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Abstract: Phosphorus (P) is one of the necessary nutrient elements in the process of plant growth
and development. The temporal and spatial distribution characteristics of phosphorus content can
not only reflect the soil structure and availability, but also affect the growth of wetland vegetation,
the formation of the environment, and the process of vegetation succession. In this paper, taking
Guizhou Caohai Nature Reserve as the research object, the temporal and spatial substitution method
was used to study the distribution and influencing factors of soil total phosphorus (TP) and soil
available phosphorus (AP) under different geomorphological environments (non-karst landforms,
karst landforms, and geomorphology after vegetation restoration (5 years)). The results showed
that (1) the TP content in the topsoil of the restored vegetation landform was generally higher than
that in the topsoil of the karst landform and non-karst landform, and the distribution difference
of the AP content in the three areas was slight. At the top, hillside, and foot of the mountain, the
contents of TP and AP in the non-karst landform and karst landform decreased with increasing
soil depth and accumulated at the foot of the mountain. (2) The results of the correlation analysis
showed that the interpretation rates of TP and AP by each soil physicochemical factor were the
highest, reaching 64–86%, while the interpretation rate of TP and AP by the combined action of
multiple physicochemical factors was relatively small; in addition, there was a significant correlation
between environmental factors and soil TP and AP (p < 0.05). (3) Compared with unrepaired karst
landforms, in the process of vegetation restoration (5 years), TP content has convergence between
geomorphology after vegetation restoration and non-karst landforms, while AP content fluctuates
greatly. The analysis showed that the changes in soil TP and AP contents were mainly affected by
vegetation communities, while the changes in soil TP and AP contents in mountain areas were also
affected by soil organic matter, pH, soil particle size, and climatic conditions.

Keywords: karst; vegetation restoration; phosphorus content; Caohai Nature Reserve

1. Introduction

Karst landforms account for approximately 12% of the total land area of the world [1].
The southwestern karst area, with the Guizhou Plateau at its center and an area of more
than 5.5 × 105 km2, is one of the three major concentrated karst areas in the world [2]. This
area is characterized by a small environmental capacity, weak water holding capacity, very
slow soil formation, weak anti-interference ability, and easy soil texture degradation [3].
At the same time, due to the interference and destruction of human activities, the soil in
the karst area is seriously eroded, the bedrock is exposed in a large area, a large amount
of nutrients is lost, the supply of soil water and nutrients is insufficient, the conservation
capacity is poor, and the fertility is seriously reduced, thus limiting the productivity of karst
mountain vegetation [4–6]. In recent years, governments at all levels have implemented a
series of rocky desertification control measures, such as “returning farmland to forest and
grassland”, to adjust the land use patterns in karst areas in southwestern China on a large
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scale. Soil quality has been effectively improved [7,8]. Soil erosion and rocky desertification
have also been controlled over time, but the situation is still grim [9–11]. At present, the
restoration problems in the southwestern karst area are mainly focused on and related to
the selection of vegetation restoration methods and the evaluation of the effects before and
after vegetation restoration, such as the effects of land use types and succession processes
on plant community structure [12,13], soil physical and chemical properties [14], microbial
communities, and ecostoichiometric characteristics [15]. However, the driving mechanism
of vegetation restoration on the change in soil’s physical and chemical properties is not
clear [16]. Soil phosphorus is one of the important limiting factors of karst plant growth.
The temporal and spatial distributions of phosphorus content can not only reflect the soil
structure and availability but also affect the growth of wetland vegetation, the formation of
the environment, and the process of vegetation succession [11,17–20]. Therefore, the above
problems can be addressed by studying the change characteristics of soil phosphorus and
their inherent correlation with soil nutrients in the Caohai Nature Reserve before and after
vegetation restoration.

