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Abstract: In this paper, unsteady and time-averaged turbulence characteristics in a submerged cavi-
tating jet with a high Reynolds number are studied using large eddy simulation. The simulation is
validated by comparing the vapor distribution using CFD and a high-speed photography experiment.
The results indicate that the currently used numerical method can predict the evolution of the cavita-
tion cloud in the jet accurately. The instantaneous and time-averaged flow fields of the submerged
jet with three different cavitation numbers are studied. Comparing the frequency spectral of jets
with different cavitation numbers, it is found that, for a fixed location, the frequency increases with
the decrease in the cavitation number. Comparing the vorticity distribution at different streamwise
locations, the instability process of the ring-shapes vortexes is revealed. Comparing the shape of
the cavitation cloud and the vortexes in the jet finds that their spatial distribution and the temporal
evolution are similar, indicating that the dynamic characteristics of the vortex and the cavitation
affect each other. For the currently investigated cavitating jets, the Reynolds number increases with
the decrease in the cavitation number. However, the spreading rate is lower for the jet with higher
Reynolds numbers here. This is means that the momentum exchange between the jet and submerging
water is reduced by the cavitation phenomenon.

Keywords: cavitating jet; LES; mixing layer; vortex

1. Introduction

In recent years, water jet technology has been widely used in various industrial fields,
and water jets injected into pure water environments are called submerged jets. Cavitation
is one of the main features of submerged jets, which is a phase change phenomenon that
reduces the liquid pressure to the local saturated vapor pressure and transforms the liquid
phase into a gas phase [1–3]. The high temperature and pressure generated at the moment
of cavitation bubble collapse can cause serious damage to metallic components in hydraulic
machinery, but the cavitation bubbles generated by high-pressure water jets can be used
for surface strengthening of metallic materials under appropriate conditions [4,5]. The
cavitation behavior in submerged jets involves complex and variable physical phenomena,
such as turbulence, high temperature and pressure, and phase changes. Therefore, a
comprehensive understanding of the turbulence characteristics and cavitation properties of
submerged jets is necessary to provide a theoretical basis for the in-depth application of
water jet technology.

The current research on submerged jets is mainly based on both experimental studies
and numerical simulations. In recent years, many scholars have carried out related works,
mainly using High Speed Photography (HSP) to observe the cavitation phenomenon in the
jet and Particle Image Velocimetry (PIV) to measure the jet flow field. Zhang Y et al. filled
the gap in the literature by experimentally visualizing the internal effects of waves and
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turbulence in the wake of a tidal turbine. In order to achieve this, it is crucial to quantify the
average wake and turbulence properties, based on the turbine power and wave properties
such as the wave energy and its height. Contour plots of velocity deficit, turbulence
intensity and wake anisotropy are given for different flow positions [6–8]. Keiichi Sato et al.
conducted a high-speed photographic study of a cavitation jet from a contraction–expansion
nozzle and obtained the low-frequency and high-frequency signals of vacuolar cluster
shedding by the statistics of the cavity length with time, and also captured the diffusion
collapse of the vacuolar cloud as it impinges on the material surface using a high-speed
photographic camera from the vertical direction [9,10]. Yang Y et al. captured the non-
constant flow characteristics of high-pressure cavitation jets at three different angles with
HSP experiments, and extracted information on their growth, shedding and collapse
from the high-speed images. Finally, the optimal distance and impact performance of
cavitation jet reinforcement were investigated [11,12]. Nakano et al. observed the evolution
of vacuoles near the submerged jet nozzle using HSP and found that, in the early stage,
most of the vacuoles were within the starting vortex and connected to each other in a
vortex ring. The vacuoles within the vacuole ring grew rapidly near the nozzle and then
gradually decreased in size. In the later stages of jet development, individual vacuoles
formed, either connected together or randomly distributed in the jet shear layer [13].
PIV technology is widely used for flow field measurements because of its non-contact
measurement properties and its ability to capture transient flow field information with high
accuracy. Toshihiro Sawamura et al. performed velocity measurements of the cavitation
of the submerged jet using PIV to obtain the average velocity distribution in the region
where cavitation exists and found that, in the average velocity distribution, the center
of the jet is higher than the edge and the higher region occurs in a part of the edge [14].
Shridhar et al. tested the cavitation vacuoles within the near-flow field of the jet using
PIV; they found that the cavitation appeared first in the vortex ring and predicted the
probability of cavitation vacuole formation by the distribution pattern, intensity and strain
of the cavitation gas nuclei, and the predicted values were in good agreement with the
experimental results [15]. Gopalan et al. studied the cavitation phenomenon in submerged
water jets using PIV, and the PIV observations showed that the cavitation bubbles were
mainly generated at the center of the vortex in turbulent flows [16]. Mao N et al. used
Time-resolved Particle Image Velocimetry (TR-PIV) to measure the submerged jet flow field
and orthogonal decomposition (POD) to extract the large-scale energy-containing vortex
structure, and the results show that, as the pump pressure increases, shearing between the
jet edge and ambient water increases, entrainment of the surrounding fluid is enhanced,
and the cavitation cloud profile fluctuates dramatically under high-pressure conditions [17].

