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Abstract: The carbon pool of Amazonian peatlands is immense and mediates critical ecological
functions. As peatlands are dynamic, similar to other wetland systems, modeling of the relationship
between organic matter and dry bulk density allows the estimation of the accumulation and/or
decomposition of peats. We tested several models: the generalized linear mixed logarithmic, to
test depth, and the non-linear logarithmic and power-law models. There is a negative power-law
relationship between organic percentage and dry bulk density using peat samples collected in
Amazonian peatlands (n = 80). This model is supported by the coefficient of determination (R2)
estimates garnered from model fitting, while Akaike Information Criterion (AIC) values further
support parsimonious models. We also ran trials of the ideal mixing model with two parameters:
k1 representing organic density and k2 representing mineral. The mixture of organic and inorganic
components generally falls in accordance with the theory that decreasing k1 trends with increasing
k2, although k2 values for these peat samples are negative. The organic k1 coefficient allows us to
identify two sites out of the nine investigated, which can be prioritized for their carbon dynamics.
The presence of high-density samples, which were not related to depth, indicates clay intrusion in
these peatlands. We hope the modeling can explain processes significant to these globally important
carbon-rich ecosystems.

Keywords: loss on ignition; tropical peat; Peruvian Amazon; accretion; soil carbon; clay intrusion

1. Introduction

Organic matter is a means of expressing carbon content in soils. Organic matter
measurements are generally destructive and rely on the physical decomposition of or-
ganic matter at temperatures above 500 ◦C. Organic matter can then be expressed as a
percentage of mass loss on ignition (LOI). This analysis has become routine in the study of
peatlands [1–4]. This is intuitive, as the soil carbon pool of peatlands is immense [5–7].

It is well known that dry bulk density (DBD), one soil characteristic generated by LOI
protocols, serves as an accurate predictor of carbon density in peat soil. This tendency
has been proposed as a more rapid and efficient means of estimating large portions of
carbon budgets [2,8]. Very little instrumentation and equipment are needed to derive DBD
values from peat, but organic matter is more easily measured than total carbon (TC) using
elemental analysis. The widespread use of TC elemental analysis in soils plays a role in
carbon stock estimation [8,9], but incurs costs that are beyond the reach of many research
projects, especially in the tropics.

In this process the exact significance of OM can be overlooked. Loss on ignition
measures much larger volumes of peat than TC, so it can present more accurate assessment.
In the case of peatlands, it is advisable to use OM as an explanatory variable for DBD, being
the most readily ascertainable data. A multitude of studies have observed a nonlinear
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relationship between OM and DBD [10–12]. These studies often include peaty samples or
highly organic soils, but usually take note of the relationship over a wider variety of soils
down to very poor organic soils such as clay or rocky soils. This permits nonlinear modeling
of soil data, which predicts soil characteristics over wider scales [13–15]. Few studies apply
more than natural logarithmic models, while a variety of models can encompass the
variation seen in patterns, e.g., power-law or negative exponential. Such models portend
to have greater explanatory power then simple linear models, as diverse influences of
geology, hydrology, or ecosystems can be involved [16–19]. The depths of the sampled
soil types, though, often do not vary past thresholds less than 50 cm. This was the case in
the noteworthy example in the Amazonian peatlands, where only ten samples exceeding
30 cm depth were measured [20]. The position of these samples seems to indicate that
depth influences OM and DBD, but the arbitrary limit to depth constrains interpretation.

The presence of minerals in peat may relate to the site’s history with regard to mineral
intrusion. In the Amazon, peatlands take part in a hydrologic cycle marked by persistent
flood pulses, driving channel migrations, which can affect peatlands in a variety of acute
or attenuated ways [21–25]. The introduction of surface water sources, carrying mineral
components to peatlands, may be tied to such hydrologic drivers that play out over the
millennial time scales involved in peatland formation [26–33]. In the most acute cases,
peat burial may be a consequence [34–36]. In several Amazonian peatlands, buried peat
layers have been documented [22,37]. These layers are separated by regions of clayey
peat. This mineral presence could be interpreted as a sign of minerotrophy. While surface
waterborne inputs vary over time, their mineral composition could be derived from the
Varzea “whitewater” flood pulse [23,38].