Phosphorus (P) is an indispensable nutrient element for plant growth and metabolism
and an important part of the ecosystem’s nutrient cycle, playing a key role in plant growth,
development, and reproduction [21]. P deficiency limits ecosystem net primary productiv-
ity, nitrogen fixation, and carbon storage [22,23]. The P element in the ecosystem mainly
comes from the weathering of minerals and rocks, while the most common primary phos-
phate mineral is apatite, including various calcium phosphates and amorphous aluminum
and iron phosphates [24,25]. Due to the slow weathering rate and deposition of rocks,
the P cycle is slow on a global scale, reaching approximately 108 years [26]. Therefore,
in a short time, the P in the soil mainly comes from the migration and transformation
between plants and soil and the output process in the ecosystem [27,28]. Among them,
total phosphorus (TP) is not only an important part of promoting the soil P cycle but also
an important index for evaluating soil fertility, physical and chemical properties, biological
properties, etc. [29–31]. However, most P in the soil exists in a delayed state. A high TP
content does not indicate a sufficient P supply, but when the TP content is lower than a
certain level, it may indicate an insufficient P supply. Therefore, the TP content as a single
index cannot reflect the supply state of soil P, and the change in soil TP content under the
karst landform is weak, which makes it difficult to reflect the relationship with short-term
soil remediation. Available phosphorus (AP) is a commonly used index in the study of soil
TP that can reflect the slight changes in the soil before the change in soil TP. Although it
accounts for a small proportion of soil TP, as one of the most important energy sources in
the ecosystem, it can reflect the availability of soil P and soil quality to varying degrees.

Guizhou Weining Caohai National Nature Reserve, located in the southwest of Wein-
ing County in the west of Guizhou Province, is a representative karst rocky desertification
area in southwest China. In this study, the spatiotemporal substitution method was used
to select three kinds of geomorphological landforms (non-karst landform, karst landform,
and geomorphology after vegetation restoration (vegetation restoration)) in the Guizhou
Caohai Nature Reserve as the research objects [32].

Through the analysis of the internal correlation between soil P and environmental
factors and the role of vegetation restoration in different geomorphological environments
in the Guizhou Caohai Nature Reserve, the vegetation restoration effect mechanism on soil
P was discussed. This study provides a specific theoretical basis for improving the function
of vegetation restoration and the rational utilization of soil P resources.

2. General Regional Characteristics and Research Methods
2.1. General Characteristics of the Research Area

The study area is located in Guizhou Weining Caohai National Nature Reserve (26◦49′–
26◦53′ N, 104◦12′–104◦18′ E). It is located in the center of Wumeng Mountain in the middle
of the Yunnan-Guizhou Plateau. It contains the largest freshwater natural wetland lake in
Guizhou. The local topography is formed by the gentle hills of the western, southern, and
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eastern plateaus [33]. The area belongs to the mountain warm temperate zone with a humid
monsoon climate and the characteristics of a warm winter and cool summer and dry winter
and wet summer. Precipitation is mainly concentrated in the summer, which is the wetland
recharge period. The winter is relatively dry, the annual average temperature is 10.69 ◦C,
the annual average rainfall is 950.9 mm, the frost-free period is 208.6 d, the dry and wet
seasons are obvious, the soil type is mainly yellow soil lime soil, the forest coverage is less
than 15%, and the rock exposure rate is more than 75%. With a well-developed soil surface,
stone pits, and other niches, it is a typical well-developed plateau wetland ecosystem [34].

2.2. Research Methods

(1) Sample collection

Based on the geomorphological investigation of Caohai Nature Reserve, three sample
landforms were set up as experimental plots, of which the karst and vegetation restoration
geomorphological zones are located in Jiangjiawan in the Caohai Nature Reserve, and these
zones have the same habitat and are used for vegetation restoration and comparative study,
respectively. The basic situation is shown in Table 1: The years of vegetation restoration
were 3–4 years, mainly artificial vegetation (elm + herb); before restoration, the soil type
was lime soil, and the shrub community was mainly Artemisia and sedge [35,36]. At the
same time, the non-karst geomorphological landform (located in Yangguan Mountain) was
added for comparative study. Samples were collected in August 2019, and the soil P content
of the three sample zones was studied by the “spatiotemporal substitution method”. From
top to bottom, there were 5 sampling sites: Mountaintop (MT), hillside (HS), hillside (BM),
shore (SS), and wetland (WL) in each landform, and 3 groups of parallel plots were set up
at the same time, for a total of 39 sites (Figure 1). The soil samples were collected, and the
plant community characteristics of the corresponding sites were recorded. The depth of the
sampling profile was 50 cm, and the depth interval was 10 cm. The soil samples collected
in each sample plot were fully mixed after removing litter, and 1 kg of soil was retained to
represent the soil samples of the sample plot. A total of 195 soil samples were obtained in
this study. The soil samples were sealed and marked in a self-sealed bag and brought back
to the laboratory after cryopreservation. The collected samples were air-dried, crushed,
screened, marked, and stored in a cool and dry place.
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Table 1. Location and vegetation status of the transect.