Since high-pressure submerged water jets are usually accompanied by cavitation, and
the concentration of vacuoles increases when the cavitation number of the jet is low, it is
difficult to accurately measure the internal flow field by means of visual measurements
such as PIV; therefore, it is important to develop numerical simulation techniques for
high-pressure submerged water jets. Martin M et al. conducted numerical simulations and
experimental studies for submerged rotating jets, and various RANS models were used to
calculate the flow field to obtain the velocity distribution at different locations of the jet [18].
Yang Y used three different turbulence models to represent the RANS and RANS-LES
hybrid models and compared the probabilities of these models to simulate microscale
vortex structures. By analyzing the relationship between small-scale vortices and cavitation
formation, the probability of these models to simulate strong shear stress high-pressure
cavitation jets is discussed [19,20]. Thus, LES is a feasible method to simulate the jet flow
field. Yong Wang et al. used large eddy simulation to simulate the heat transfer process of
the impinging jet and obtained the accurate heat transfer process of the jet cooling device
by numerical calculation; they proposed a numerical simulation-based design method for
the jet cooling device [21]. Y. C. Wang et al. used large eddy simulation combined with the
Schnerr–Sauer cavitation model to study the high-Reynolds-number three-dimensional
flow structure of a submerged jet in an axisymmetric cavity. The computational results
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capture the transient vortex structure and the three-dimensional flow structure in the shear
layer. The growth of the jet’s shear layer is not linearly diffused by the impactor [22,23].

In this paper, unsteady and time-averaged turbulence characteristics in a submerged
cavitating jet with high Reynolds numbers are studied using large eddy simulation. The
simulation is validated by comparing the vapor distribution using CFD and a high-speed
photography experiment. Both instantaneous and time-averaged flow fields of the sub-
merged jet with three different cavitation numbers are studied.

2. Experiment and CFD Method
2.1. Experiment Apparatus and Method

The unsteady characteristics and velocity field of the jet are tested using high-speed
photography and particle image velocimetry (PIV). The experimental apparatus is shown
in Figure 1. The pressure of the system is supplied by a plunger pump. The rated pressure
is 50 MPa, and the rated flow rate is 15 L/min. The main part of the test bench is composed
of upper and lower water tanks, and the upper tank is made of transparent material
polymethyl methacrylate. During the experiment, the upstream pressure of the nozzle can
be changed by controlling the rotating speed of the pump. For the high-speed photography,
an Olympus Ispeed Camera is used to capture the image of the cavitation cloud, with a
frequency of 20,000 fps. Under this frame rate, images with a pixel size of 352 × 272 can be
obtained, which are finally analyzed by image-processing algorithms in MATLAB.
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2.2. Governing Equations and LES Approach

To reveal the structure of the vortex and the velocity fluctuations in the shear layer,
the LES approach is used for the simulation of the submerged cavitation jet under high
Reynolds numbers. Continuity and momentum equations are used as the governing
equations, and the mixture model is used for the mixed-phase flow field calculation, and
its control equations are as follows [24]:

∂ρ

∂t
+

∂
(
ρuj
)