Specific approaches to peatland sampling avoid taking clayey samples, assuming
that they will not represent functional aspects of the ecosystems. The lack of clay-heavy
samples in studies originating from Indonesian and central African sites may explain these
biases [9,39]. The overall depth is another possible explanation, as some of the buried clay
layers in Lähteenoja et al. [22] reside at depths greater than one–two meters, depths which
in some studies are ignored. Shallower samples could help to elucidate processes more
recent and significant to the current state of the ecosystem, potentially being in a steady
state. Morris et al. [40] approached the steady-state of wetlands with variable surfaces by
describing the behavior of OM in relation to DBD in the soils of North American coastal
wetlands. Using nonlinear modeling, they found that an ideal mixing model best explained
the relationship, and that based on principles of soil packing and volume, this model
contains information about the wetlands’ organic and inorganic contributions to accretion
or explicit rise in surface height. Such accretion is difficult to assess in tropical peatlands,
although some of the coastal wetlands included in Morris et al. [40] were considered
as peat above a 40% threshold of organic matter. This is markedly lower than that of
Dargie et al. [39], who used a 65% OM threshold for tropical peatlands.

Complicated site histories in the Amazon [24,25,31] may imply that models take into
account more factors driving peatland formation. While a given mineral component does
not inherently support a particular source or process in the peatland, any means to increase
understanding of ecosystemic processes relevant to peatlands will have further bearing
upon the global importance of their carbon storage and potential sequestration [27,41].
Given the successes demonstrated in applying a wider variety of mathematical models to
such routine descriptions of soil type, careful documentation of Amazonian peatland soil
properties could enter into analyses indicative of processes significant to peat accumulation
or burial. The strong 0.94 coefficient of determination for the logarithmic relationship found
by Bhomia et al. [20] warrants further investigation into the phenomenon.

Objectives of this study:

1. To find an adequate model for OM in relation to DBD in a sample of Amazonian peatlands;
2. To test the significance of depth as a co-factor;
3. Check for possible hydrological or landscape level effects in the site data;
4. Assess the ideal mixing model.
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2. Materials & Methods

Ucayali, Peru is a densely forested region in which annual rainfall is close to
2000 mm [42]. Extensive lowland zones are contained by near-Andean zones with high
relief [43]. While coverage of acidic and poor entisols and inceptisols is high [44], further
degradation due to extreme hydrologic conditions is expected [45–47], along with the
occurrence of a variety of wetlands [48]. These pan-Amazonian trends likely apply to
Ucayali, but only one study has addressed peatlands [49]. Junk et al. [50] identify Ucayali
as under the influence of the Varzea flood pulse. (Figure 1) We were unable to undertake
any geographic analyses for the purposes of this study.
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Figure 1. Major road and waterways in Ucayali and surrounding departments in central Peru (UTM
18S)—yellow stars are sites included in this study.

2.1. Soil Sampling Process

Two hundred and thirty-two ten cm peat samples taken with a Russian corer [51] were
acquired in Ucayali, Peru in 2016 and 2017. These samples come from a range of depths as
each sample point involved the extraction of complete cores to refusal of the 5 cm Russian
peat sampler (Aquatic Research Instruments, Hope, ID, USA). Sites 1–13 are independent
repetitions of transects that repeat the sampling at different locations within the peatland.
We determined the dry bulk density for all samples, while a subset of 80 was selected for
full loss on ignition analysis, also following Chambers et al. [3]. In addition to low OM
and/or high DBD, the clayey status of the samples could be observed in the field visually
and by field texture test, aided by further reference to the photos taken of each core sample.
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2.2. Quantitative

We carried out the Shapiro–Wilk normality test for the relevant datasets and residuals
in R core [52] before proceeding to model fitting. We tested several models:

Logarithmic model:
DBD = x × ln (OM) + y (1)

Logarithmic model with depth:

DBD = x × ln (OM) + y × depth + z (2)

Power-law:
DBD = x OMy (3)

Power-law with intercept:
DBD = x OMy + z (4)

Ideal mixing model:

DBD = 1/ [OM/k1 + (1 − OM)/k2] (5)

General linear models and Akaike Information Criterion (AIC) were calculated using
the core statistics package. The generalized linear mixed model approach utilized the lme4
package [53]. Nonlinear model fitting was carried out in the minpack.lm package [54] using
the Levenberg–Marquardt least-squares analysis. We treated residual sum-of-squares (RSS)
as the coefficient of determination after:

R2 = 1− RSS/ ∑
(

DBD− DBD
)2 (6)

The McFadden’s pseudo-R2 methodology applies to all non-linear models tested. Fur-
ther assessment of models utilized the mean error (ME) and root mean square
error (RMSE).

ME =
1
n ∑n

i=1
ˆDBDi − DDBi (7)

RMSE =

√
1
n ∑n

i=1 (
ˆDBDi − DBDi)

2 (8)

ˆDBD is the predicted dry bulk density, and n is sample size.
To address significance in cofactors, the following correction equation was applied:

Depth(cm/Q) = Dsamp × (Q/Dcore) (9)

where Dsamp is sample depth, Dcore is total depth of the core containing the sample, and Q
is the third quartile value of all depth measurements taken.

3. Results

Loss on ignition analysis shows a range of values from 23 to 70% of organic matter
(OM). The resulting data are normally distributed (W = 0.975, p = 0.1197), with a mean of
43.8%. With 42.1% median value, the majority of the samples (50 of 80) are above a 40%
threshold of OM, while only four samples exceed 65%. In all but one site, these above
−40% threshold samples come from at least half of the cores collected (Table 1).
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Table 1. Site descriptions: threshold columns show the number of samples that exceed the threshold,
while the number of cores with samples exceeding the threshold is tallied in the next column. Sites
included in the interval rows are varied, so min./max./thresholds are not applicable (n/a).

Site
Number

Number of
Points in
Transect

Sample
Size

Above
65% Thres-

Hold

Above
40% Thres-

Hold

Number
of Cores
over 40%

Average
OM

Min.
OM

Max.
OM

Average
DBD(g
cm−3)

Average
Depth
(cm)

Min
Depth

Max
Depth

1 5 n = 8 0 2 2 34.8% 23.8% 54.9% 0.123 136 50 210
2 7 n = 8 0 4 4 37.3% 23.8% 57.5% 0.191 150 10 345
3 6 n = 14 1 11 5 46.4% 33.0% 68.5% 0.116 312 145 528
4 6 n = 10 0 6 4 45.9% 33.6% 61.8% 0.130 148 10 375
5 2 n = 9 0 6 2 42.5% 33.6% 52.3% 0.128 503 480 525
8 4 n = 4 1 2 2 45.9% 26.8% 67.0% 0.100 112 60 190
9 3 n = 4 0 3 2 51.0% 39.8% 61.5% 0.084 100 0 215
10 7 n = 15 0 11 7 44.8% 27.4% 63.8% 0.106 259 190 380
13 4 n = 8 2 5 4 47.1% 32.5% 70.7% 0.134 92 20 220

All sites 44 n = 80 4 50 32 43.8% 23.8% 70.7% 0.125 165 0 528
0–75 cm
interval n/a n = 23 n/a n/a n/a 48.1% 23.8% 70.7% 0.093 43 n/a n/a

75–150 cm
interval n/a n = 27 n/a n/a n/a 43.2% 23.8% 67.0% 0.126 114 n/a n/a

150–300 cm
interval n/a n = 20 n/a n/a n/a 42.7% 26.6% 63.8% 0.132 192 n/a n/a

The dry bulk density values matched with the points and depths of measured OM
results show the nonlinear relationship between OM and DBD (Figure 2). The trials of
several models are summarized in Table 2. A logarithmic linear model, while explaining
60% of the variation, could not conclusively support the influence of depth as a cofactor,
but achieved a nearly significant p = 0.065 for the depth coefficient. Depth values appear to
be central to the dispersion of OM and DBD (Figure 2).
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Table 2. Model descriptions testing the full data set (n = 80).