Transect Latitude Longitude Phytocoenosium Altitude/m Vegetation Coverage/
% Soil Type Average Plant Heigh/m Plant Density Plant/m2

Non-karst 104◦12′1.82′′–104◦13′1.82′′ E
26◦52′3.10′′–26◦52′20.60′′ N

Arbor community: With Locust tree
(Sophora japonica L.), Cypress

(Sabina chinensis (L.), fir
(Cunninghamia lanceolata (Lamb.) Hook)

and so on primarily;
2174–2196 85

Yellow soil Arbor community: 8 Arbor community: 0.02

Shrub community: With Juniperus rigida
(Juniperus rigida S. et Z) and firethorn

(Pyracantha fortuneana (Maxim.) Li) primarily;
Shrub community: 2.5 Shrub community: 0.07

Herb community: With artemisia argyi
(Eleusine indica (L.) Gaertn), water celery

(Oenanthe javanica (Bl.) DC.)
and rushes primarily (Juncus effusus).

Herb community: 0.5 Herb community:12

Karst 104◦14′0.33′′–104◦14′2.81′′ E
26◦51′51.11′′–26◦52′0.38′′ N

Herb community: Take Trifolium (Trifolium Linn),
rushes (Juncus effusus) and Artemisia the

dominant factor.
2179–2202 40 Calcareous soil community: 0.7 community: 40

Vegetation
restoration

104◦13′53.40′′–104◦13′7.0′′ E
26◦51′56.86′′–26◦52′0.81′′ N

Arbor community: Take elm tree
(Ulmus pumila L.) the dominant factor;

2179–2202 60 Calcareous soil
Arbor community: 5 Arbor community: 0.04

Shrub community: Take pepper wood
(Zanthoxylum piperitum Benn)

the dominant factor;
Shrub community: 1.5 Shrub community: 0.06

Herb community: Golden Rooster
Chrysanthemum (Coreopsis drummondii Torr.

et Gray) and Artemisia (Artemisia carvifolia) the
dominant factor.

Herb community: 0.6 Herb community: 25
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Figure 1. Location of the study area. MT: Mountaintop; HS: Hillside; BM: Bukit Mertajam;
SS: Shoreside; WL: Wetland.

(2) Treatment and determination of samples

TP content was determined by melt-molybdenum, antimony, and scandium
colorimetry [37], Briefly, we put 1 g of the soil sample through a 100-mesh sieve (pore
diameter 0.25 mm) in a 50 mL flask, wet it with a small amount of water, added concen-
trated H2SO4 8 mL, shook it well, added 10 drops of perchloric acid (HClO4) 70–72%, and
shook it well. It was heated in a sand bath for 40–60 min (GWSY-2, China). Finally, it was
rinsed with deionized in a 100 mL volumetric flask. Then, 5 mL of the filtrate was absorbed
and it was placed in a 50 mL volumetric bottle, to which the display agent was added.
After fixing the volume, an ultraviolet spectrophotometer (UV-5100PC, China) was used
for colorimetric determination at the wavelength of 700 nm.

AP content was determined by the Olsen method [38]. We put 2.5 g of the soil sample
through a 100-mesh sieve (pore diameter 0.25 mm) in a 150 mL flask, added a 0.5 mol/L
NaHCO3 solution in a volume of 50 mL, oscillated it for 30 min (SHA-C, China), allowed
5 mL of the filtrate to be absorbed, and put it in a 50 mL volumetric bottle. We then added
0.5 mol L−1 NaHCO3 solution to 10 mL and, finally, fixed the volume with deionized
water. After being placed at room temperature at 25 °C for 30 min, a UV spectrophotometer
(UV-5100PC, China) was used for colorimetric determination at the wavelength of 880 nm.