∂xj
= 0 (1)



Sustainability 2022, 14, 11963 4 of 17

∂
(
ρuj
)

∂t
+

∂
(
ρuiuj

)
∂xj

= − ∂p
∂xi

+
∂

∂xi

(
µ
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where ui is the velocity component in direction i, p is the pressure for both vapor and
liquid phases, and ρ and µ denote the mixture density and viscosity, respectively, which
are defined as follows:

ρ = ∑n
k=1 αkρk (3)

µ = ∑n
k=1 αkµk (4)

In Equation (2), τij represents the subgrid-scale stresses (SGS), which are defined
as follows:

τij = ρ
(
uiuj − uiuj

)
(5)

After the filtering operation, the SGS are unknown and need modeling. The current
simulation is solved using Fluent and the subgrid-scale turbulence models employ the
Boussinesq hypothesis. The subgrid-scale turbulent stresses are calculated as follows [25]:

τij −
1
3

τkkδij = −2µtSij (6)

where Sij is the tensor of the rate of strain for the resolved scale, which is defined as:

Sij =
1
2

(
∂ui
∂xj

+
∂uj

∂xi

)
(7)

In Equation (7), µt is the subgrid-scale turbulence viscosity and it is closed by the
wall-adapting local eddy viscosity (WALE) model in this simulation. In the WALE model,
the subgrid-scale turbulence viscosity is modeled as follows:

µt = ρL2
s

(
Sd

ijS
d
ij

)3/2

(
SijSij

)5/2
+
(

Sd
ijS

d
ij

)5/4 (8)

where Ls and Sd
ij in the WALE model are defined as:

Ls = min
(

kd, CwV1/3
)

(9)

Sd
ij =

1
2

(
g2

ij + g2
ji

)
− 1

3
δijg2

kk, gij =
∂ui
∂xj

(10)

where k is the von Kármán constant and Cw is the default WALE constant set as the default
value 0.325.

2.3. Physical Cavitation Model

When the cavitation phenomenon is considered in the simulation, the transport func-
tion of the vapor volume fraction is used [26]:

∂

∂t
(αρv) +∇ ·

(
αρv
→
v v

)
= Re − Rc (11)

where α is the volume fraction of the vapor and Re and Rc represent the vaporization and
condensation rate, respectively, which can be obtained from the cavitation model.

Currently, different cavitation models are deduced by researchers and most of them
are based on the Rayleigh–Plesset function. In this paper, the Zwart–Gerber–Belamri model
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is used to calculate the mass transfer between the vapor and the liquid phases. The mass
transfer equation of the cavitation model is shown as follows:

Re = Fvap
3αnuc(1− αv)ρv

RB

√
2
3

Pv − P
ρl

when P ≤ Pv (12)

Rc = Fcond
3αvρv

RB

√
2
3

P− Pv

ρl
when P > Pv (13)

where RB is the radius of the homogenous bubbles, αnuc is the volume fraction of non-
condensable gas, Fvap is the vaporization rate coefficient, and Fcond is the condensation
rate coefficient.

2.4. Simulation Setup

The simulation domain and conditions are set according to the experiment. A nozzle
with a throat diameter of 2 mm is simulated, and the fluid domain with enough size is
created to avoid the influence of the boundaries on the jet flow. As shown in Figure 2, the
calculation domain has a diameter of 100 d and a length of 250 d. The present analysis is
focused on the turbulence characteristics of the shear layer, which is located in the region
of the outlet of the nozzle. The fluid domain is discretized into hexahedral grids using
ANSYS ICEM, as shown in Figure 2. Since the focus is on a deep understanding of the flow
in the mixing layer, the mesh in the shear layer closed to the nozzle outlet is refined. The
total grid cell number for the whole domain is 39 million.
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Figure 2. Mesh and sizes of the computational domain.