Equation
Coefficient

of Determination
(R2)

Mean
Error
(ME)

Root Mean
Square Error

(RMSE)

Akaike
Information

Criterion
(AIC)

Logarithmic decay DBD = ln(OM) 0.478 0.0000 0.40 −281.61
Power-law decrease DBD = xOMy 0.519 0.0003 0.038 −288.16
Power w/intercept DBD = xOMy + z 0.528 0.0000 0.038 −287.7

Ideal mixing model DBD = 1/ [OM/k1
+ (1 − OM)/k2] 0.524 0.0004 0.038 −289.03

The sites did not vary significantly in their OM (F = 1.537, p = 0.149), thereby placing
them on a similar scale. A logarithmic linear mixed-effects model taking the nine sites as
random effect performed well (AIC = −295.4, df = 76) against the model that assumed non-
fixed slope (AIC between −294.6 and −286.3, df = 70). This model is displayed in Figure 3.
The similarity exhibited among the functions for each site demonstrates a likelihood for a
single function to fit the data.
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in red; normality among residuals W = 0.982, p = 0.304, AIC = −295.4, marginal R2 = 0.896.

3.1. Model Fitting

Although logarithmic transformation addressed normality issues, further investiga-
tion into alternative models revealed conclusive trends. Overall, based on the maximum
R2 value, the OM data have a best-fit line of a negative power-law with intercept
(R2 = 0.528):

DBD = 0.009 OM−2.152 + 0.056

Utilizing the same procedure, we calculated the ideal mixing model [40], which has a
very similar R2 at 0.524. Both of these models attained greater R2 than a natural logarithmic
model, which obtained R2 = 0.478. Additionally, the root mean square error is higher for
the logarithmic model, while mean error only affects the ideal mixing model (Table 2).

When we investigated the models at each site, the most common model that achieved
a maximum R2 value was the power-law with intercept (seven out of nine sites), followed
closely by the ideal mixing model—with the exception of site two, in which the logarithmic
model had a comparable R2 (Table 3). The only other case where the logarithmic model
achieved a relatively high R2 is at site five, but this site also presented the lowest R2 values
(e.g., 0.235). Site five shows almost no pattern as a scatterplot (Figure 4), and, in fact, is
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derived from only two coring points (an overall average number of points is 5.25 per site).
Although the actual sample size is still relatively large for site five (n = 9), sites eight and
nine have a lower sample size (n = 4). These low numbers of samples could present a
convergence issue for nonlinear regression. Nevertheless, the modeling exercise favored
the power-law with intercept.

Table 3. Site-based relationships between organic matter (OM) and dry bulk density (DBD) for
different nonlinear functions. Asterisks (*) denote the models for which parameter convergence was
not achieved. Double asterisks (**) show Akaike Information Criterion (AIC) support for the ideal
mixing models.

Site
Number Sample Size

R2:
Logarithmic

Decay

AIC:
Logarithmic

Decay

R2:
Power- Law

Decrease

AIC:
Power- Law

Decrease

R2:
Power

w/Intercept

AIC:
Power

w/Intercept

R2: Ideal
Mixing
Model

AIC: Ideal
Mixing
Model

1 n = 8 0.467 −24.63 0.605 −27.01 0.810 * −30.88 0.665 −28.34
2 n = 8 0.791 −23.37 0.777 −22.83 0.792 −21.388 0.767 −22.48
3 n = 14 0.307 −53.41 0.303 −53.34 0.307 * −51.41 0.298 −53.23
4 n = 10 0.370 −33.50 0.393 −33.88 0.503 * −33.88 0.392 −33.87
5 n = 9 0.237 −31.86 0.192 −31.35 0.236 * −29.85 0.186 −31.28
8 n = 4 0.573 −8.48 0.761 −10.82 0.977 * −18.25 0.836 −12.30
9 n = 4 0.626 −16.68 0.646 −16.89 0.681 * −15.32 0.650 −16.95 **