Nitrate nitrogen (NO3
−-N), ammonium nitrogen (NH4

+-N), soil organic carbon (SOC),
readily oxidizable carbon (ROC), dissolved organic carbon (DOC), pH, soil bulk density
(BD), electrical conductivity (EC), and soil moisture (SWC) were measured as described
previously [39]. Chemicals, including Sulfuric acid, hydrochloric acid, and Sodium hy-
droxide, were ordered from Sinopharm Chemical Reagent Co., Ltd. (Shanghai, China). of
reagent grade or higher purity. The physical and chemical properties of the soil are shown
in Table 2.
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Table 2. Physical and chemical properties of surface soil from the different transects.

Transect Point pH SWC/% BD EC(µs/cm) NO3−-N (mg/kg) NH4
+-N (mg/kg) SOC (g/kg) ROC (mg/kg) DOC (mg/kg)

MT 4.19 ± 0.11 b 25.15 ± 6.57 b 1.41 ± 0.11 a 42.77 ± 12.23 c 3.04 ± 2.17 a 14.81 ± 2.2 a 16.59 ± 2.66 2.30 ± 0.26 a 2.61 ± 0.42 a

Non - HS 4.41 ± 0.29 b 27.56 ± 3.65 b 1.39 ± 0.02 a 38.87 ± 15.42 c 3.20 ± 3.35 a 11.61 ± 1.1 c 18.07 ± 4.0 bc 2.26 ± 0.26 ab 2.16 ± 0.35 a

karst BM 4.44 ± 0.23 b 30.8 ± 4.27 ab 1.36 ± 0.14 a 36.03 ± 11.44 c 4.51 ± 4.32 a 10.9 ± 1.1 bc 11.16 ± 5.29 c 2.38 ± 0.43 a 2.18 ± 0.29 a

SS 7.40 ± 0.30 a 26.62 ± 1.57 b 1.51 ± 0.02 a 75.90 ± 15.40 b 3.76 ± 1.49 a 11.21 ± 1.1 b 18.57 ± 1.83 b 2.35 ± 0.30 b 2.03 ± 0.39 b

WL 7.16 ± 0.43 a 36.95 ± 0.93 a 1.32 ± 0.02 a 125.63 ± 17.25 a 2.67 ± 1.26 a 10.62 ± 1.3 b 19.47 ± 1.54 b 2.16 ± 0.19 a 2.64 ± 0.37 ab

MT 8.26 ± 0.10 a 31.66 ± 0.06 a 1.37 ± 0.06 a 137.37 ± 13.69 a 1.08 ± 1.43 c 2.81 ± 2.05 b 12.36 ± 1.75 c 1.60 ± 0.34 a 1.62 ± 0.33 a

HS 8.22 ± 0.09 a 37.61 ± 0.09 a 1.30 ± 0.09 a 81.10 ± 24.47 b 1.34 ± 1.05 c 3.19 ± 2.25 b 9.37 ± 6.23 b 1.74 ± 0.41 a 1.73 ± 0.17 a

Karst BM 7.77 ± 0.08 a 38.67 ± 0.09 a 1.26 ± 0.09 a 59.70 ± 18.93 b 1.44 ± 1.05 c 4.73 ± 0.1 ab 4.52 ± 2.19 c 1.16 ± 0.43 a 1.25 ± 0.21 a

SS 7.81 ± 0.13 ab 30.67 ± 0.18 a 1.49 ± 0.18 a 116.67 ± 8.61 b 7.09 ± 2.26 a 8.44 ± 0.09 a 19.81 ± 0.77 b 2.38 ± 0.51 b 1.33 ± 0.40 ab

WL 7.82 ± 0.13 ab 29.28 ± 0.17 a 1.48 ± 0.17 a 214.03 ± 34.70 a 4.54 ± 0.88 b 8.58 ± 0.10 a 26.52 ± 4.37 a 1.46 ± 0.40 b 1.96 ± 0.49 b