The numerical simulation contains three main types of boundary conditions. At the
upstream inlet of the nozzle, the boundary is set as the pressure inlet, and the total pressure
is set as 1–3 MPa, regarding the working conditions of the jet. The outlet of the domain is
treated as the pressure outlet, and the gauge pressure is set as 0 Pa. The other boundaries
are set as the wall. The time step is 100 µs and the residuals for the continuity equation, and
the momentum and volume fraction transport equations, are 10−3. The maximum iteration
number for each time step is set as 30. The transient simulation was calculated for 1000 time
steps initially, and then the velocity and pressure at the monitored point were stored for
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1000 more time steps. Physical parameters in the whole domain were averaged for the last
1000 time steps to obtain the time-averaged value for the velocity and pressure fields.

3. Results and Discussion
3.1. Validation of CFD Results

Simulation of the cavitating jet is carried out according to the experiment, and the
three working conditions of the jet are investigated both numerically and experimentally.
Figure 3 shows the comparison between the high-speed image and the simulation results.
Cavitation performance of a submerged jet is mainly affected by the nozzle geometry and
the working conditions of the jet. The commonly used parameter to describe the working
conditions is cavitation number, which is defined as follows:

σ =
pc − Pv

1
2 ρv2

(14)

where pc is the pressure at the downstream of the nozzle, Pv is the vapor pressure of the
fluid, ρ is the density and v is the jet velocity. For the jet with a high value of pc, the
cavitation number can be defined approximately as:

σ =
pc

ϕ∆p
≈ pc

∆p
(15)

where ϕ is the flow coefficient, which is usually in the range of 0.97 to 0.98, and ∆p is the
pressure difference between the upstream and downstream sides of the nozzle throat.
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Figure 3 shows the experiment results of the high-speed photography and the LES
simulation of the jet for three different cavitation numbers, namely, σ = 0.1, 0.05 and
0.033. The images show that the length of the cavitation clouds increases obviously with the
decrease in the cavitation number. When the cavitation number is 0.1, the cavitation bubbles
only appear around the nozzle exit, while the bubble cloud length is almost doubled for
the case when the cavitation number is 0.033. Figure 3d–f is the iso-surface of the vapor
phase in the simulation result. By comparing the experimental and simulated results, it
is found that the tendency and the scale of the cavitation cloud for CFD and high-speed
photography are almost the same.

The time-averaged images of the high-speed images and the simulation results are
compared in Figure 4. As shown in the images, gray-scale values of 5000 high-speed images
are averaged, which represent the volume fraction of the vapor phase. For the simulation
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results, volume fraction values of more than 1000 time steps are calculated statistically,
which is shown in Figure 4d–f. By comparing the time-averaged value of the cavitation
cloud from experimental images and numerical simulation, it is found that the length of
the jet is basically the same. The scale of the jet for both radial and axial directions are
similar for experimental and numerical results. The results indicate that the currently used
numerical method can predict the evolution of the cavitation cloud in the jet accurately.
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3.2. Shear Layer Instability

When the high-speed jet is submerged in the relatively stationary fluid, velocity
changes from hundreds of meters per second to zero in a small range of distance spatially
in the radial direction. Under such conditions, the high-momentum fluid is affected by the
surrounding fluid with low momentum by viscose forces. Figure 5 shows the transient
velocity field of the submerged high-pressure jet in the region close to the nozzle exit, and
the related cavitation number is σ = 0.05. It can be seen that the velocity decreases fast along
the streamwise direction, and the velocity in the mixing layer fluctuates dramatically. At the
same time, vortical structures can be found in the mixing layer, and the spatial scale of the
vortexes increases gradually along the axial direction. This tendency is in accordance with
the characteristic of shear layer Kelvin–Helmholtz instability [27]. The Kelvin–Helmholtz
instability is a flow instability that arises due to shear stress along the interface between
two different fluids and results in a concentration of vorticity along a velocity discontinuity
in the tangent line.

