
management will be able to partially determine the amount of financial costs that will be
necessary to deploy the complex. Transferring complex neural network calculations to a
remote server will also help reduce the load on the UAV, which will allow it to perform the
functions originally built into it, i.e. flight over the territory of the solar power station and
its video recording along a pre-compiled flight route.

Thus, after analyzing the possible options for the implementation of the neural network
analysis of photo and video data received from the UAV camera, the option was chosen,
during which the data analysis is performed on a remote server. The use of a server, which
may be a SPP computer, will reduce the financial costs for the purchase and debugging of
new equipment, perform video data analysis, work with an interactive map, and set up
the UAV flight route on one computer. In fact, a place will be created for the dispatcher
responsible for the diagnostics and monitoring of photovoltaic modules. The dispatcher
will have access to all available data: video, photos, detected damage to solar power plants,
etc., for the entire period of operation of the complex.

2.3. Choice of Neural Network Architecture

The development of an automated complex is associated with the creation of a neural
network, the main task of which is to identify problem areas of the SPP through the use
of machine vision technologies and neural network classification. The highest accuracy
of object recognition in images, in comparison with neural networks of other types, is
shown by deep learning convolutional neural networks [46–48]. Currently, a fairly large
number of ultra-precise neural network algorithms have been developed, among which the
most promising are: SqueezeNet, ResNet, MobileNet, Inception, DenseNet, AlexNet, and
YOLO [49,50]. During the study, these algorithms were analyzed in terms of the speed and
accuracy of operation, as well as the required hardware capacities for detecting pollution,
shading, and damage to the surface of photovoltaic modules.

The results of the analysis are shown in Table 2. From them, it follows that, for solving
the problem of monitoring a solar power plant, the InceptionV2 algorithm is the most
optimal, as the most accurate and not resource-intensive compared to the others.
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Table 2. The speed of data analysis by the neural networks of various architectures [51].

Architecture Time, ms Accuracy, % Score

SSDLite MobileNet v2 COCO 27 53 5/90
SSD Inception v2 COCO 42 65 6/88.8

Faster R-CNN Inception v2
COCO 58 94 1/111.2

Faster R-CNN ResNet101 COCO 106 86 4/95.4
Faster R-CNN Resnet101

lowproposals COCO 82 75 7/87.2

Faster R-CNN Inception ResNet
v2 atrous COCO 620 60 11/61.6

Faster R-CNN Inception ResNet
v2 atrous 241 71 10/75.1

lowproposals COCO 1833 86 8/86.5
Faster R-CNN nas 540 82 9/83.9

Faster R-CNN nas lowproposals
COCO 84 99 2/110.9

YOLOv3 110 100 3/109.1
Inception v3 27 53 5/90

2.4. Creating a Training Sample

For the correct training of the NN and its subsequent use, it is required to create an
expanded training sample, consisting of a large data set, similar to the one that will be
used in the work [52,53]. For the diagnostics and monitoring of the surface of photovoltaic
modules, as a data set, it is advisable to use storyboarded video files containing data on
flying around the territory of industrial solar power plants. In the process of creating
a training sample for a neural network, the following criteria were established for the
conditions for the video recording of photovoltaic modules using UAVs:

a. The video recording of photovoltaic modules should be carried out by a UAV camera
at a height of up to five meters at an angle of 90◦ to 135◦ to the surface of the modules,
when flying directly over the string (Figure 1).

b. When video recording the surface of photovoltaic modules, the automatic exposure
function must be disabled in the UAV camera settings. This is necessary to preserve
details in light and dark areas (in the case of an underexposed and overexposed
image at various lighting parameters).

c. Video recording of the photovoltaic modules should be carried out on a clear day at
a wind speed of no more than 4 m/s. This is necessary to ensure normal conditions
for the UAV flight route.