10 n = 15 0.579 −56.92 0.655 −59.89 0.712 −60.63 0.682 −61.14 **
13 n = 8 0.576 −24.40 0.620 −25.27 0.657 −24.10 0.636 −25.61 **

0–75
cm interval * n = 23 0.480 −89.82 0.576 −94.32 0.800 −108.85 0.588 −94.95

75–150
cm interval n = 27 0.518 −84.23 0.583 −87.81 0.603 −87.07 0.594 −88.52 **

150–300 cm
interval n = 20 0.659 −71.26 0.683 −72.73 0.683 −70.73 0.683 −72.72
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3.2. The Ideal Mixing Model

Interestingly, the Akaike Information Criterion (AIC) calculated for all 80 data points
is more negative (smaller) when using the ideal mixing model, followed by the simple
power-law model without intercept. At the site level, AIC also shows support for the
ideal mixing model. R2 values at sites 10 and 13 may be biased, considering the extremely
high values that can be obtained when there are low sample sizes and poor convergence
(Table 3). The AIC criteria favor the ideal mixing model to the logarithmic (Table 2).

Carrying out the nonlinear model fitting for the ideal mixing model yielded values
for the k1 (organic) and k2 (inorganic) coefficients. All k2 values for these peat samples
are negative. That being said, three sites (three of the four sites with the greatest k1 values)
have k2 values several orders of magnitude more negative than the others. Excluding these
inconclusive values, k2 generally increases to less negative −0.3 ± 0.1 g cm−3 values when
taken in order of decreasing k1. (Table 4) The overall k1 is 0.044 g cm−3, with individual
sites varying from 0.021–0.057 g cm−3. Furthermore, the x-intercept values detected in the
general linear model have a positive association with k1 (simple least squares R2 = 0.718),
as is the case with the appearance of clay layers at the sites (Pearson’s correlation 0.700).
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Table 4. Results for k1 and k2 coefficients: sites are ordered according to descending k1 value. Blank
cells are parameters which were inconclusively resolved (i.e., orders of magnitude more negative). x-
intercepts are reported for the general linear model assuming fixed slope: normality among residuals:
W = 0.987 (p = 0.579), null deviance = 0.246 (64% performance), AIC = −295.9.

Site
Number

Sample
Size Average OM Average DBD k1

(g cm−3)
k2

(g cm−3) x-Intercept
Interbedded
Clay Layers
Observed

4 n = 10 37.3% 0.130 0.057 0.312 y
5 n = 9 42.5% 0.128 0.053 0.193 y
2 n = 8 44.8% 0.191 0.053 −0.611 0.417 y
3 n = 14 45.9% 0.116 0.052 0.179 y

13 n = 8 51.0% 0.134 0.043 −0.245 0.312 y
9 n = 4 47.1% 0.084 0.037 −0.391 n

10 n = 15 45.9% 0.106 0.033 −0.190 0.061 y
1 n = 8 34.8% 0.123 0.025 −0.155 −0.095 n
8 n = 4 46.4% 0.100 0.021 −0.094 −0.032 n

all sites n = 80 43.8% 0.125 0.044 −0.591 n/a
0–75 cm interval n = 22 48.1% 0.093 0.036 −0.641 n/a n/a