MT 7.99 ± 0.10 a 22.02 ± 0.19 a 1.59 ± 0.19 a 99.20 ± 32.72 bc 2.61 ± 0.67 a 6.77 ± 0.33 a 8.77 ± 2.15 c 1.58 ± 0.57 a 2.00 ± 0.49 a

Vegetation
restoration HS 6.47 ± 0.33 b 29.06 ± 0.06 a 1.22 ± 0.06 a 36.63 ± 11.87 c 3.17 ± 1.45 a 5.21 ± 0.61 a 5.83 ± 1.57 b 1.40 ± 0.37 a 1.74 ± 0.27 a

BM 7.38 ± 0.61 ab 25.42 ± 0.16 a 1.41 ± 0.16 a 89.83 ± 47.55 bc 2.70 ± 0.45 a 6.43 ± 0.06 a 7.24 ± 2.81 a 1.23 ± 0.32 a 1.25 ± 0.12 ab

Note: MT: Mountaintop; HS: Hillside; BM: Bukit Mertajam; SS: Shoreside; WL: Wetland. The number of samples per point is 5 (n = 5). Lowercase letters represent significant differences
between different regions of the same band (p < 0.05).
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(3) Data analysis and processing

The data were analyzed using Excel 2007 and SPSS 26.0. Redundancy analysis (RDA)
of the P content and physicochemical properties of the soil was performed by Canoco
Software 5.0. The drawing was performed in Origin 9.1 software.

3. Results
3.1. Distribution Characteristics of P Content in the Topsoil of Different Landforms

(1) Distribution characteristics of TP with different particle sizes in topsoil

The spatial distribution of the TP content in soils with different particle sizes in the
three sample zones is shown in Figure 2. In the non-karst landform, the soil TP content
increased gradually from MT to WL, and there was a significant difference between the
soil TP content in the MT-BM region and the soil TP content in the SS-WL region. In the
karst landform, the soil TP of different particle sizes in each region showed a gradual
decrease, and the soil TP content of 0.15 mm and 0.12 mm particles in the HS, BM, and WL
regions was significantly different from that in the SS regions. In the geomorphology after
vegetation restoration landforms, the distribution of soil TP content was similar to that in
non-karst landforms, and the soil TP content in the MT region was significantly different
from that in other areas.
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(2) Distribution characteristics of AP in different soil particle sizes

The spatial distribution of the soil AP content in soils with different particle sizes in
the three sample zones is shown in Figure 3. In the non-karst landform, the soil AP content
of the 0.25 mm particle size in the BM region was significantly different from that in other
regions. In the same region, the soil AP content of the 0.12 mm particle size in the BM
region was not significantly different from that of the other particle size soils. The soil AP
content of the 0.12 mm particle size in the other regions was significantly different from
that of other particle size soils. In the karst and geomorphology after vegetation restoration,
the soil AP content of 0.15 mm particles in the MT region with vegetation restoration
was significantly different from that of 0.15 mm particles in other regions. There was no
significant difference in the soil AP content among the other particle sizes in each region.
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3.2. Vertical Distribution Characteristics of Soil P Content in Different Landforms

(1) Distribution characteristics of the TP content in soils of different landforms

The spatial distribution of soil TP content in the three sample zones is shown in
Figure 4. Vertically, the soil TP showed deep accumulation in the MT, HS, and BM regions
with karst landform and the HS region with geomorphology after vegetation restoration.
The soil TP in the other regions of the three zones showed an overall decreasing trend in
soil TP with an increasing soil depth. In the horizontal direction, the overall trend of the
TP content in the non-karst landform and geomorphology after vegetation restoration was
MT < HS < BM < SS, WL. Among the regions in the karst landform, the SS region had the
highest TP content, and the WL region had the lowest TP content.
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(2) Distribution characteristics of AP content in soils of different landforms