To show the vortex structures in the mixing layer more clearly, the plane streamline in
the mixing layer near the nozzle exit is plotted, which is colored by the velocity magnitude.
Vortexes in the mixing layer can be seen clearly in Figure 6. Smally scaled vortexes started
to appear at the boundary layer of the nozzle throat outlet, which is mainly caused by the
counter flow between the streamwise main flow and the reversed flow from the region
close to the end wall of the nozzle exit. The small-scale vortexes grow gradually, since the
surrounding stationary fluid is entrained by the main flow. Meanwhile, the vortexes merge
with each other in the early stages of the evolution and then break into small-scale vortexes
under the effect of pressure and velocity fluctuations caused by the turbulence. Since the
cavitation performance of the submerged high-pressure jet depends on the vortexes in
the shear layer, it is of great importance to investigate the structure of the vortexes and
the turbulence characteristics in the mixing layer. To observe the location of the vortexes
and the spatial distribution of the velocity magnitude, it can be found that the velocity
gradient in the mixing layer is not smooth, and each wave of the fluctuation corresponds to
a large-scale vortex. In certain regions downstream of the nozzle exit, the wavelength of
the velocity fluctuation increases, and the scale of the vortex increases in the same tendency.
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This indicates that the velocity fluctuation can be caused by the interaction and evolution
of the vortexes in the mixing layer under the high shear stress between the high-speed and
stationary fluid.
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According to the findings, the cavitating jet always sheds in a certain frequency,
particularly in the case of self-excited oscillating cavitating jets. The exiting frequency and
the theory play an important role in the design of the nozzle for the self-excited oscillating
jet. To reveal the unsteady characteristic of the jet, streamwise velocity variations at different
locations are monitored. The monitor points are located along the center line of the jet,
from the nozzle exit to 10 d downstream. Figure 7 shows the time domain variation of
the axial component of the velocity for three different cavitation numbers. It can be seen
from the figures that the variation amplitude of the velocity increases obviously along the
streamwise direction for each cavitation number. It indicates that the turbulence structures
and the intensity are smaller in the region close to the nozzle, which increases gradually as
the vortexes merge with each other and diffuse during motion. Comparing the monitored
signals for the three different cavitation numbers, it can be seen that the velocity increases
with the decrease in the cavitation number, since the pressure difference between the nozzle
throat is increased. At the point x/d = 2, the variation of the velocity is relatively small for
the three cavitation numbers, which means that the instability structures here are relatively
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small. Comparing the transient velocity at x/d = 2.5, it can be found that high-amplitude
velocity fluctuations occur in the case with a high cavitation number, while the velocity
variation still remains low in the case with lower cavitation numbers. When the cavitation
number is σ = 0.1, at the point x/d = 2.5, the velocity varies from 20 m/s to 50 m/s, and the
profile of the axial velocity in the time domain is similar to that at the further downstream
point x/d = 3. This means that the turbulence is fully developed at the position x/d = 2.5,
and the vortex structures become isotropic from this point. When the cavitation number
is decreased to σ = 0.05, the transient axial velocity at x/d = 2.5 only shows several peaks,
indicating large-scale and intensive instability starts to happen at this position. When
σ = 0.033, the instability happens further downstream, where x/d = 3.
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Figure 7. x-component velocity signals and the corresponding spectra inside the mixing layer.
(a) σ = 0.1, x/d = 2; (b) σ = 0.1, x/d = 2.5; (c) σ = 0.1, x/d = 3; (d) σ = 0.05, x/d = 2; (e) σ = 0.05, x/d = 2.5;
(f) σ = 0.05, x/d = 3; (g) σ = 0.033, x/d = 2; (h) σ = 0.033, x/d = 2.5; (i) σ = 0.033, x/d = 3.
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To analyze the frequency characteristic of the turbulence flow in the cavitating jet,
the monitored transient streamwise velocity was transformed to frequency field by FFT.
Figure 8 shows the frequency of the temporal signal of the velocity component along the
center line for different cavitation numbers. It can be seen from the figures that the main
frequency of the velocity oscillation decreases as the monitor point moves downstream.
The oscillation of the streamwise velocity reflects the vortex structures in the flow field. The
scale of the vortexes increases and has a momentum exchange with the surrounding fluid in
the process while moving downstream, which causes the decrease in the main frequency of
the velocity magnitude. Comparing the frequency spectral of jets with different cavitation
numbers, it can be found that, for a fixed location, the frequency increases with the decrease
in the cavitation number. This is because, in the case of low cavitation numbers, the pressure
differences between the inlet and outlet of the nozzle are larger, which produces jets with
higher initial velocity. The jet with higher initial velocity contains more momentum, which
decreases more slowly.