75–150 cm
interval n = 27 43.2% 0.126 0.040 −0.335 n/a n/a

150–300 cm
interval n = 26 42.7% 0.132 0.040 −0.245 n/a n/a

3.3. Assessing Patterns in DBD

Dry bulk density values are non-normally distributed with a 0.404 maximum. Each
DBD value has a discrete depth and the correction equation yields a dataset showing a very
mild increase with depth (simple least squares R2 = 0.132). This corrected data set can be
seen in Figure 5. The absolute ranges of densities exhibited at 68 cm and again at the
151 cm corrected depths are markedly low (0.0357 and 0.0224 g cm−3, respectively).
Prompted by this result, we separated DBD values into 75 cm intervals (Figure 6). Relating
these DBD values to the measured OM percentages creates three subsamples of comparable
size after pooling the 150–225 cm and 225–300 cm intervals. Each interval also achieves
0.695 ± 0.05 R2 values for power-law with intercept models related to their densities; in
each case, they were greater than those calculated for logarithmic (Table 3, see also Figure 7).
Additionally, despite the large variation in k1 per site, the k1′s for each interval all fall close
to 0.04 g cm−3 with consistency (Table 4).
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4. Discussion

Rudiyanto et al. [9] imply that any tropical peat sample with DBD greater than
0.25 g cm−3 is likely very clayey: past a point of utility in predicting wider trends of
carbon storage. Samples that exceed 0.25 g cm−3, as seen in Figure 5, may allow us to
distinguish the effects of clay intrusion: that they are transient and not reliant on any
consistent depth. These cases do not conform to a simple increase with depth and can be
seen at various depths. Note that these outliers do not represent the termination of cores
in clay-heavy basement layers, as evidenced by their commonality throughout corrected
depths. The low correlation of density with depth indicates that Amazonian peatland soils
are unpredictable in their density at the landscape scale. Moreover, when paired with the
nonlinear relationship between OM and DBD, they support a view of peatlands possessing
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belowground landscapes of varying densities that have implications for biotic processes at
or near the surface. That general linear models show close to p = 0.05 significance levels for
the interaction of the depth factor gives us reason to believe that the transient influence of
high-density soil describes a past process of peat burial.

Since this is the second case of Amazonian peatlands presenting this pattern, we
expect many Amazonian peatlands to present is as well, given sufficient sampling. Unlike
in Bhomia et al. [20], our data come from a much deeper range of depths, at least ruling out
the “>30 cm” category they detected. Depth values appear to be central to the variation
in OM and DBD (Figure 2), as opposed to any relatable trend of depth with lower OM.
Specific drawbacks of the analysis presented in Bhomia et al. [20] are secondary to the overt
drop in the quality of the evidence supporting logarithmic models in the current study. We
caution against tacit application of logarithms in this context.

A simple explanation for the non-linear relationship is that mineral intrusion over
time causes discontinuity in the soil. Confirmation of the relationship may simply be illus-
trating a process that is recapitulated in other soil types, but over much longer time scales.
Jeffrey [11] states that it might be universal. The process of pedogenesis in Amazonian
peatlands, being so dynamic and sensitive to hydrologic perturbations, suggests that a
wider variety of mathematical models may be more applicable. It must be noted that this
is not the case in the well-studied Indonesian peatlands system, where the prevalence of
ombrotrophic domes [4,5,55–57] suggests the ecosystems are regularly cut off from hydro-
logic influence [58]. The lack of reports of a nonlinear decay of OM with DBD is in keeping
with the theory laid down by Adams [59], who observed that the relationship breaks down
beyond 70% OM. Indonesian peatlands regularly average well above 50% OM [8,9,60,61],
and difficulty in drawing out the pattern is to be expected with high OM data sets.

Although our OM numbers represent a wide range of percentages both above and
below a 40% threshold, they are empirically low compared to measurements from other
tropical peatlands. This would seem to at least call into question the 65% criteria used
in Dargie et al. [39] or corroborate the 50% threshold used in Hastie et al. [7]. This lower
bracket for OM in Amazonian peatlands was unexpected, and the selection process for
loss on ignition was not comprehensive against the complete 200-plus sample collection.
In the future it could be advisable to prioritize LOI over other analyses, as it would have
increased our total sample size, addressing poor support for some statistics (e.g., site-
based). We hope we have demonstrated that LOI assessment can drive multiple analyses
moving forward. Although peatland studies are mostly directed at soils rich in organic
matter, high-density samples should not be neglected. Detailed investigation on the exact
composition of mineral-laden soils in Amazonian peatlands should be sought in future
studies. Additionally, while logistical challenges may limit coring capacity in the field, we
recommend that future studies still make an effort to sample to 150 cm. In our study, the
data would not show any notable results until a full 75 cm depth was taken into account.
Not only does this better encompass patterns, but it also dampens sampling errors that are
likely present in our datasets. Furthermore, in agreement with past studies, the volume-
limiting step should be taken in the field [2,3]. Physical manipulation of samples may limit
the detection of relationships indicative of ecosystemic processes or bias readings towards
high OM. While Russian peat sampling is the best means, this step can be accomplished
with inexpensive rings, tubes, or fixed coring equipment [62,63]. In so doing, many of the
drawbacks of the current study owing to low sample size could be remedied.