The spatial distribution of the soil AP content in the three sample zones is shown in
Figure 5. Vertically, the AP content in the three landforms was concentrated in the surface
layer. With increasing soil depth, the AP content decreased gradually. In the non-karst
landform, HS and BM accumulated in the deep soil layer. In the karst landform, the AP
content in the BM region accumulated in not only the surface layer but also the deep layer.
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In the geomorphology after vegetation restoration, there was deep accumulation in only
MT and HS. Horizontally, the content of AP in the surface layer of soil increased gradually
from MT to SS in the non-karst landform, and the content of AP in SS and WL was the
highest. In the karst landform, the content of AP in the surface layer of soil first decreased
and then increased from MT to SS. The AP content decreased gradually in the HS region
and increased gradually in the SS region. However, the AP content decreased gradually
from MT to BM in the geomorphology after vegetation restoration.
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3.3. Correlation Analysis between P Content and Soil Physical and Chemical Properties

(1) Principal coordinate analysis (PCA) of soil physical and chemical properties in differ-
ent geomorphological landforms

The principal component analysis (PCA) of the soil’s physical and chemical properties
under three sample bands is shown in Figure 6. The physical and chemical properties of
the soils in the different regions of the three zones were mainly controlled by two principal
coordinate (PC) components. Among them, the PC1 axis explained 31.572% of the data
variation, and the PC2 axis explained 22.666% of the data variation, with a cumulative total
variance of 54.238%. Figure 6 shows that the non-karst landform was obviously separated
from the karst landform and the geomorphology after vegetation restoration, indicating
that there are differences in physical and chemical properties in different landforms. In
contrast, the karst landform and geomorphology after vegetation restoration were relatively
close and overlapped, indicating that they had similar physical and chemical properties.

(2) Interpretation of soil P elements and soil physical and chemical factors in different
landforms

The DCA sorting results show that the gradient length values in the sorting axis are
all less than 3.0. Therefore, this study uses redundancy analysis (RDA), and variance
decomposition analysis (VPA) was used to explore the correlation between soil P and soil
physical and chemical factors. The correlation between nine soil environmental factors and
P (TP, AP) was analyzed by RDA. The results showed that the degrees of interpretation of
the first two ranking axes in the non-karst landform, karst landform, and geomorphology
after vegetation restoration were 82.05% (RDA1: 64.04% and RDA2: 18.01%), 49.59% (RDA1:
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38.09% and RDA2: 11.50%), and 87.97% (RDA1: 81.84% and RDA2: 6.13%), respectively
(Figures 7–9). At the same time, the variance decomposition analysis of soil environmental
factors on soil TP and AP showed that the proportion of variables in which soil TP could not
be explained by the above environmental factors was more than 0.36 (that is, the residual
degree of explanation). The proportion of variables in which soil AP could not be explained
by the above environmental factors was more than 0.51. This result shows that there were
some other factors that had a great influence on the content of soil TP and AP in the sample
landforms, which need to be further studied.
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Figure 7. Redundant analysis of pure and common effects of soil physical and chemical factors on TP
and AP in non-karst landforms. env1: The environmental cause of the first quadrant (pH, EC, SWC);
env2: The environmental cause of the second quadrant (BD, DOC); env3: The environmental cause
of the third quadrant (NH4

+−N, NO3
−−N); env4: The environmental cause of the fourth quadrant

(ROC, SOC); Residuals: Represents the remaining degree of explanation. SWC: Soil water content; BD:
Bulk density; EC: Electric conductivity; NO3

−−N: Nitric nitrogen; NH4
+−N: Ammonium nitrogen;

TP: Total phosphorus; AP: Available phosphorus (similarly hereinafter).
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The environmental cause of the second quadrant (NH4
+−N, NO3

−−N, EC); env3: The environmental
cause of the third quadrant (BD, SOC, ROC); env4: The environmental cause of the fourth quadrant
(pH); Residuals: Represents the remaining degree of explanation.
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4. Discussion
4.1. Effect of Karst Geomorphology on the Content of Soil P Components