3.3. Vortexes and Cavitation in the Mixing Layer

As discussed above, the velocity in the jet varies in the complicated mode with the
effect of the turbulence. It contains both low- and high-frequency signals, which may be
caused by different types of vortexes with different size. To reveal the temporal evolution of
the vortex structure in the mixing layer, vortexes near the nozzle outlet around one period
are plotted. Figure 9 shows the Q-criterion iso-surface for the jet with a cavitation number
of σ = 0.05, which is colored by the velocity magnitude. At the time when t = 0 s, the vortex
in the fluid close to the nozzle is relatively weak and almost no vortex structure can be
found in the nozzle. At t = 60 µs, a vortex ring is formed at the nozzle outlet. Spanwise
vortexes dominate in the region x/d = 0 to 1.5, while a streamwise vortex shows up at
around x/d = 2. The vortex dissipates gradually further downstream under the effect of the
viscose force. At t = 120 µs, the newly formed vortex ring is broken into small-scale vortexes
under the strong shear stress, and the streamwise vortex mostly disappears. After that,
the region with strong vortexes is reduced, and the next period starts at around t = 300 µs.
From the frequency distribution of the temporal spectral of the velocity, a wide band signal
can be found. This can be related to the formation, distortion and breakage of the vortex
ring structures.

To discuss the formation of the instability of the vortex ring, the vorticity magnitude
on the plane perpendicular to the axis at different positions is displayed in Figure 10. It
can be seen from the figures that, at the position just behind the nozzle outlet, the vortex is
distributed in a circular region. The shape of the region with a high vorticity value is more
regular in the case with a lower cavitation number, indicating that higher jet velocity makes
the ring vortexes more stable. The same tendency can be observed on the plane at x/d = 1.5
and 3 for different cavitation numbers. Comparing the vorticity distribution at different
streamwise locations, the instability process of the ring-shaped vortexes is revealed. Under
the effect of the viscose force of the fluid, the second instability happens on the ring-shaped
vortexes. The vortex ring breaks into several parts while moving downstream, due to
the entrainment of the low-momentum fluid. The streamwise vortex structures show up
accompanying the second instability of the vortex ring. In addition, it can be seen from the
figure that the jet is affected by the shear vortex at the nozzle outlet to form a small vortex
band, and the vortex gradually grows with the diffusion of the jet and is accompanied
by dissipation.

Cavitation always happens in a high-pressure submerged jet when the jet velocity is
high enough. The theory of the shear-induced Rankin vortex model can be used to explain
the appearance of cavitation in the jet, and the vortex–bubble interaction is found to have
an effect on the fluid and bubble dynamics to some degree. Figure 11 shows the iso-surface
of the vapor volume fraction, from which the dynamic behavior of the cavitation cloud is
reflected. From the figures, it is found that the vapor is mainly formed at the nozzle outlet.
This is in accordance with the Rankin vortex theory. When the high-speed jet flows out from
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the nozzle, the high shear stress is formed in the mixing layer and a series of small-scale
vortexes develops due to the K–H instability. The pressure in the Rankin vortex center
decreases fast and reaches the vapor pressure of the fluid under the ambient temperature,
and the cavitation occurs at the same time. A ring-shaped cavitation cloud is found at
the nozzle outlet at the time t = 60 µs, and a vortex ring is created at the same location
at the same time, according to Figure 11b. Then, the ring-shaped cavitation breaks into
small parts under the effect of the vortex instability. Comparing the shape of the cavitation
cloud and the cortexes in the jet, it is found that their spatial distribution and the temporal
evolution are similar, indicating that the dynamic characteristics of the vortex and the
cavitation affect each other.
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Figure 8. The frequency of the temporal signal of the velocity component along the center line.
(a) σ = 0.1, x/d = 2; (b) σ = 0.1, x/d = 2.5; (c) σ = 0.1, x/d = 3; (d) σ = 0.05, x/d = 2; (e) σ = 0.05, x/d = 2.5;
(f) σ = 0.05, x/d = 3; (g) σ = 0.033, x/d = 2; (h) σ = 0.033, x/d = 2.5; (i) σ = 0.033, x/d = 3.
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3.4. Time-Averaged Characteristics