Given low sample size, our findings with regard to the ideal mixing model are highly
unstable, but they are in accordance with the theory [64,65]. Site 9 is the only site for which
decreasing k1 does not incur a concomitant increase in k2, and for which notable clay layers
or changes in density where not observed at sites with greater than−0.3 g cm−3 k2. Overall,
the negative k2 values are representative of profoundly organic soils, as expected for peat.
While Morris et al. [40] utilized the k1 coefficient in explaining accretion, the behavior of
k2 among sites may be more instructive to ecosystem processes. However, the k1 results
should be considered indicative of greater organic contribution at sites 2 and 13 compared
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to the other heavily sampled site 10. That these k1 values trend with the x-intercept values
garnered from general linear models further supports the deeply organic state of the peat
at those sites, but the overall trends speak toward the possibility of distinguishing sites in
which greater organic inputs may be occurring.

Morris et al. [40] state that site-based estimates of k1 were inappropriate given the
ranges of organic matter that some sites occupied, with some going well below the 40%
threshold (mean 30%, 12% minimum). By focusing on Amazonian peatlands, we did
not face this limitation. To test if a majority of Amazonian peatlands also conform to
a similar range, a wider scale of OM would need to be established with more intense
sampling spatially and with a greater number of sites. Proceeding to estimates of accretion
is problematic, with so few studies being able to state accumulation rates in Amazonian
peatlands [31,66], and no volumetric mass accretion can be rendered from their methods.
At the same time, our maximum k1 being roughly the same as the minimum detected in
Morris et al. [40] (0.05 g cm−3) would seem to predict negligible rates of accretion. This,
when paired with the negative k2 values, generally validates the application of the ideal
mixing model to Amazonian peatlands.

In the coastal wetlands studied by Morris et al. [42], mineral inputs involved in ac-
cretion occurred daily, and are much easier to quantify [67–69]. In Amazonian peatlands,
similar inputs are attenuated over annual flood pulses [23,70], but may be incurring a simi-
lar process of accretion, i.e., increase in soil layer thickness, as the ecosystem receives them
at or near the soil surface [16,26,28–33]. Thus, better quantification of OM relationships
may be able to diagnose higher rates of peat accumulation in certain peatlands, or wider
peatland systems (i.e., interregional variation). Although not as precise, this approach
should be less time-consuming than detailed elemental analysis studies, and much less
expensive than isotopic methods. We suggest a means to at least allow for land managers
and conservationists to develop a scheme that feeds directly into protection strategies
for peatlands. Considering tropical peatlands’ significance to the global carbon pool, this
should be a high priority for future research [27,71–74].

5. Conclusions

We present some soil characteristics from peatlands in the central Peruvian Amazon.
The presence of a non-linear relationship between organic matter and dry bulk density
prompted further exploration of relationships, highlighting information on potential ecosys-
tem processes. In general, the modeling we applied does not uphold logarithmic models.
While R2 values support power-law with intercept decrease tendency, AIC provides further
support for the ideal mixing model: a model that predicts accretion in North American
coastal wetlands. We suggest further use of the ideal mixing model to attempt to distin-
guish higher rates of peat accumulation in some peatlands, and the revision of organic
matter thresholds indicative of peat to lower levels.
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