Some studies have shown that the source of soil P is determined by soil-forming
factors such as soil parent material, climate, and time [26,40]. In addition, different ero-
sive hydrological environments caused by changes in land-use patterns and topographic
characteristics can also affect the content and distribution of soil P [27]. From the point of
view of soil spatial distribution, the content of soil TP in karst and non-karst landforms
tends to be enriched in coastal areas. First, the reason may be that the shore area is close
to the riverbank, and there is almost no plant cover on the soil surface, which makes TP
easily dissolved by river tides; thus, the soil nutrient mineralization rate is faster, the soil
TP conversion rate is high, the soil AP capacity and supply are large, and there is more P
that can be directly absorbed and utilized by plants, benefiting plant growth and increasing
the availability of soil P [41]. Second, the soil TP content of thee karst landform was signifi-
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cantly lower than that of the non-karst landform in the same horizontal space, and the soil
TP content was less affected by vertical spatial variation. On the one hand, this may have
been due to the relatively minimal vegetation coverage, few plant species, loose soil, and
rock weathering of karst landform, as well as a large amount of scouring by rain year-round,
which causes the surface TP content of karst landform to gradually decrease [19,42]. On
the other hand, because the karst landform is very complex, the surface is rugged and
broken [43], and the P element mainly comes from rock weathering and soil formation,
which is affected by geological background [44]. As a result, the content of soil TP in th
karst landform is significantly lower than that in the same horizontal space of the non-karst
landform. The content of soil TP in non-karst landform was mainly concentrated in the
surface layer where most of the roots of plants are located and soil microorganism activity
is strongest, which has a strong effect on the activation of P, thus increasing the availability
and mobility of soil TP [8]. Because the plant root system decreased with increasing soil
depth, the availability of P in topsoil was the highest in the research area, and it decreased
with increasing soil depth [1,6]. This is consistent with the results that Zhang Qian and
others found that the contents of soil TP and AP decreased with the increase in soil depth
in karst rocky desertification areas [45].

Soil AP is not only the most effective part of soil available phosphorus storage for
crops but also an important index to evaluate the level of soil P supply [46]. The results
showed that there were significant differences in the soil AP distribution between the
different zones. The soil AP content in the non-karst and karst landforms was concentrated
in the surface layer, and the soil AP content in the karst landform was significantly higher
than that in the non-karst landform. On the one hand, in the karst landform, the vegetation
community is mainly herbaceous, the vegetation coverage is low, and there are few plant
roots that are mainly distributed in the surface layer of the soil. However, the plant
communities in non-karst landforms are mainly tree and shrub communities. Compared
with herb communities, tree and shrub communities have plant roots that are abundant,
and microorganisms are abundant [6], which reduces soil erosion and weathering on the
surface of the soil and reduces the source of P. At the same time, P is an indispensable
part of the plant growth process [47]. With the increase in plant species and microbial
biomass, AP in the soil is absorbed by plant roots and microorganisms, which reduces soil
AP in non-karst landforms. On the other hand, because karst landforms are affected by
soil erosion, the soil AP content migrates to a lower depth through physical transfer so that
the soil AP content is reduced by the soil space [27]. At the same time, this scenario also
explains why the P content in the foot and shore areas of the karst landform is obviously
higher than that in other areas.

4.2. Effect of Vegetation Restoration on Soil P Content

The soil P cycle is part of the sedimentary cycle, and the main source of P in the soil
is the release of minerals by weathering and decomposition. The weathered inorganic P
is easily soluble in weak acids and then absorbed by plant roots [27]. In the early stage of
vegetation restoration, vegetation is an important part of the energy and material flow in
ecosystems, and the type of vegetation and root activity affect the spatial distribution of soil
nutrients [48]. The results of this study show that the soil TP content in the karst landform
was less affected by soil spatial variation, while the TP content in the geomorphology after
vegetation restoration was inversely proportional to soil depth, which is similar to that in
non-karst landform; this result may be due to the gradual increase in vegetation coverage
and animal and plant diversity at the initial stage of vegetation restoration. P in the soil is
returned to the soil in the form of organic P through the litter on the soil surface and the
remains of animals and plants, which makes the soil TP content accumulate gradually [49].
At the same time, due to the increased growth of aboveground plants and abundant litter,
microorganisms and nutrients enter the soil through roots, and hyphae and microorganisms
decompose to form cement, which is conducive to the formation of large aggregates on the
soil surface [50]. The large specific surface areas of large aggregates can absorb more P, thus
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promoting the distribution of soil P in large aggregates and increasing the content of TP
in the surface soil [51]. After vegetation restoration, the plant roots in the soil increased
the content of soil organic matter and provided more energy for soil microorganisms, thus
increasing soil phosphatase activity and promoting the mineralization of soil organic P
compounds, thus increasing soil TP storage [52,53].