The collection of materials for creating a training sample, as well as testing a prototype
of an automated complex (Figure 2), was carried out at the Crimean SPPs: “Nikolaevka”,
which has an installed capacity of 66.9 MW, and “Kar’ernoye” (the former “Okhotnikovo”
SPP), with an installed capacity of 80 MW. These works were carried out within the
framework of cooperation between the enterprise serving the indicated SPP—SIGMA LLC—
and the Department of Renewable Energy Sources and Electrical Systems and Networks of
Sevastopol State University.
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An analysis of the efficiency of performing neural network detection procedures
depending on video recording modes showed that the optimal video recording parameters
are a 1080p resolution with a frame rate of 30 FPS. This mode of video recording makes it
possible to significantly speed up the processing of data by the neural network without
reducing the quality of detection and increasing the power consumption of the UAV video
camera. As a result of test flights and the video recording of the modules, it was possible
to create a training set of more than 500 images (Figure 3). The training sample contains
images of normal, shaded, and damaged modules, which is necessary to increase the
quality of detection and minimize the number of false positives.
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The next step after creating the training sample is its markup. The image labeling
procedure is required to convert the sample data (images) into variables “understandable”
for the neural network, which it can process and generalize [54]. For markup (annotation),
the LabelImg (https://github.com/heartexlabs/labelImg, accessed on 28 August 2022)
tool was used. Images of the training sample were manually labeled into two classes:
“Normal_panel” and “Shaded_panel”. The first class includes images of photovoltaic
modules with a normal (unshaded, clean, undamaged) surface. The second class includes
images with problematic (shaded, dirty, damaged) photovoltaic modules.

3. Discussion

Thus, the creation of an automated complex is a multi-stage process, the general
structure of which can be represented as a block diagram (Figure 4). The principle of its
operation lies in the neural network analysis of video files captured by a UAV moving along
the flight route above the photovoltaic modules. All captured data is analyzed to detect
shading and damage to photovoltaic modules, which are then displayed on an interactive
SPP map.

https://github.com/heartexlabs/labelImg
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Figure 4. Algorithm for the implementation of the automated complex: (Red is creation of a neu-
ral network; Green is preliminary preparation for the operation of the complex; Blue is neural
network analysis).

An interactive SPP map is generated based on the geotags taken by the UAV when
flying around the territory of the station, and the detection time of problem areas is
determined by the neural network. To build a map, the detection frame is synchronized with
the time of the geotag, which makes it possible to determine the problematic photovoltaic
module with an accuracy of several meters. All detected damages are marked on the map
in the form of geotags with a photo of the detected damage. The output of geotags with
the results of neural network analysis (photo of the module) allows the SPP dispatcher,
being at his workplace, to determine the correctness of detection, as well as choose a way
to eliminate the problem.

The process of displaying the detected problem areas of an industrial solar power
plant on an interactive map is associated with fixing the UAV flight route, as well as
outputting these data for further processing. The UAV has a GPS beacon that allows you to
track their position on the map, as well as perform searches in the event of an emergency
landing, but access to this data is limited by the licensed UAV software. Geotags and
black box data decoding can be provided by the manufacturer after a request sent from
the user’s personal account; however, during field tests and during a long debugging
process, frequent requests are not practical. In view of this, it was decided to independently
manufacture a GPS tracker and install it on the UAV as a payload. The block diagram of
the GPS tracker is shown in Figure 5.
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ESP8266 is used as the main microcontroller. To obtain geospatial information, the
measuring module has a GPS receiver based on the NEO-6M-0-001 chip based on the Ublox
NEO-6M STM chip. This module is a stand-alone GPS device with a high-performance
u-blox 6 positioning processor. To communicate with the microcontroller, a UART (TTL)
interface is used with a supported baud rate from 4800 to 230,400 baud, 9600 baud by
default. Geotagged log is recorded on a micro-SD memory card. For this, a specialized
micro SD card module is used, which is connected to the microcontroller via the SPI
interface.

In order to determine the calculated effective performance of the complex (monitored
by the installed capacity of SPP (N) by one complex), a mathematical model was developed
that allows evaluating the capabilities of the proposed complex depending on the type of
station and UAV, meteorological parameters, and computing equipment performance. In
addition, the model allows you to calculate the minimum number of complexes required
to ensure monitoring and diagnostics of the entire SPP, which is an important aspect of
assessing the economic efficiency of the proposed solution. The value of the monitored
power can be calculated from expression (1).

N = GPekn

∫ D

0
Wdt− 2lGn, (1)

where G is the coefficient taking into account the structural features of the supporting
structures and the main characteristics of the modules, (W/m); Pe is the performance of
computing equipment; kn is the coefficient taking into account the frequency of UAV sorties;
D is the daylight period, (s); W is the value of the UAV flight speed, taking into account the
effect of wind, (m/s); l is the distance between the landing platform and the monitored
row of the station, (m); n is the frequency of UAV departures.