To analyze the time-averaged characteristics of the jet, 1000 time steps of the transient
simulation were averaged and statistically processed. Figure 12 shows the axial velocity
along the center line and the radial direction at different x/D locations. As shown in
Figure 12a, the velocity remains almost unchanged for a distance in the region close to the
nozzle outlet, which is called the core region of the jet. It is found that the core region of
the jet is extended as the cavitation number is decreased, since the momentum and the
initial velocity are higher for the condition with a lower cavitation number. According
to the research literature about submerged jets without cavitation, the velocity profile of
the jet along the jet axis shows a similarity law, and the profile changes little when the
Reynolds number is changed [28]. In the current research, the submerged jets are cavitating
jets, and the variation of the non-dimensioned velocity profile changes with the variation
of the cavitation number. One reason for this change is the difference of the vapor volume
fraction. It is well known that the density and the viscosity of the vapor phase is obviously
lower than that of the liquid phase, and the appearance of the cavitation may reduce the
moment exchange between the high-speed jet and the surrounding fluids. Figure 12b
presents the velocity distribution along the radial direction at different x/D locations, from
which the jet’s spreading rate can be compared. Trushar B. Gohil et al. [29] concluded that
the radial variation shows a top-hat profile at the location close to the nozzle exit, and this
profile is changed gradually at the downstream locations; the spreading rate is higher for
the case with a high Reynolds number. In the current cavitating jets, a top-hat profile is
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also found. For the currently investigated cavitating jets, the Reynolds number increases
with the decrease in the cavitation number. However, the spreading rate is lower for the jet
with a higher Reynolds number here. This means that the momentum exchange between
the jet and submerging water is reduced by the cavitation phenomenon.
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According to the research about jets, the spreading rate can be quantitatively analyzed
using the jet’s half-width and mixing layer thickness. The definition of the jet half-width is
the radial length where the axial velocity decreases to half of the center value. For a typical
shear flow, the mixing layer is defined as follows [30]:

δw =
u1 − u2

(∂u/∂y)max
(16)

where u1 and u2 are time-averaged streamwise velocities at different sides of the shear
layer. Figure 13 illustrates the shear layer thickness and half-width variation along the
streamwise direction of the jet. The mixing layer thickness and the half-width increases
slightly within the potential core for all three cavitation numbers, and then increases fast
further downstream. In general, the mixing layer and half-width of the jet are larger for the
case with a higher cavitation number. Since the jet velocity and the Reynolds number are
higher in the case with a low cavitation number, the variation of the mixing layer along
the streamwise direction is different from that of research on non-cavitating jets [29]. This
indicates that the occurrence of the cavitation has a great effect on the momentum exchange
in the mixing layer.
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Figure 13. Variation of shear layer thickness and half-width variation along the streamwise direction.
(a) Shear layer thickness; (b) Half-width variation.

4. Conclusions

The length of the cavitation clouds increases obviously with the decrease in the
cavitation number; the scale of the jet for both radial and axial direction is similar for
experimental and numerical results. The currently used numerical method can predict
the evolution of the cavitation cloud in the jet accurately. The turbulence structures and
the intensity are smaller in the region close to the nozzle, which increases gradually as
the vortexes merge with each other and diffuse during motion. Comparing the monitored
signals for the three different cavitation numbers, it can be seen that the velocity increases
with the decrease in the cavitation number, since the pressure difference between the
nozzle throat is increased. Under the effect of the viscose force of the fluid, the second
instability happens on the ring-shaped vortexes. The vortex ring breaks into several parts
while moving downstream, due to the entrainment of the low-momentum fluid. The
streamwise vortex structures show up accompanying the second instability of the vortex
ring. The core region of the jet is extended as the cavitation number is decreased, since
the momentum and the initial velocity are higher for the condition with a lower cavitation
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number. The spreading rate is lower for the jet with a higher Reynolds number. This means
that the momentum exchange between the jet and submerging water is reduced by the
cavitation phenomenon.
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