Some studies have shown that in the early stage of natural vegetation restoration
(< 5 years), the initial stage of vegetation growth significantly promoted the accumulation
of soil AP [54,55]. The results of this study show that there were significant differences in the
distribution characteristics of soil AP content among different landforms. The soil AP con-
tent in the karst landform was mainly concentrated in the surface layer, the soil AP content
in the geomorphology after vegetation restoration was less affected by soil spatial change,
and the soil AP content in the karst landform was significantly higher than that in geo-
morphology after vegetation restoration, which may have been due to the rich vegetation
diversity and high organic matter content on the surface of geomorphology after vegetation
restoration. As a result, the soil AP in the geomorphology after vegetation restoration
dissolved and was absorbed by plants; thus, the content of soil AP in the geomorphology
after vegetation restoration decreased [10]. Other studies have pointed out that, in alkaline
soil with a pH > 8, the content of organic matter was more abundant, which is beneficial to
the growth of phosphorus-solubilizing microorganisms; phosphorus-solubilizing microor-
ganisms improve the ability of plants to obtain P from thee soil by inducing metabolism,
which strongly affects the availability of P [56,57]. The pH value of topsoil in the study area
fluctuated greatly among the different geomorphological zones, and the pH of the karst
landform was significantly higher than that of geomorphology after vegetation restoration.
The reason is that alkaline soil with higher pH can promote the release of certain forms of
phosphorus [58], thus increasing the AP content of karst landforms in the topsoil. However,
alkaline soil strongly adsorbs and fixes water-soluble phosphate [58]; thus, the pH value
of soil in the karst landform was higher, and the average content of soil AP was slightly
higher than that of the soil in the geomorphology after vegetation restoration, which was
related to the adsorption and fixation of water-soluble phosphate.

In addition, although this study discussed the spatial heterogeneity of soil TP and AP
under different geomorphological types, the deeper mechanisms, such as the acquisition of
vegetation litter, microbial decomposition, and phosphorus stability of other components,
need to be further studied in the future.

5. Conclusions

(1) The content of soil phosphorus in the non-karst landform was significantly lower
than that in the karst landform. In the vertical direction, the phosphorus content
in the non-karst landform decreased gradually with increasing depth, showing the
phenomenon of surface enrichment, while the karst landform did not show surface
enrichment. The TP content in the topsoil of the geomorphology after vegetation
restoration is generally higher than that of the karst landform and non-karst landform,
and the AP content has no obvious distribution. After vegetation restoration, the
contents of TP and AP in the surface soil of the karst landform are generally higher
than those of karst landform and non-karst landform, indicating that the soil after
vegetation restoration can intercept more phosphorus so that plants can absorb and
utilize it.

(2) In the process of vegetation restoration, soil TP content converges between geomor-
phology after vegetation restoration and non-karst landform, while the soil AP content
fluctuates greatly. The analysis shows that the change in soil TP and AP contents is
mainly affected by the vegetation community, while the change in soil TP and AP
contents in mountain areas is also affected by soil organic matter, pH, soil particle
size, and climatic conditions. This shows that vegetation restoration has played a
certain role in the control of karst rocky desertification, and this is the first time the
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distribution of single phosphorus in karst landform has been evaluated through a
vegetation restoration model, which has certain research significance.

(3) After vegetation restoration under karst landform, the increase in vegetation coverage
can promote the absorption of phosphorus in topsoil. Although the content of TP
and AP is slightly higher than that of karst landform, the difference is small. Due
to the short restoration years, further research is needed to further verify the effect
mechanism of vegetation restoration on soil phosphorus.
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