The coefficient of structural features of the solar power plant and the main characteris-
tics of photovoltaic modules (G) determining the power of the solar power plant section,
over which the UAV flies in one second, is calculated from expression (2).

G =
PY
h

, (2)

where P is the rated power of the photovoltaic module, (W); Y is the type of supporting
structure of the modules; h is the overall size of the module in the direction of the UAV
movement (m).

The parameter (Pe), which determines the computing power of the equipment, is
calculated according to expression (3). It describes the processing speed of the captured
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data by the neural network and takes into account the time required to transfer data from
the UAV memory to the computing device.

Pe = 0.8

(
PN

PN
re f

)0.91

, (3)

where PN is the performance of computing equipment; PN
re f is the performance reference value.

The frequency of UAV departures (n) shows the number of sorties required to fly
around the SPP territory per daylight hours (D), as well as the frequency of battery replace-
ment, the value of which should take into account the climatic conditions in which the
complex is operated. Calculated by Formula (4).

n =
D

dstckn
(1− Pe), (4)

where dstc is the standard UAV battery discharge time, (s); kn is the frequency factor for
UAV departures, taking into account climatic conditions.

The departure frequency factor is determined by expression (5).

kn = 1− (
(

1.06× 10−2
)

T − 3.329)
2
, (5)

where T is the ambient temperature, (K).
The speed of the UAV under the influence of wind (W) is calculated from expres-

sion (6) [55].

W = 0.5k

√V +
CpρSuavcos(ε)U3

m
+

√
V −

CpρSuavcos(ε)U3

m

, (6)

where k is a coefficient that takes into account the aerodynamic features of the UAV; V is
UAV flight speed, (m/s); Cp is UAV drag coefficient; ρ is air density, (kg/m3); Suav is the
UAV area exposed to wind, (m2); ε is the wind direction relative to the UAV motion vector,
(degrees); U is wind speed, (m/s); m is the mass of the UAV, (kg).

The UAV flight speed is set to ensure the optimal quality of detection, taking into account
the type of the supporting structure of the modules, and is calculated from expression (7).

V = 16.2 exp(−2.5QY0.03), (7)

where Q is the set detection quality (0 . . . 1).
For a preliminary assessment of the technical and economic efficiency of the proposed

solution, calculations were made of the energy losses of a photovoltaic installation operating
in conditions of partial shading. The basic mathematical model was compiled on the
basis of standard equations characterizing the operating mode of a uniformly illuminated
photovoltaic installation with the serial switching of photovoltaic converters [56–58]. Based
on this model, a system of equations was obtained that makes it possible to calculate the
total power losses of a photovoltaic installation with uneven shading (8). The reliability of
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the compiled model was confirmed by experimental studies conducted in the laboratory
“Renewable Energy” Sevastopol State University and the Sevastopol solar power plant [59].

Ploss = U1maxnp I1max −U1max

(
nl

p I′1 + ns
p I
′
2

)
,

I1max = Iph − I0

[
exp
(

q(U1max+I1max Rs)

nl
s(AkT)

)
− 1
]
,

q(U1max+I1max Rs)

nl
s(AkT)

− ln
I0+Iph

I0

(
1+

q(U1max+I1max Rs)
nl

s(AkT)

) = 0,

I′1 = Iph − I0exp

(
q
(

U2max+I
′
1Rs

)
nl

s(AkT)

)
,

I
′
2 = ns

s

(
Iph − I0exp

(
q
(

U2max+I
′
2Rs+Ud

)
ns

s(AkT)

))
, at U

′
2 < U2max,

I
′
2 = ns

s

(
I
′
ph − I

′
0exp

(
q
(

U2max+I
′
2Rs+Ud

)
nl

s(AkT)

))
, at U

′
2 ≥ U2max,

(8)

where Ploss is power losses from partial shading, (W); np is the number of strings connected
in parallel; U1max and U2max are voltage values at maximum power points (MPP) of strings
connected in parallel, operating without shading and with shading, (V); I1max is the value
of current in MPP strings without shading, (A); ns

p is the number of shaded strings; nl
p is

the number of unshaded strings; Iph is the photocurrent of the shaded string, (A); I
′
ph is

the photocurrent of the illuminated string, (A); I0 is reverse saturation current, (A); q is the
electron charge, (C); Rs is the series resistance of the module, (Ohm); nl

s is the number of
non-shunted solar cells in a string without shading; ns

s is the number of non-shunted diode
solar cells in a string with shading; A is the coefficient of the ideality of photocells in the
module; k is the Boltzmann constant, (J/K); T is the temperature of the module photocells,
(K); I

′
1 is the value of the current of the unshaded string at voltage U2max, (A); I

′
2 is the value

of the current of the shaded string at voltage U2max, (A); Ud is the voltage drop across the
shunt diode, (V); U′2 is the string voltage with shunted groups of modules, (V).

The simulation results showed that, with the partial shading of two modules out of
eighteen, the power loss of the string is about 50%; with the shading of one module, it is
about 20%; with the shading of more than two modules, the power generation by the string
is practically not performed (the value of the string current is limited by the current shaded
photocells). The analysis of statistics reflecting the value of the probability of occurrence
of partial shading at the SPP, in conjunction with the calculated data obtained as a result
of mathematical modeling and the annual energy production of the SPP, showed that the
timely identification and elimination of the causes leading to shading will increase the
annual energy production of the SPP, which is about 2%, from which it follows that the
solution proposed by the authors will reach the payback stage within a year and a half.

4. Results

The results of the neural network processing of video materials obtained using the
UAV camera are shown in Figure 6. Problem areas detected by the neural network on the
surface of photovoltaic modules are visualized on the SPP interactive map (Figure 7).

A visual inspection of the recorded video materials on the tested section of the station
with an area of 50,000 m2 showed that the accuracy of detecting problem areas by the
neural network was 95%. Of the 20 shading and damage to the surfaces of the modules
detected during visual inspection, an error was made only in one case.

The mathematical model proposed by the authors makes it possible to calculate the
installed capacity of the solar power plant monitored by the complex, depending on various
factors. This parameter determines the minimum number of automated systems required
to monitor the entire station. The evaluation of the effectiveness of the proposed solution
was carried out on the example of its use for monitoring the four-row solar photovoltaic
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station “Nikolaevka” with an installed capacity of 69.9 MW. The evaluation results showed
that the use of a complex with a FIMI X8SE UAV and a computing device based on the GPU
RTX2080 will allow monitoring up to 6.4 MW of installed power. Thus, about 11 complexes
will be required to ensure the monitoring of this station.
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In order to determine the technical and economic efficiency of using the complex at
high-capacity solar power plants, calculations were made of the energy losses of photo-
voltaic modules as a result of their partial shading. The results of the calculations showed
that, with the partial shading of two modules out of eighteen, the power losses of the string
are about 50%; with the shading of one module, it is about 20%, and with the shading of
three or more modules, the string practically does not generate energy (the value of the
string current is limited by the current of the shaded photocells). Such a decrease in energy
efficiency is due to the fact that the voltage values at the points of maximum string power
with and without partial shading are not the same.

The analysis of the statistics of the occurrence of partial shading at the SPP, in con-
junction with the calculated data obtained from the mathematical modeling of the annual
power generation of the solar power plant and the real data of the station’s generation,
showed that the timely identification and elimination of the causes leading to shading will
increase the annual power generation of the solar power plant by a value of about 2%, from
which it follows that the solution proposed by the authors will reach the payback stage
within a year and a half.

5. Conclusions

The developed automated complex for monitoring and diagnosing photovoltaic mod-
ules allows solving the problem of the real-time monitoring of the state of a solar power
plant. A distinctive feature of its use is the high speed and quality of detection of problem
modules. Preliminary tests have shown that the classification accuracy is at least 95%. In
addition, the advantages of the complex include the ease of implementation in existing
industrial solar power plants. This is due to the fact that its functioning does not require
additional structural changes in the existing design of the station. Feasibility studies for the
implementation of this solution show that the use of the proposed complex will increase
the energy efficiency of the power plant by 2% due to timely diagnostics and the prompt
provision of information to maintenance personnel.

The mathematical model proposed by the authors makes it possible to calculate the
installed capacity of the solar power plant monitored by the complex, depending on various
factors. This parameter determines the minimum number of automated systems required
to monitor the entire station. The evaluation of the effectiveness of the proposed solution
was carried out on the example of its use for monitoring the four-row solar photovoltaic
station “Nikolaevka” with an installed capacity of 69.9 MW. The evaluation results showed
that the use of a complex with a FIMI X8SE UAV and a computing device based on the GPU
RTX2080 will allow monitoring up to 6.4 MW of installed power. Thus, about 11 complexes
will be required to ensure the monitoring of this station.
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